Skip to main content
Log in

Learning with Nearest Neighbour Classifiers

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

This paper introduces a learning strategy for designing a set of prototypes for a 1-nearest-neighbour (NN) classifier. In learning phase, we transform the 1-NN classifier into a maximum classifier whose discriminant functions use the nearest models of a mixture. Then the computation of the set of prototypes is viewed as a problem of estimating the centres of a mixture model. However, instead of computing these centres using standard procedures like the EM algorithm, we derive to compute a learning algorithm based on minimising the misclassification accuracy of the 1-NN classifier on the training set. One possible implementation of the learning algorithm is presented. It is based on the online gradient descent method and the use of radial gaussian kernels for the models of the mixture. Experimental results using hand-written NIST databases show the superiority of the proposed method over Kohonen's LVQ algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bengio, Y.: Artificial Neural Networks and Their Application to Sequence Recognition, Ph.D. thesis, Department of Computer Science, McGill University (1991).

  2. Benveniste, A., Métivier, M. and Priouret, P.: Adaptive Algorithms and Stochastic Approximations, Springer-Verlag: Berlin (1990).

    Google Scholar 

  3. Bermejo, S. and Cabestany, J.: Finite-Sample Convergence Properties of the LVQ1 algorithm and the BLVQ1 algorithm, Neural Processing Letters 13, 135–157 (this issue).

  4. Bishop, C. M.: Neural Networks and Pattern Recognition, Oxford University Press, Oxford (1995).

    Google Scholar 

  5. Bottou, L.: Online Learning and Stochastic Approximations, In David Saal (ed.), Online Learning and Neural Networks, Cambridge University Press, Cambridge (1998).

    Google Scholar 

  6. Breiman, L.: Half-&-Half Bagging and Hard Boundary Points, Department of Statistics, University of California, Technical Report No. 534 (1998).

  7. Darasay, B. V. (ed.): Nearest Neighbor Pattern Classification Techniques, IEEE Computer Society Press, Los Alamitos, LA (1991).

    Google Scholar 

  8. Dempster, A. P., Laird, N. M., and Rubin, D. B.: Maximum Likelihood from incomplete data via the EM algorithm, J. Roy. Stat. Soc. B 39, (1977), 1–38.

    Google Scholar 

  9. Devroye, L., Györfi, L. and Lugosi, G.: A Probabilistic Theory of Pattern Recognition, Springer-Verlag, Berlin (1996).

    Google Scholar 

  10. Duda, R. O., and Hart, P. E.: Pattern Classification and Scene Analysis, John Wiley Interscience, New York (1973).

    Google Scholar 

  11. Friedman, J.: FlexibleMetric Nearest Neighbor Classification, Department of Statistics and Stanford Linear Accelerator Center, Stanford University, Stanford CA, Technical Report (1994).

    Google Scholar 

  12. Garris, M. et al.: NIST Form-Based Handprint Recognition System (Release 2.0), National Institute of Standards and Technology (1997).

  13. Hart, P. E.: The Condensed Nearest Neighbor Rule, IEEE Trans. Inf. Th. (Corresp.), IT-14 (1968), 515–516.

    Google Scholar 

  14. Haykin, S.: Neural Networks: A Comprehensive Foundation, Macmillan College Publishing Company, Englewood Cliffs, NJ (1994).

    Google Scholar 

  15. Kohonen, T., Hynninen, J., Kangas, J. Laaksonen, J. and Torkkola, K. Kari: LVQ_PAK. The Learning Vector Quantization Program Package. Version 3.1, Laboratory of Computer and Information Science, Helsinki University of Technology (1995).

  16. Kohonen, T.: Self-organizing Maps, 2nd Edn, Springer-Verlag, Berlin (1996).

    Google Scholar 

  17. Mel, B. W. and Omohundro, S. M.: How Receptive Field Parameters Affect Neural Learning, R. P. Lippmann, J. E. Moody, and D. S. Touretzky (eds.), Advances in Neural Information Processing Systems 3, Morgan Kaufmann Publishers, Boston, MA (1991).

    Google Scholar 

  18. Michie, D. J., Spiegelhalter, and Taylor, C. C. (eds.): Machine Learning, Neural and Statistical Classification, Ellis Horwood: London (1994).

    Google Scholar 

  19. McLachlan, G. J. and Basford, K. E.: Mixture Models. Inference and Applications to Clustering, Marcel Dekker, New York (1988).

    Google Scholar 

  20. Ripley, D.: Pattern Recognition and Neural Networks, Cambridge University Press, Cambridge (1996).

    Google Scholar 

  21. Schölkopf, B.: Support Vector Learning. Ph.D. Thesis, Informatik der Technischen Universität Berlin (1997).

    Google Scholar 

  22. Scott, W.: Multivariate Density Estimation: Theory, Practice and Visualization, John Wiley and Sons, New York (1992).

    Google Scholar 

  23. Tarter, M. E. and Lock, M. D.: Model-Free Curve Estimation, Chapman and Hall, New York (1993).

    Google Scholar 

  24. Vapnik, V.: Estimation of Dependencies based on Empirical Data, Springer-Verlag, New York (1982).

    Google Scholar 

  25. Wilson, D.: Asymptotic properties of nearest neighbor rules using edited data, IEEE Trans. on Systems, Man and Cybernetics 2, (1972), 408–421.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bermejo, S., Cabestany, J. Learning with Nearest Neighbour Classifiers. Neural Processing Letters 13, 159–181 (2001). https://doi.org/10.1023/A:1011332406386

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011332406386

Navigation