Skip to main content
Log in

A Neurodynamical Model of Visual Attention: Feedback Enhancement of Spatial Resolution in a Hierarchical System

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Human beings have the capacity to recognize objects in natural visual scenes with high efficiency despite the complexity of such scenes, which usually contain multiple objects. One possible mechanism for dealing with this problem is selective attention. Psychophysical evidence strongly suggests that selective attention can enhance the spatial resolution in the input region corresponding to the focus of attention. In this work we adopt a computational neuroscience perspective to analyze the attentional enhancement of spatial resolution in the area containing the objects of interest. We extend and apply the computational model of Deco and Schürmann (2000), which consists of several modules with feedforward and feedback interconnections describing the mutual links between different areas of the visual cortex. Each module analyses the visual input with different spatial resolution and can be thought of as a hierarchical predictor at a given level of resolution. Moreover, each hierarchical predictor has a submodule that consists of a group of neurons performing a biologically based 2D Gabor wavelet transformation at a given resolution level. The attention control decides in which local regions the spatial resolution should be enhanced in a serial fashion. In this sense, the scene is first analyzed at a coarse resolution level, and the focus of attention enhances iteratively the resolution at the location of an object until the object is identified. We propose and simulate new psychophysical experiments where the effect of the attentional enhancement of spatial resolution can be demonstrated by predicting different reaction time profiles in visual search experiments where the target and distractors are defined at different levels of resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Attneave F (1954) Informational aspects of visual perception. Psychol. Rev. 61:183-193.

    Google Scholar 

  • Badcock J, Whitworth F, Badcock D, Lovegrove W (1990) Low-frequency filtering and the processing of local-global stimuli. Perception 19:617-629.

    Google Scholar 

  • Barlow H (1959) Sensory mechanism, the reduction of redundancy, and intelligence. In: National Physical Laboratory Symposium N. 10, The Mechanization of Thought Processes. Her Majesty's Stationery Office, London.

    Google Scholar 

  • Barlow H (1989) Unsupervised learning. Neural Comput. 1:295-311.

    Google Scholar 

  • Behrmann M, Zemel R, Mozer M (1998) Object-based attention and occlusion: Evidence from normal participants and a computational model. J. Exper. Psychol. Human Percep. Perform. 24:1011-1036.

    Google Scholar 

  • Broadbent DE (1958) Perception and Communication. Pergamon Press, London.

    Google Scholar 

  • Bushnell C, Goldberg ME, Robinson DL (1981) Behavioral enhancement of visual responses in monkey cerebral cortex. I. Modulation in posterior parietal cortex related to selective visual attention. J. Neurophysiol. 46:755-772.

    Google Scholar 

  • Carrasco M, Frieder K (1997) Cortical magnification neutralizes the eccentricity effect in visual search. Visual Res. 37:63-82.

    Google Scholar 

  • Carrasco M, Yeshurun Y (1998) The contribution of covert attention to the set-size and eccentricity effects in visual search. J. Exper. Psychol. Human Percep. Perform. 24:673-692.

    Google Scholar 

  • Chen S, Donoho D, Saunders M (1996) Atomic decomposition by basis pursuit. Technical report, Department of Statistics, Stanford University, Stanford, CA.

    Google Scholar 

  • Colby CL (1991) The neuro-anatomy and neurophysiology of attention. J. Children Neurol. 6:90-118.

    Google Scholar 

  • Connor CE, Gallant JL, Van Essen DC (1993) Effects of focal attention on receptive field profiles in area V4. Soc. Neurosci. Abs. 19:15-16.

    Google Scholar 

  • Corbetta M, Miezin FM, Dobmeyer S, Shulman GL, Petersen SE (1991) Selective and divide attention during visual discrimination of shape, color and speed: Functional anatomy by positron emission tomography. J. Neurosci. 11:2383-2402.

    Google Scholar 

  • Corbetta M, Shulman G (1998) Human cortical mechanisms of visual attention during orienting and search. Phil. Trans. Roy. Soc. Lond. 353:1353-1362.

    Google Scholar 

  • Crick F (1984) Function of the thalamic reticular complex: The searchlight hypothesis. Proc. Natl. Acad. Sci. USA 81:4586-4590.

    Google Scholar 

  • Daugman J (1980) Two-dimensional spectral analysis of cortical receptive field profile. Vision Res. 20:847-856.

    Google Scholar 

  • Daugman J (1985) Uncertainty relation for resolution in space, spatial frequency and orientation optimized by two-dimensional visual cortical filters. J. Optical Soc. Am. 2:1160-1169.

    Google Scholar 

  • Daugman J (1988) Complete discrete 2D-Gabor transforms by neural networks for image analysis and compression. IEEE Tran. Acoustic, Speech, and Signal Proc. 36:1169-1179.

    Google Scholar 

  • Daugman J (1997) Neural image processing strategies applied in real-time pattern recognition. Real-Time Imaging 3:157-171.

    Google Scholar 

  • Deco G, Schürmann B (2000) A hierarchical neural system with attentional top-down enhancement of the spatial resolution for object recognition. Vision Res. 40:2845-2859.

    Google Scholar 

  • Desimone R, Duncan J (1995) Neural mechanisms of selective visual attention. Ann. Rev. Neurosci. 18:193-222.

    Google Scholar 

  • Desimone R, Wessinger M, Thomas L, Schneider W (1990) Attentional control of visual perception: Cortical and subcortical mechanisms. Cold Spring Harbor Symp. Quant. Biol. 55:963-971.

    Google Scholar 

  • De Valois R, Albrecht D, Thorell L (1982) Spatial frequency selectivity of cells in macaque visual cortex. Vision Res. 22:545-559.

    Google Scholar 

  • De Valois R, De Valois K (1988) Spatial Vision. Oxford University Press, New York.

    Google Scholar 

  • Driver J, Baylis G (1989) Movement and visual attention: The spotlight methaphor breaks down. J. Exper. Psych. Human Percep. Perform. 17:561-570.

    Google Scholar 

  • Duncan J (1984) Selective attention and the organization of visual information. J. Exper. Psychol. General 113:501-517.

    Google Scholar 

  • Eriksen CW, Hoffmann J (1973) The extent of processing of noise elements during selective encoding from visual displays. Percep. Psychophys. 14:155-160.

    Google Scholar 

  • Gattas R, Desimone R (1991) Attention-related responses in the superior colliculus of the macaque. Soc. Neurosci. Abs. 17:545.

    Google Scholar 

  • Gattas R, Desimone R (1992) Stimulation of the superior colliculus (SC) shifts the focus of attention in macaque. Soc. Neurosci. Abs. 18:703.

    Google Scholar 

  • Gilbert C (1998) Adult cortical dynamics. Physiol. Rev. 78:467-485.

    Google Scholar 

  • Ginsburg A (1986) Spatial filtering and visual form perception. In: Boff K, Kaufman L, Thomas J, eds. Handbook of Perception and Human Performance: Cognitive Processes and Performance. Wiley, New York. pp. 34-1-34-11.

    Google Scholar 

  • Graziano M, Gross C (1993) A bimodal map of space: Somatosensory receptive fields in the macaque putamen with corresponding visual receptive fields. Exper. Brain Res. 97:96-109.

    Google Scholar 

  • Heinke D, Humphreys G, Deco G (2000) Visual search of hierarchical patterns. In preparation.

  • Herz J, Krogh A, Palmer R (1991) Introduction to the Theory of Neural Computation. Santa Fe Lecture Notes Series in Computer and Neural Systems. Addison-Wesley, London.

    Google Scholar 

  • Hubel DH, Wiesel TN (1962) Receptive fields, binocular integration and functional architecture in the cat's visual cortex. J. Physiol. 160:106-154.

    Google Scholar 

  • Itti L, Koch C (2000) A saliency-based search mechanism for overt and covert shifts of visual attention. Vision Res. 40:1489-1506.

    Google Scholar 

  • Kandel E, Schwartz J, Jessell T (1991) The Principles of Neural Science (3rd ed.). Norwalk, CT, Appleton and Lange.

    Google Scholar 

  • Kinchla R (1974) Detecting target elements in multi-element arrays: A confusability model. Percep. Psychophys. 15:149-158.

    Google Scholar 

  • Koch C, Poggio T (1999) Predicting the visual world: Silence is golden. Nature Neurosci. 2:9-10.

    Google Scholar 

  • Koch C, Ullman S (1985) Shifts in selective visual attention: Towards the underlying neural circuitry. Human Neurobiol. 4:219-227.

    Google Scholar 

  • Kramer A, Jacobson A (1991) Perceptual organization and focused attention: The role of objects and proximity in visual processing. Percep. Psychophys. 50:267-284.

    Google Scholar 

  • Kramer A, Watson S (1995) Object-based visual selection and the principle of uniform connectedness. In: Kramer A, Coles M, Logan G, eds. Converging Operations in the Study of Visual Attention. American Psychological Association, Washington, DC, pp. 395-414.

    Google Scholar 

  • Kulikowski J, Bishop P (1981) Fourier analysis and spatial representation in the visual cortex. Experientia 37:160-163.

    Google Scholar 

  • Lavie N, Driver J (1996) On the spatial extent of attention in object based visual selection. Percep. Psychophys. 58:1238-1251.

    Google Scholar 

  • Lee TS (1996) Image representation using 2D Gabor wavelets. IEEE Trans. Pattern Anal. Machine Intelligence 18:10, 959-971.

    Google Scholar 

  • Lewicki M, Olshausen B (1998) Interfering sparse, overcomplete image codes using an efficient coding framework. In: Jordan M, Kearns M, Solla S, eds. Neural Information Processing Systems 10:815-821.

  • Marcelja S (1980) Mathematical description of the responses of simple cortical cells. J. Optical Soc. Am. 70:1297-1300.

    Google Scholar 

  • Marr D (1982) Vision. Freeman, San Francisco.

    Google Scholar 

  • Maunsell JHR, Newsome WT (1987) Visual processing in monkey extrastriate cortex. Ann. Rev. Neurosci. 10:363-401.

    Google Scholar 

  • Moran J, Desimone R (1985) Selective attention gates visual processing in the extrastriate cortex. Science 229:782-784.

    Google Scholar 

  • Murphy P, Sillito A (1987) Corticofugal feedback influences the generation of length tuning in the visual pathway. Nature 329:727-729.

    Google Scholar 

  • Navon D (1977) Forest before trees: The precedence of global features in visual perception. Cognitive Psychol. 9:353-383.

    Google Scholar 

  • Neisser U (1967) Cognitive Psychology. Appleton-Century-Crofts, New York.

    Google Scholar 

  • Olshausen B, Anderson C, Van Essen D (1992) A neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information. J. Neurosci. 13:4700-4719.

    Google Scholar 

  • Olshausen B, Field D (1996) Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381:607-609.

    Google Scholar 

  • Olson C, Gettner S (1995) Object-centred direction selectively in the macaque supplementary eye field. Science 269:985-988.

    Google Scholar 

  • Petersen SE, Robinson DL, Keys W (1985) Pulvinar nuclei of the behaving rhesus monkey: Visual responses and their modulation. J. Neurophysiol. 54:867-886.

    Google Scholar 

  • Peterson SE, Robinson DL, Morris JD (1987) Contributions of the pulvinar to visual spatial attention. Neuropsychol. 25:97-105.

    Google Scholar 

  • Pollen D, Ronner S (1981) Phase relationship between adjacent simple cells in the visual cortex. Science 212:1409-1411.

    Google Scholar 

  • Posner MI, Petersen SE (1990) The attention system of the human brain. Ann. Rev. Neurosci. 13:25-42.

    Google Scholar 

  • Posner MI, Walker JA, Friedrich FJ, Rafal RD (1984) Effects of parietal injury on covert orienting attention. J. Neurosci. 4:1863-1874.

    Google Scholar 

  • Prinzmetal W (1981) Principle of feature integration in visual perception. Percep. Psychophy. 30:330-340.

    Google Scholar 

  • Rafal RD, Posner MI (1987) Deficits in human visual spatial attention following thalamic lesions. Proc. Nat. Acad. Sci. USA 84:7349-7353.

    Google Scholar 

  • Rafal R, Robertson L (1997) The neurology of visual attention. In Gazzaniga M, ed. The Cognitive Neuroscience. MIT Press, Cambridge, MA.

    Google Scholar 

  • Rao R, Ballard D (1997) Dynamic model of visual recognition predicts neural response properties in the visual cortex. Neural Comput. 9:721-763.

    Google Scholar 

  • Rao R, Ballard D (1999) Predictive coding in the visual cortex: A functional interpretation of some extra-classical receptive-field effects. Nature Neurosci. 2:79-87.

    Google Scholar 

  • Robinson DL, Bowman EM, Kertzman C (1991) Convert orienting of attention in macaque. II. A signal in parietal cortex to disengage attention. Soc. Neurosci. Abs. 17:442.

    Google Scholar 

  • Saarinen J, Julesz B (1991) The speed of attentional shifts in the visual field. Proc. Nat. Acad. Sci. USA 88:1812-1814.

    Google Scholar 

  • Salinas E, Abbott L (1997) Invariant visual responses from attentional gain fields. J. Neurophysiol. 77:3267-3272.

    Google Scholar 

  • Shulman G, Wilson J (1987) Spatial frequency and selective attention to local and global information. Perception 16:89-101.

    Google Scholar 

  • Sillito A, Grieve K, Jones H, Cudeiro J, Davis J (1995) Visual cortical mechanisms detecting focal orientation discontinuities. Nature 378:492-496.

    Google Scholar 

  • Steinmetz MA, Connor CE, MacLeod KM (1992) Focal spatial attention suppresses responses of visual neurons in monkey posterior parietal cortex. Soc. Neurosci. Abs. 18:148.

    Google Scholar 

  • Treisman A (1982) Perceptual grouping and attention in visual search for features and for objects. J. Exper. Psychol. Human Percep. Perform. 8:194-214.

    Google Scholar 

  • Treisman A, Gelade G (1980) A feature-integration theory of attention. Cognitive Psychol. 12:97-136.

    Google Scholar 

  • Treisman A, Sato S (1990) Conjunction search revisited. J. Exper. Psychol. Human Percep. Perform. 16:459-478.

    Google Scholar 

  • Ungerleider LG, Mishkin M (1982) Two cortical visual systems. In Ingle DJ, ed. Analysis of Visual Behavior. MIT Press, Cambridge, MA, pp. 549-586.

    Google Scholar 

  • Vandenberghe R, Duncan J, Dupont P, Ward R, Poline J, Bormans G, Michiels J, Mortelmans L, Orban G (1997) Attention to one or two features in left and right visual field: A positron emission tomography study. J. Neurosci. 17:3739-3750.

    Google Scholar 

  • Vandenberghe R, Dupont P, Debruyn B, Bormans G, Michiels J, Mortelmans L, Orban G (1996) The influence of stimulus location on the brain activation pattern in detection and orientation discrimination-a PET study of visual attention. Brain 119:1263-1276.

    Google Scholar 

  • Vecera S, Farah M (1994) Does visual attention select objects or location? J. Exper. Psychol. General 123:146-160.

    Google Scholar 

  • Webster M, De Valois R (1985) Relationships between spatial frequency and orientation tuning of striate cortex cells. J. Optical Soc. Am. A2:n. 7.

    Google Scholar 

  • Wilson H (1978) Quantitative characterization of two types of line-spread function near the fovea. Vision Res. 18:971-981.

    Google Scholar 

  • Wolfe JM, Cave KR, Franzel SL (1989) Guided search: An alternative to the feature integration model for visual search. J. Exper. Psychol. Human Percep. Perform. 15:419-433.

    Google Scholar 

  • Wörgöter F, Suder K, Zhao Y, Kerscher N, Eysel U, Funke K (1998) State-dependent receptive field restructuring in the visual cortex. Nature 396:165-168.

    Google Scholar 

  • Yeshurun Y, Carrasco M (1998) Attention improves or impairs visual performance by enhancing spatial resolution. Nature 395:72-75.

    Google Scholar 

  • Yeshurun Y, Carrasco M (1999) Spatial attention improves performance in spatial resolution tasks. Vision Res. 39:293-305.

    Google Scholar 

  • Zihl J, von Cramon D (1979) The contribution of the “second” visual system to directed visual attention in man. Brain 102:853-856.

    Google Scholar 

  • Zipf G (1949) Human Behavior and the Principle of Least Effort. Addison-Wesley, Cambridge, MA.

    Google Scholar 

  • Zipser K, Lamme V, Schiller P (1996) Contextual modulation in primary visual cortex. J. Neurosci. 16:7376-7389.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deco, G., Zihl, J. A Neurodynamical Model of Visual Attention: Feedback Enhancement of Spatial Resolution in a Hierarchical System. J Comput Neurosci 10, 231–253 (2001). https://doi.org/10.1023/A:1011233530729

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011233530729

Navigation