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Abstract

We discuss a scheme for the numerical solution of one-dimensional initial
value problems exhibiting strongly localized solutions or finite-time singu-
larities. To accurately and efficiently model such phenomena we present a
full space-time adaptive scheme, based on a variable order spatial finite-
difference scheme and a 4th order temporal integration with adaptively
chosen time step. A wavelet analysis is utilized at regular intervals to
adaptively select the order and the grid in accordance with the local be-
havior of the solution. Through several examples, taken from gasdynamics
and nonlinear optics, we illustrate the performance of the scheme, the use
of which results in several orders of magnitude reduction in the required
degrees of freedom to solve a problem to a particular fidelity.

1 Introduction

In a variety of physical systems, modeled by nonlinear wave equations,
one often observes the development of highly localized solutions such as
shocks and even finite-time singularities, e.g., numerous examples of the
former can be found in gasdynamics (Whitham (1974)) while examples of
the latter are found in nonlinear optics (Newell and Maloney (1992)).
The efficient and robust numerical modeling of such phenomena is made
difficult by the high degree of localization which introduces severe stiffness
and rules out the use of classical split-step FFT-based methods (Newell and
Maloney (1992)) due to the inefficiency associated with the representation
of a highly localized solution by a global expansion. The most natural



way to solve such problems would seem to involve the use of a highly
adaptive solution technique, allowing for the use of sufficient resolution
in regions where needed while using a sparse mesh in regions with little
variation of the solution. Furthermore, as advocated Jameson (1998) in
general and Hesthaven and Jameson (1998) in a multi-domain context, it
seems advantageous to use a high-order accurate scheme on a coarse grid in
regions of large regularity while a low-order scheme in combination with a
very fine grid is preferable close to regions of very limited regularity. This is
very much in the spirit of hp-finite element methods, see e.g. Babuska and
Suri (1987) or Schwab (1998), used extensively in solid and fluid mechanics
for solving elliptic problems.

Here we shall discuss the development of a scheme with a similar degree
of flexibility and accuracy but tailored specifically to the solution of non-
linear wave problems exhibiting highly localized dynamics. We shall show
that the use of such schemes has the potential to very significantly reduce
the computational resources needed to solve a given problem to a specific
accuracy. For simplicity we restrict our problems to be periodic in space,
although there is nothing that prohibits the introduction of boundaries by
one-sided stencils or even a multidomain formulation as discussed in detail
by Hesthaven and Jameson (1998) for linear problems. The approach is
entirely general and allows for solving for real and complex solutions and
scalar problems as well as systems of equations.

The scheme is based on the approximation of the spatial derivatives by
an explicit high-order finite-difference method of variable order while a 4th
order Runge-Kutta method is employed in time. The central issue natu-
rally becomes how to choose, in space-time, a suitable level of adaptation
as the solution evolves. As we aim at a scheme applicable to a variety of
problems we shall need an error estimator that is independent of the par-
ticular problem being considered, relying solely on the fast and accurate
localization of regions of low regularity.

With this in mind it becomes natural to turn the attention to wavelets
as tools for the localization of regions with high-frequency content, i.e.,
regions with steep gradients. Indeed, one could argue that a full wavelet
based scheme would be best suited for the problems considered here and
developments along such lines have indeed been attempted in the past,
either in a Galerkin formulation (Bacry et al. (1992)) or using interpolating
wavelets in a collocation formulation (Cai and Wang (1996), Vasilyev and
Paolucci (1996), Beylkin and Keiser (1997)). The application to multi-
dimensional linear problems is discussed by Cai and Zhang (1998) in the
context of reaction-diffusion problems and by Katehi et al. (1998) for the
solution of problems in electromagnetics.

In these previous works the solution itself is represented in terms of the
wavelet expansion and all operations, e.g., differentiation and integration,



are performed directly on this basis. Here we take a different route, in-
spired by some deep relations, realized independently by Beylkin (1992),
and Jameson (1993, 1996), between classical finite-difference stencils and
differentiation matrices based on wavelets. Indeed, on the finest level of
refinement these discrete operators turn out to be equivalent or almost
equivalent depending on the wavelet family being considered. This sug-
gests, as has also been exploited by Jameson (1998), and Hesthaven and
Jameson (1998) for solving linear problems, that one can solve the initial
value problem using a variable order classical finite difference scheme, but
use a wavelet analysis at periodic intervals to facilitate an adaptive spatial
refinement of the grid and, subsequently, in time to ensure stability. This
is exactly the approach we shall take in the following.

What remains of the paper is organized as follows. In Sec. 2 we discuss
the details of the wavelet optimized high-order finite-difference method with
an emphasis on the adaptive construction of the finite-difference stencil and
the associated wavelet analysis that allows for correctly adapting the local
resolution and the order of the scheme. Guidelines for wavelet truncations
and the balance between the order and the resolution is also discussed.
This sets the stage for Sec. 3 where we present a number of applications
to the solution of problems derived primarily from the area of nonlinear
fiber optics. Section 4 contains a few concluding remarks and guidelines
for future work.

2 A Wavelet Optimized Finite-Difference Method

We consider the general well posed initial value problem

Ou
E = f(u)tam) ) (1)
u(x,t) = uo(x) ,

where & € D refers to the spatial domain and wu(z,t) : D x RT — C”
represents the n-dimensional state vector defined on the complex field, C.
The general nonlinear flux, F(u,t,z) : C" x D x Rt — C" may depend
on space-time as well as u and operations on u, e.g., differentiation and
integration.

For simplicity we restrict ourselves to a detailed discussion of the one-
dimensional case, furthermore assuming that the solutions are of a periodic
nature. There is, however, nothing intrinsic in the scheme that utilizes this
assumption and it can be relaxed to include non-periodic initial boundary
value problems and multi-dimensional problems.

In formulating the scheme for solving Eq.(1) we shall, as is the basis of
finite difference methods, assume that the solution, u, is well represented



locally by a interpolation polynomial and utilize this to approximate deriva-
tives etc. By requiring that the equation be satisfied in a collocation way
at the grid-points supporting the local polynomials we recover a method-
of-lines formulation with a large system of ordinary differential equations
to be solved for advancing in time.

In the following we shall discuss in some detail the construction of the
high-order finite-difference stencils on arbitrary grids and, subsequently,
how this interacts with a wavelet analysis of the solution to enable order
and grid adaptivity.

2.1 Polynomial Interpolation and General Finite-Difference
Stencils

A central element of the scheme is the ability to construct the arbitrary
order finite-difference approximations to the spatial derivatives. We recall
that, due to the fully adaptive nature of the scheme, the order of the
approximation as well as the grid structure is arbitrary.

Let us hence briefly review this construction, referring the reader to
Fornberg (1998) for details. The classic approach is to construct Lagrange
interpolation polynomials of the specified order and, subsequently, evalu-
ate the derivative of these polynomials at the grid points to obtain the
coefficients in the finite-difference stencil.

We assume that the function, u; = u(x;), is given on an arbitrary
N-element grid z; and construct the N’th order Lagrange interpolation
polynomials, I; x (). This allows us to recover the local N’th order inter-
polation polynomial, py(z), on the form

N
pN(T) = Zuili,w(x) ; (2)

where

(x—mwo) - (x—mi1)(@ —wip1) - (v~ 2N)
xp—x0) (@ —xim1) (T — i) - (@ —aN) )

li7N(CE) = (

The k’th order derivative of the interpolation polynomial, py, will thus
serve as the N’th order approximation to the k’th derivative of u(z), i.e.,

dhu(z)  dEpn(e) o= dFhin(z) o= 4
o N Tk E Ui = E uic; n() - (4)
i=0 =0

To obtain the k’th derivative of u at z, we thus need to evaluate cf y (z4).
To recover these, consider
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i.e., they are nothing but the Taylor expansion coefficients of I; () around
Ty
Directly from Eq.(3) we can recover the relations

i<N : Lin(@) = ﬁliw_l(x) : (6)
and
N-2
[l (zn-1 — )
1=N lN7N(CE) = 11:\,[11—(.7: — CUN_l)lN_LN_l(CE) . (7)
HO (zn — i)

Combining these with the Taylor series, Eq.(5), yields the recurrence rela-
tions (Fornberg (1998)) (k < N)

. X 1 x _
P<N G chy(@a) = ——— [@a—an) iy — kiR L (8)
i — TN ?
N—2
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k i=0 k k
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(8b)
Using as starting point that c0 o = 1 due to the nature of Lagrange poly-
nomial and taking all undeﬁned coefficients to be zero, one now computes
all necessary weights ch ~ in O(kN?) operations and, hence, evaluates the
derivative up to k’th order at some point z,. Note that taking k¥ = 0 simply
yields the scheme for interpolation.

One should realize that the above construction depends only on the grid
points, x;, i.e., only when the grid is changed due to adaptation shall we
need to recompute the weights. As this is done at periodic intervals only
and not at every time step, the computation of the weights and, thus, the
finite difference stencils, represents a negligible computational expense.



2.2 Mesh and Order Adaptation

Having laid the foundation for the computations of arbitrary order stencils
on arbitrary grids, let us now turn the attention to the use of wavelets and
wavelet expansions to determine where to refine/coarsen the grid and/or
adjust the order of the scheme.

Prior to that, however, we shall first recall a few basic properties of
wavelets and wavelet expansions of relevance to the present discussion.

2.2.1 Briefly on Wavelets and Wavelet Expansions

The term wavelet is used to describe a spatially localized function, i.e., the
wavelet is assumed to have most of its energy contained in a very narrow
region of the physical space. We shall restrict ourselves to wavelets with
compact support and focus on the family defined by Daubechies (1988).

To define the Daubechies wavelets, consider the two functions, ¢(x) and
Y (x), as solutions to the equations

L—-1
b(x) = V2 S hid(2a — k), (9)

k=0

L—1
P(x) =vV2) ged(2z — k), (10)
k=0

with ¢(x) normalized as

Let also
¢l (x) =2 292z —k) , Yl(x) =252 Tz —k) ,

where 7,k € Z, denote the dilations and translations of the scaling function,
¢7.(x), and the wavelet, ] (), respectively.

Thesets, H = {hy} ;=4 and G = {gx }-_7, arerelated as g, = (—1)*hr_i_y,
for k =0,...,L—1. Furthermore, H and G are chosen so that dilations and
translations of the wavelet, 7 (), form an orthonormal basis on L?(R) and
such that the mother wavelet, ¢(x), has M = L/2 vanishing moments. In
other words, 7, (z), satisfies

SutGjm = / i (@) (2)de | (11)



where 0y, is the Kronecker delta function, and the mother wavelet, ¥ (z) =
¥9(x), is defined by

VmE[O,...,M—l]:/_m¢(m)wmdx20. (12)

It is usual to let the spaces spanned by ¢i(m) and zbi(:v) over the parameter
k, with j fixed, be denoted by V; and Wj, i.e.

v =span{of(0)} . W, =span{u(@)}

keZ keZ

These spaces, V; and W, are related as
.cvicWwcacVvo C..,

and
Vi=Vipn ® Wit ,

i.e., W41 is the orthogonal complement of V4 in V;. Utilizing orthonor-
mality of the wavelets, 7, one recovers

LR) = DW; . (13)
Jj€Z

reflecting the completeness of the wavelet basis. Hence, any u(z) € L*(R)
can be written as,

u(z) =D > diyl(z) . (14)

JEZkEZ

The expansion coefficients, di, appear directly through orthogonality as

4}, = / u(z)y] (z)dze (15)
where the decay of di depends on the local regularity of u(z) as

4] < 02795 max
E€[k2—7,(k+M—1)2—17]

G (16)

From Eq.(16) we find that if u(z) behaves like a polynomial of order less
than M inside the small interval, then dfc vanishes exactly, i.e., one can view
the magnitude of di as a direct measure of how well the assumption of local
polynomial behavior, underlying the finite difference scheme, is satisfied.
This makes the use of wavelets as local error estimators in connection with
finite-difference methods a natural and efficient approach.

Indeed, even if u(™) differs from zero, it will nevertheless decay expo-
nentially with the scale parameter, j, and the information given by Eq.(16)



provides a local measure of the regularity of the function or rather the
closeness to local polynomial behavior. This is exactly what we utilize to
determine the need for order and/or mesh adjustments.

Naturally, infinite sums and integrals are meaningless when one begins
to implement a wavelet expansion on a computer. However, j is related
directly to the different scales, i.e., level of meshes in this context, with j =
0 reflecting the finest possible grid. Furthermore, as k reflects translation,
these parameters are set naturally by the problems considered and levels
of refinement allowed.

Hence, to obtain the wavelet expansion of a function, u(z), suppose
that it is sampled at a uniform mesh at level j. We can then recover the
scaling function and wavelet coefficients on the next coarser scale as

2M

Jj+1 _ J

up = § :hnun+2k—M )
n=1

2M

j+1 J

d," = E :gnun+2ka )
n=1

where M = L/2, and H and G basically reflects low- and high-pass filtering
of the function. We can continue this decomposition to recover the wavelet
coefficients on a number of scales, d°, d", . . ., and obtain information about
the local regularity of the function using Eq.(16). This provides a basis
for deciding whether the solution is sufficiently well resolved. We note in
particular that this error estimator is independent of the particular problem
being consider and, hence, is applicable to the adaptive solution of a variety
of nonlinear wave problems.

The number of vanishing moments, M, of the wavelet, ¢(x), is related
to the order of the wavelet expansion. For Daubechies wavelets, Dy, the
number of elements in H and G, or the length of the filters H and G,
denoted by L, is related to the number of vanishing moments M by 2M =
L. Moreover, L also reflects the support of the wavelet, i.e. small L implies
narrow local support.

In this work we shall only consider the use of the D, wavelet with
the filter coefficients given in Table 4. In Jameson (1998), Hesthaven and
Jameson (1998) this was found to provide a good alternative between com-
pactness and regularity. It is worth emphasizing, though, that numerous
other choices may well yield similar or better results and some experimen-
tation and analysis may well be warranted to establish a suitable filter for
a particular application.

The filter coefficients, H, needed to define compactly supported wavelets
with a higher degree of regularity can be found in Daubechies (1988). As
expected, the support increases with the regularity of the wavelet.



2.2.2 Wavelet Optimized Mesh Generation

With the ability to localize regions with little regularity, e.g., |di| > 5%
where £7, is some threshold set for refinement at level j, as well as with a
high degree of regularity, e.g., |d§€| < SJé with sé being some threshold set
for coarsening at level j, we are able to optimize the mesh distribution as
guided by the wavelet decomposition.

We shall adjust the grid by bisection, i.e., by dividing existing intervals
by half or removing central mesh points. As illustrated in Fig. 4, we
associate a special index with each point in the grid, reflecting the level
of the refinement required to activate the point in the specified position.
Hence, the domain boundaries have index zero, the one in the center of the
interval corresponds has index one, those nodes specifying 1/4 and 3/4 of
the interval have index two and so on. Clearly this index is directly related
to the local resolution level, i.e., j = 0 corresponds to all indices 0-4 while
j = 4 contains only index zero mesh points in Fig. 4.

The procedure for determining the wavelet optimized grid, given a par-
ticular solution, at a generally nonuniform grid, involves interpolation to
recover a solution at a uniform grid, corresponding to a level of refinement
one level finer than is currently considered unless the finest level is already
in use.

Decomposing the solution, u(z), into the wavelet expansion now gives a
direct measure of where the regions of smoothness as well as high gradients
are located. To decide whether to refine or coarsen the grid locally we shall
use simple thresholding of the wavelet coefficients inspired by the simple
error estimate in Eq.(16), i.e., we use the following threshold values

j 55 -y
e =Cr2727 | e, =Cc273 |

and refine, or rather retain the level of resolution, if |d§€| > 6;_3 while we
coarsen if |dfc| < 5]5, corresponding to dropping that particular level of
resolution locally and consider the wavelet coefficients for level j + 1.

In Fig. 4 we illustrate this procedure to recover wavelet optimized
meshes for functions with different degrees of regularity. We take 2°/2Cg <
Cc = 6Cpg for simplicity although this is by no means unique. The func-
tions are initially sampled at 1024 points on [0..1] and then analyzed by the
wavelet analysis outlined in the above using different values of the thresh-
old, Cg. The grid points are clearly clustered in regions with a high degree
of variation as one would intuitively prefer.

It is worth pointing our that a number of additional strategies may
be worth considering in the development of a robust and effective mesh
generation scheme, e.g., it would seem natural to avoid too large jumps in
the local resolution by requiring that grid-points around areas with high



wavelet coefficients be included to ensure that the solution remains well
resolved even after a period of evolution. The degree of this, however,
is clearly related to how often the grid is adapted and some compromise
between work and accuracy is required, depending on the requirements of
the particular problem being considered.

2.2.3 Order Adjustment

A careful inspection of the approximation to the discontinuous function in
Fig. 4 reveals that two points do not fall exactly on the function. This
is a result of using a 4’th order polynomial to interpolate a discontinuous
function, resulting in artificial oscillations much as the well known Gibbs
phenomenon for Fourier series and expansions utilizing orthogonal poly-
nomials (Gottlieb and Shu (1997)). While one can choose to ignore these
oscillations for the approximation of functions, they may render the nu-
merical scheme unstable due to nonlinear mixing of these high-frequency
components with the solution as is well known when solving nonlinear
problems using spectral methods, see e.g. Gottlieb and Hesthaven (2001).

There are essentially two ways to deal with these concerns for general
nonlinear problems. One can choose to compute with the oscillations and
stabilize the numerical scheme by introducing additional dissipation by the
use of a filter (Gottlieb and Hesthaven (2001)). For spectral methods,
where the ability to change the order locally is very limited, this is the
method of choice and one could attempt a similar technique within the
present context. However, as we also have the ability to locally modify the
order of the finite-difference scheme, using the magnitude of the wavelet
coefficients as guides, we can simply choose to lower the order of the scheme
locally to a 1st order scheme if the wavelet expansion indicates an inability
to resolve the solution even at the finest level of mesh refinement. Such
an approach allows us to take maximum advantage of the flexibility of the
scheme presented here by using a low order nonoscillatory scheme in regions
with very low regularity or severely underresolved solutions while we can
use a high-order scheme in regions with a high degree of smoothness.

For any interval we introduce a number, n;, containing the maximum
index of the points limiting this interval, i.e., it relates directly to level
of local refinement at the j’th interval. Similarly for all grid point we
introduce m; as the maximum index of the point itself and the two nearest
grid points.

As the wavelet optimized mesh analysis will refine the mesh in regions
of less regularity, we can utilize n; and m; to control the order of the spatial
interpolation. Indeed, we use m; to control the order the finite differencing
and n; to control the order of the interpolation in the preparation for the
wavelet mesh analysis.

10



Choosing proper values for switching between different orders in re-
sponse to variations in n; and m; is a matter of some experimentation to
obtain a suitable compromise between local smoothness and computational
efficiency. In Table 4 we list the set of parameters used in the following
for the solution of nonlinear wave problems, assuming that we allow for at
most 18 levels of binary refinements, i.e., a total of at most 2'® intervals.

3 Numerical Examples

To verify the versatility and robustness of the scheme discussed in the
above let us consider the solution of a few typical nonlinear wave problems,
primarily inspired by problems in nonlinear fiber optics.

The semi-discrete finite-difference approximation is discretized in time
using a 4th order fully explicit Runge-Kutta scheme with the time-step
chosen adaptively by stability considerations. As the time-step is directly
proportional to the smallest mesh-size, we find this to be sufficient to en-
sure that the error is controlled by spatial rather than temporal errors. A
cautionary note is appropriate here as we are dealing with variable size,
variable order finite difference schemes on general nonuniform grids, i.e., it
is not unlikely that some of these operators are indeed inherently unsta-
ble. With a fixed grid and order of scheme such methods would naturally
be unstable. However, the adaptive process may well act as a stabilizing
averaging process that controls the few unstable eigenmodes through the in-
herent randomness of the process. Similar experiences have been discussed
by Jameson (1998).

As a first example, let us demonstrate soliton collision in the nonlinear
Schrodinger (NLS) equation,

2
i% + % +2ulul* =0 , (17)
being used as a standard model for describing pulse-propagation in weakly
nonlinear fibers, see e.g. Newell and Moloney (1992). Here u(z,t)
D xRt — C signifies the envelope of the optical field. The NLS is fully inte-
grable and possesses an infinite number of conserved quantities which can
be used to test the accuracy of the computational framework. Throughout
all computations we evaluate the conserved mass

N:/|u|2daz , (18)

and momentum
M= /(uum ~ ) dz | (19)
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and find them to be conserved to within 107,
The initial conditions consist of two counter propagating NLS-solitons
of the general form (Whitham (1974))

u(z,0) = asech[ax] exp(ifz) ,

where («, ) are constants related to the amplitude and direction of prop-
agation of the soliton. Note in particular that the soliton becomes more
compact with increasing amplitude a.

In Fig. 4 we illustrate the well known soliton collision scenario, showing
perfect reconstruction of the solitons after the strongly nonlinear collision.
The computation is performed with an average of 300 grid-points allowing
up to 14 levels of refinement with the parameter for thresholding set to
Cgr = 0.001 in the wavelet optimized mesh generation scheme. We shall
use this value in all subsequent computations.

As a second example, we consider the solution of the viscid Burgers
equation

ou ou 0%u
s + Ugs =V (20)
with u(z,t) : DxR'T — R, as simple model to describe a variety of problems
in gasdynamics, see e.g. Whitham (1974). For v small but finite the
equation can develop local regions with very steep gradients although the
solution remains smooth.
We solve Eq.(20) on D = [0, 2] with » = 0.001 and the initial conditions

u(z,0) =1+ cos(z) ,

which is expected to result in an initially steepening front and the devel-
opment of a shock-like solution which propagates towards the right while
decaying in amplitude.

To solve the problem we allow up to 14 levels in the mesh adaptation
scheme, with an initial distribution of about 60 and about 200 grid points
after the very steep gradient is formed.

In Fig. 4 we illustrate the computed solution showing the expected
dynamics. The lack of oscillations of the solution around the very steep
gradient is noteworthy and is a result of the combined mesh and order
adaptation embedded in the present framework. The minimal spatial in-
terval used throughout the calculation is 27 - 274, i. e., one would need in
the excess of 10000 grid points to recover a solution of similar quality using
a uniform mesh.

To further understand the adaptive process and its solution dependent
nature we show in Fig. 4 the temporal development of the order selection
as well as the total number of active grid points as the solution evolves. As

12



expected, the scheme begins with a high order scheme on a few points and,
as the solution steepens, enters a transient phase where a significant fraction
of the solution is evolved using a lower order scheme at a finer grid. As
expected this trend continues until the point of maximum steepness around
t = w/2 after which the scheme slowly restores its high order nature and
decreases the total number of points. This behavior is exactly as one would
expect by comparing with the solution in Fig. 4.

As a third and more challenging problem, we return to the area of non-
linear optics and consider the solution of the extended derivative nonlinear
Schrodinger equation (EDNLS), see e.g. Hesthaven et al. (1997),

u 2u u
% + i% + a|u|2% +ijul*fu =0, (21)
where u(z,t) : D x R — C as for the NLS equation. Compared to Eq.(17),
the EDNLS includes high-order effects accounting for nonlinear dispersion
and higher order nonlinear Kerr effects.

Let us first consider the case of @ = 0, recognized as the critical non-
linear Schrédinger equation (CNLS), which admits finite-time collapsing
solutions provided the initial condition has a mass, N, exceeding that of
the soliton solution on the form u(z,t) = ¢(z) exp(—iAt) where A > 0 and
|p(z)| = V3Asech[2v/Az] (Hesthaven et al. (1997)). For the soliton we
have Ny ~ 2.72...

To accurately capture the finite time collapse we shall allow for 18 levels
of adaptive refinement and order adaptation. The CNLS conserves mass
and momentum similar to the NLS and we find them to be conserved to
1079 in all computations until shortly before the late stage of the collapse
renders the computation unstable unless further refinement is allowed.

In Fig. 4 we show the computed solution with the slightly supercritical
initial conditions. The collapse is evident as is the ability to capture the
dynamics of the very rapidly evolving solution using space-time adaptation.
A detailed study of the purely real equivalent of the CNLS was performed
by Berger and Kohn (1988) where results very similar to the ones shown
here are found.

In a way similar to the Burgers equation, we illustrate in Fig. 4 the tem-
poral dynamics of the adaptive process when solving the CNLS equation
subject to supercritical initial conditions. The scheme essentially remains
predominately 4th order accurate until shortly before the collapse where
an increasing fraction of work is done at very fine grid with a second order
scheme. Comparing with the development of the solution shown in Fig. 4
this is in line with the expected behavior. It is worth while emphasizing
that even though the total number of points increases and the associated
fraction of points solved at lower order, the actual fraction of the compu-
tational solution advanced at low order remains very small.

13



Let us finally also consider the general EDNLS with o = 1, the dynamics
of which was studied in great detail by Hesthaven et al. (1997) where it was
shown that for the mass of the initial condition, IV, exceeding the CNLS
soliton mass as N > 3/4/21Ny, one should expect a collapsing solution.
However, due to the drift term the solution is slightly asymmetric and,
furthermore, marginally stable oscillatory solutions were found for very
small super/sub-critical initial conditions.

We shall consider a supercritical initial condition consisting of a per-
turbed CNLS soliton. As for the CNLS we allow 18 levels of refinement to
capture the collapse dynamics. The mass and momentum are conserved to
within 10~% throughout the calculation.

In Fig. 4 we show the computed solution, reproducing those in Hes-
thaven et al. (1997), while significantly extending the time for the stable
computation due to the full mesh/order adaptation ability. Without adap-
tivity the modeling of the collapsing solutions would be impractical at best
and perhaps even impossible given the very high degree of refinement re-
quired to resolve the late-time dynamics of the solution.

In a way similar to the previous cases, we illustrate in Fig. 4 the
dynamics of adaptive process, confirming the expected behavior.

4 Concluding Remarks

The ability to modify the local resolution and/or the order of the approx-
imation in response to the dynamical evolution of the solution is not only
a highly desirable property but often also an enabling technology for solv-
ing problems exhibiting highly localized dynamics. Indeed, for dynamic
problems of realistic complexity this is conceivably the only practical com-
putational approach.

To adapt the computational scheme in response to the evolution of the
solution naturally requires access to some measure of local regularity of
the solution in the computational domain. While the development of error
estimators is an area of active research it remains a considerable challenge
to develop such estimators for even simple nonlinear time-dependent prob-
lems.

With this reasoning it is perhaps more practical to seek a less detailed,
yet robust and general procedure for analyzing the solution without in-
troducing knowledge of the particular problem being considered, i.e., the
problem essentially becomes one of signal analysis as the basis on which to
adapt the mesh and the order of the scheme.

In this work we have demonstrated how a wavelet analysis of the time-
dependent solution can yield excellent measures of the local regularity of
the solution in a simple manner and enable the required adaptation in a
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robust and accurate way. As we have demonstrated through the solution
of a number of problems, primarily originating in nonlinear optics, such
a high-order finite difference scheme with a wavelet optimized grid yields
solutions of high fidelity even for nontrivial problems exhibiting finite-time
collapse.

While we have illustrated the feasibility of using a fully space-time adap-
tive approach to solve problems of nonlinear optics, a number of issues need
careful continued attention to make this into a tool suitable for large scale
modeling efforts ongoing in the optical communications industry.

On the theoretical side we are currently unable to provide any justifi-
cation for the observed robustness and stability of the scheme due to its
nonlinear nature. We speculate that a probabilistic approach is the correct
approach but are unaware of such efforts at present time.

However, given that we find the scheme to be highly robust over a large
variation of parameters and problems, it is perhaps more pressing to address
some issues of a more practical character. For the spatial adaptation and
approximation, we are currently recovering a solution at the finest level
prior to the wavelet analysis phase. This can clearly be improved on by
considering some very simple interpolation schemes as it is very unlikely
that a particular solution suddenly requires refinements at several levels,
i.e., one could use only partial information about the wavelet coefficients.

A more severe limitation, however, of the current approach is the use
of a fully explicit time advancing scheme. For the solution of realistic
problems on a highly adapted mesh this clearly becomes prohibitive and
we need to seek alternatives of which one can think of several, e.g., one can
split the operators and use a semi-implicit treatment with a fully implicit
advancement of the linear parts of the operator. Even though the operators
are variable bandwidth due to order adaptation they are evaluated fast and
a matrix-free Krylov method may work well for solving the linear system
resulting from the semi-implicit approach.

A more appealing approach is perhaps to consider explicit/implicit
Runge-Kutta schemes, (Archer et al. (1997)), allowing for a operator split-
ting as above or for treating the regions of the grid with high stiffness
implicitly by using a diagonally implicit Runge-Kutta scheme and the re-
maining by an explicit Runge-Kutta approach.

With such improvements we anticipate that the methods discussed here
will be competitive with FFT based split-step schemes for the solution of
a variety of nonlinear wave problems. In particular in the area of high-
speed optical communication does one find an increasing need for efficient,
robust, and accurate alternatives to the classical split-step methods and we
hope to report on such direct comparisons in the future.
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Figure Captions

Fig 1 Index structure of the mesh, directly reflecting the local resolution
level.

Fig 2 Examples of wavelet optimized mesh generation and the effect of
changing the threshold values for functions with different degrees of
regularity.

Fig 3 Soliton collision in the nonlinear Schrodinger (NLS) equation. The
absolute value of u(z, t) is plotted at the time slots t = 0,0.2,0.4,0.5,0.6, 0.8,
illustrating complete recovery of the initial conditions following a
strongly nonlinear interaction.

Fig 4 Formation, propagation, and decay of solutions with local regions
of very steep gradients obtained by solving Burgers equation with
v = 0.001. The solution is shown at equidistant time intervals of
length 0.25. On the right is shown the magnified plots with circles
designating the grid points.

Fig 5 Tllustration of the grid/order selection process as a function of time
for solving Burgers equation as illustrated in Fig. 4. The open sym-
bols signify the percentages of points advanced with a scheme of a
given order while the full symbols measures the total number of active
grid points.

Fig 6 Collapsing solution of the critical nonlinear Schrédinger equation
with a slightly supercritical initial condition. The magnitude, |u/, is
shown at times ¢t = 0,0.0118,0.0122, in the full domain (left) as well
as in a closeup (right), illustrating the highly adapted grid structure
around the collapsing solution as it evolves.

Fig 7 Illustration of the grid/order selection process as a function of time
for solving the critical nonlinear Schréodinger equation equation. The
open symbols signify the percentages of points advanced with a scheme
of a given order while the full symbols measures the total number of
active grid points.

Fig 8 Collapsing solution of extended derivative nonlinear Schrédinger
equation with a supercritical CNLS initial condition. The magni-
tude, |u|, is shown at times ¢ = 0,0.6504, 0.6644,0.6692,0.6707 in the
full domain (left) as well as in a closeup (right), illustrating the highly
adapted grid structure around the collapsing asymmetric solution as
it evolves.
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Fig 9 Tllustration of the grid/order selection process as a function of time
for solving the extended derivative nonlinear Schrédinger equation.
The open symbols signify the percentages of points advanced with
a scheme of a given order while the full symbols measures the total
number of active grid points.
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Figure 2
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Figure 3
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Figure 5
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Figure 6
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Figure 7
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Figure 9
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Table Captions

Table 1 Filter bank coefficients for Dy.

Table 2 Table used to guide the compromise between the order of the
approximation and the level of refinement around location z;.
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Table 1

k b 9

1 (1+3)/4 (1+V3)/4
2 (3+V3)/4 -(3+3)/4
3 (3-v3)/4 (3-V3/4
4 (1-Vv3)/4 -(1-V3)/4
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Table 2

order n; mj
1 18 -
2 16 18
4 12 16
8 8 8
12 4 4
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