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ABSTRACT. Since the validity of Bell’s inequalities implies the existence of joint prob-
abilities for non-commuting observables, there is no universal consensus as to what the
violation of these inequalities signifies. While the majority view is that the violation teaches
us an important lesson about the possibility of explanations, if not about metaphysical
issues, there is also a minimalist position claiming that the violation is to be expected
from simple facts about probability theory. This minimalist position is backed by theorems
due to A. Fine and I. Pitowsky. Our paper shows that the minimalist position cannot be
sustained. To this end, we give a formally rigorous interpretation of joint probabilities in
the combined modal and spatiotemporal framework of ‘stochastic outcomes in branching
space-time’ (SOBST) (Kowalski and Placek, 1999; Placek, 2000). We show in this frame-
work that the claim that there can be no joint probabilities for non-commuting observables
is incorrect. The lesson from Fine’s theorem is not that Bell’s inequalities will be violated
anyhow, but that an adequate model for the Bell/Aspect experiment must not define global
joint probabilities. Thus we investigate the class of stochastic hidden variable models,
which prima facie do not define such joint probabilities. The reason why these models
fail supports the majority view: Bell’s inequalities are not just a mathematical artifact.

1. INTRODUCTION

The majority view of Bell’s inequalities endorses the following two points:
(i) The inequalities have been violated by the Bell/Aspect quantum correl-
ation experiment.1 (ii) This empirical fact tells us something important
about the way the world is (or at least, about the way the world can be
explained): a rather general class of models that one would like to posit as
the mechanism ‘behind’ the observed correlations, namely the class of so-
called factorizable local hidden variable models, is unable to account for
the phenomena, which in turn is seen as indicating a failure of locality, the
presence of holistic features in quantum phenomena, or even a conspiracy
in nature.

The second ingredient of the majority view is challenged by what we
call the “minimalist interpretation” of the violation of Bell’s inequalities.
This interpretation is backed by two mathematical theorems due to Arthur
Fine2 and Itamar Pitowsky,3 which link the violation of Bell’s inequalities
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to some rather simple facts about probability theory. The minimalist inter-
pretation sees the violation of Bell’s inequalities as reflecting the nature
of quantum mechanical probabilities rather than indicating anything about
locality or holism in quantum phenomena.4 A recent statement of this view
is (De Beare et al., 1999, p. 68):

(. . . ) it is not nonlocality which is implied by the violation of Bell’s inequality but, rather,
the non-existence of joint probability for noncommuting single-particle operators (. . . ).

Fine proved that the surface probabilities of the Bell/Aspect experi-
ment are committed to Bell’s inequalities if and only if there exists a joint
probability distribution for all four quantum observables involved, some
of which do not commute. Now Fine claims that it is ‘the very essence of
quantum mechanics’ to deny that such distributions exist.5 Fine’s theorem
can thus be taken to support the view that a violation of Bell’s inequalit-
ies was to be expected in the first place and does not constitute a major
experimental result.

Pitowsky’s mathematical result is that an eight-tuple of real numbers
from the interval [0,1], such as the experimental data from the Bell/Aspect
experiment, can be viewed as a set of four single and four joint prob-
abilities defined on a single classical probability space if and only if
the eight-tuple satisfies Bell’s inequalities. Again, the probabilities in a
quantum correlation experiment involving non-commuting observables are
not defined on a single probability space, but rather on four different prob-
ability spaces, so that one should not expect the experimental results to
be embeddable in a single probability space. This can again be taken to
support the view that the violation of Bell’s inequalities was in fact to be
expected.6

The aim of our paper is to show that the minimalist interpretation of
the violation of Bell’s inequalities cannot be sustained, even though the
mathematical theorems supposedly backing the minimalist interpretation
are correct. Our argument will proceed in three steps. First, we will ar-
gue against the view that the non-commutativity of quantum observables
alone precludes one from defining a joint probability distribution for these
observables. The upshot of this will be the following reading of Fine’s the-
orem: since Bell’s inequalities are violated in the Bell/Aspect experiment,
the (non-commuting) quantum observables involved cannot have a joint
probability distribution. In the second step, we will use the framework
of ‘stochastic outcomes in branching space-time’ (SOBST),7 to draw a
distinction (similar to that of (Svetlichny et al., 1988)) between empirical
and purely mathematical joint probabilities. The SOBST models allow
for a unified treatment of causal, spatiotemporal and modal relations and
are particularly suited for a discussion of joint probabilities in quantum
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mechanics, since most classical probability spaces have a representation in
models of SOBST.8 We will show that introducing an empirical joint prob-
ability to a SOBST model amounts to giving a determinate-value hidden
variable model. It is further seen that in many cases, there is no penalty for
introducing a joint probability for non-commuting observables; however,
the introduction of joint probabilities for all the observables involved in
the Bell/Aspect setup makes the resulting model empirically inadequate.
In the third step, having taken a lesson from Fine’s theorem, we attempt
to construct a SOBST factorizable stochastic model for the Bell/Aspect
experiment that uses four small probability spaces rather than a single large
probability space defining joint probabilities for all the four observables
involved. The dramatic fact is that, given the usual physically motivated
constraints that factorizable stochastic models are subject to, the small
probability spaces can be pasted together, so that global joint probabil-
ities are mathematically definable, which makes the model empirically
inadequate.

The paper is organized as follows: Section 2 gives an outline of the
SOBST framework. Section 3 quickly reviews the mathematics of joint
probability spaces, gives a precise statement of the results by Fine and
Pitowsky, and shows their equivalence. Section 4 comments on various
arguments to the effect that there can be no joint probability distributions
for noncommuting quantum observables. Section 5 shows how to interpret
joint probabilities in the SOBST framework, and proves the link between
the existence of joint probabilities and determinate-value hidden variables.
Section 6 discusses a factorizable stochastic model for the Bell/Aspect ex-
periment. Section 7 comments on the relations between determinate-value
and stochastic models. Two appendices contain the SOBST definition of a
common cause and technical material from section 6.

2. THE FRAMEWORK OF SOBST

The framework to be presented here is a recent extension of Belnap’s
branching space-time9 that has been augmented to include outcomes of
events.10 The principal algebraic feature of the framework is that the family
of outcomes of a given event is a Boolean algebra and thus lends itself
naturally to the introduction of probabilities.11
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2.1. Definitions

We start with a partial order W = 〈W ;≤〉. The elements of the nonempty
set W are interpreted as spatiotemporal points understood as concrete par-
ticulars. The relation x ≤ y is interpreted as ‘x is in the backward light
cone of y’, or, ‘x can causally influence y’. We define: x < y iff x ≤ y

and x �= y. This relation is extended to subsets of W :

DEFINITION 1. (of precedence). For E,F ⊆ W , x ∈ W (1) E ≺
x iff ∀ e ∈ E e < x; (2) E ≺ F iff ∀ x ∈ F E ≺ x.

As W allows for branching, two points can be separated not only spati-
otemporally, but also modally, by belonging to incompatible courses of
events.

DEFINITION 2. (of compatibility). x, y ∈ W are upward compatible iff
there is a z ∈ W with z ≥ x and z ≥ y; otherwise, they are called
upward incompatible or orthogonal (written x ⊥ y). Conforming to stand-
ard mathematical usage, sets composed entirely of upward compatible
elements are called upward directed.

Some special subsets of W will be called ‘histories’. Intuitively, a history
is to represent a possible course of events.

DEFINITION 3. (of a history). A subset h of W is a history iff h is a
maximal upward directed subset of W (i.e., for all upward directed h′ ⊆ W

we have: h′ ⊇ h implies h′ = h). The set of all histories is denoted by H .

This definition leads to counterintuitive results, if, for instance, our spatio-
temporal world comes to an end. (Placek, 2000) indicates how to overcome
this by building 〈W,≤〉 from spatiotemporal histories rather than carving
histories out of 〈W,≤〉.

In line with the idea of branching, histories may split.

DEFINITION 4. (of splitting points). For any two orthogonal points x, y ∈
W , we define the set of splitting points C(x, y) ⊆ W by putting z ∈
C(x, y) iff z is a maximal element in {z ∈ W : z ≤ x & z ≤ y}. If x and y

are not orthogonal, we put C(x, y) = ∅.

To ensure that for any pair of orthogonal points x and y, C(x, y) is non-
empty and that sets of splitting points behave “nicely”, we assume the
following two conditions:
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(C1) For any x, y, z ∈ W , if x ⊥ y and z ≤ x, z ≤ y, then there is
some t ∈ C(x, y) with t ≥ z.

(C2) For any x, y, z, t ∈ W , if x ≥ z and y ≥ t , then C(x, y) ⊇
C(z, t).

The following notions are required to introduce outcomes of events in W :

DEFINITION 5. (of relative orthogonality). Elements x, y of W are or-
thogonal relative to E, written x ⊥E y, iff E ≺ x, E ≺ y and
C(x, y) ∩ E �= ∅.

DEFINITION 6. (of orthogonal complement). For F ⊆ W , the orthogonal
complement of F relative to E is the set F⊥E such that x ∈ F⊥E iff ∀ y ∈
F x ⊥E y.

DEFINITION 7. (of outcome). A subset F of W is an outcome of E ⊂ W

iff F = F⊥E⊥E

This definition ensures that an outcome of E is preceded by E and is loc-
ated as close as possible to E. What the outcomes of E look like crucially
depends on whether and, if so, how many, histories split in E. Given the
above definitions, the following holds:12

THEOREM 1. The family FE of outcomes of E ⊂ W forms a complete
and atomic Boolean algebra

BE = 〈FE,∩,∪,⊥E, 1E, 0E〉,

where ∩ and ∪ are the familiar set-theoretical operations, the unit element
of the algebra 1E = {x ∈ W : E ≺ x}, and the zero element of the algebra
0E is the empty set.

An event is defined as a subset of a history that is bounded from above:

DEFINITION 7. (of events). E ⊂ W is an event iff E �= ∅ and ∃ x ∈
W E ≺ x.

Only specific subsets of W have non-trivial outcomes. The following
lemma shows that our definition of event is sensible:13

LEMMA 1. E ⊂ W is an event iff E has a non-empty outcome.
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In what follows, we will frequently refer to atomic outcomes of events:

DEFINITION 9. (of atomic outcomes). e is an atomic outcome of E ⊂
W iff (1) e is a non-empty outcome of E and (2) there is no non-empty
outcome u of E such that u ⊂ e.

In reasoning about correlations, we will need the notion of space-like
separation:

DEFINITION 10. (of space-like events). The set {E1, E2, E3, . . . , En} of
events is space-like if and only if

–
⋃n

i=1 Ei is an event;
– Ei does not overlap with any outcome of Ej , i.e., for all i, j ≤ n

Ei ∩ 1Ej
= ∅.

In order to introduce probability spaces, it suffices to equip the Boolean
algebra BE associated with the family of outcomes of an event E with a
normalized, countably additive measure µE : BE → [0, 1], i.e., a measure
satisfying

µE(1E) = 1 and for mutually disjoint ei ∈ BE :

µE(

∞⋃
i=1

ei) =
∞∑
i=1

µE(ei).

Outcomes extend as far into the future as possible: for outcome e of E and
a ∈ e, a ≤ b implies b ∈ e. The probabilities in a quantum correlation
experiment, on the other hand, are obtained by counting clicks or flashes,
i.e., temporally bounded entities. In order to link the SOBST framework
to such experiments, we cannot simply identify the clicks with outcomes.
Rather, we assume that each atomic outcome e of a measurement event
E starts with a result re, such as a click or a flash, and that we may
identify the probability of the result re (established experimentally) with
the probability µE(e) of the corresponding outcome e (defined in a SOBST
model).

Just as events in a SOBST model give rise to Boolean algebras and thus,
to probability spaces, the converse also holds:14

THEOREM 2 (Representation Theorem). Given a probability space
〈B, µ〉 with B complete and atomic, we can construct a SOBST model
that contains an event E such that 〈B, µ〉 = 〈BE,µE〉.15
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Within the probability space 〈BE,µE〉 associated with an event E, we
can define conditional probabilities: the probability that outcome x of E

happened, given that outcome y of E happened, is defined as usual as

µE(x | y) =
{

µE(x ∩ y)/µE(y) iff µE(y) �= 0,
0 otherwise.

The introduction of probabilities to the model W has the effect of mak-
ing the resulting model more fine-grained. Thus, a model of stochastic
outcomes in branching space-time (SOBST) is a quadruple 〈W,≤,E, ϒ〉,
with W a non-empty set, ≤— a partial ordering on W , E — a set of events
in W , and ϒ — the collection of probability measures for each event
in E . In the next subsection, we will introduce some constraints on the
assignment ϒ so that we can consistently talk about joint events.

2.2. Constraints on SOBST Models

According to Definition 2, two points x and y are called upward compat-
ible iff there is a point z with x ≤ z and y ≤ z; otherwise, x and y are called
upward incompatible. These notions are extended to events: two events E

and F are upward compatible iff there is a point z ∈ W such that E ≺ z

and F ≺ z. The upward compatibility of two events depends solely on the
SOBST model in which they are defined — we can have SOBST models
with incompatible events E and F that correspond to measurements of
compatible observables in the sense of quantum mechanics. In order to
avoid confusion, we will always use ‘upward (in)compatible’ explicitly for
the SOBST notions. For upward compatible events, the following lemma
holds:16

LEMMA 2. Given two upward compatible events E and F , the set-
theoretical join E ∪ F is also an event, and the outcomes of E ∪ F a
related to the outcomes of E and F as follows:

1. If e is an outcome of E and f is an outcome of F , then their set-
theoretical intersection e ∩ f is an outcome of E ∪ F .

2. If a is an outcome of E ∪ F , then there are outcomes e of E and f of
F such that a = e ∩ f .

Furthermore, if e and f are atomic outcomes of E and F , respectively,
then e ∩ f is either empty or an atomic outcome of E ∪ F .

For a number of important simple cases with just one relevant spatial
dimension, we can draw 2-dimensional graphs of SOBST models. Our
convention is that the x-axis indicates spatial as well as modal separation,
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whereas the y-axis shows the temporal dimension of the model. Lines
indicate the relation ≺ of precedence between subsets of W . (You may
imagine arrowheads pointing upwards, in the +t direction, everywhere.)
Figure 1 shows a SOBST graph for two upward compatible events with
two outcomes each, which illustrates Lemma 2.

If a SOBST model includes joint events in E , a plausible probability
assignment should somehow reflect this fact, thus imposing restrictions on
the probability assignment ϒ . We will consider two such restrictions: (i)
the Locality Requirement, (ii) Screening-off.

The Locality Requirement. Frequently, in modeling a situation such as
a correlation experiment, a SOBST model will contain two upward com-
patible events E and F with finitely many outcomes each such that for
any two non-empty outcomes e and f of E and F , resp., the intersection
e ∩ f is non-empty. (Intuitively, this means that ‘no history escapes’.) In
this case, it is required that the probabilities of the joint event E∪F return
the single probabilities as marginals:

µE∪F (e ∩ 1F ) = µE(e), µE∪F (1E ∩ f ) = µF (f ).(1)

This condition is not a mathematical truth, but it should seem to be entirely
reasonable and intuitive (if it did not hold, there might be no consistent way
to talk about single probabilities when joint probabilities are defined). In
fact, the Locality Requirement has two sides. For surface models like the
model of Figure 2 (Section 3.2 below), in which all the probabilities are
empirically established, the Locality Requirement is simply a testable em-
pirical statement – you can do the experiment with one apparatus switched
off, obtain the single probabilities µE(e) and µF (f ), and compare with
the marginals. When it comes to hidden variable models like the model of
Figure 3 (Section 6 below), the status of the Locality Requirement changes,
as it is now imposed on the hidden structure. The justification for this is the
idea that whatever hidden structure we may wish to introduce, we should
still be able to talk consistently about single probabilities when joint prob-
abilities are defined. This form of the Locality Requirement is in fact quite
strong, since it embodies the concept of non-contextuality and allows us
to derive the usual Locality constraints for the Bell/Aspect experiment as
well as the ‘No Conspiracy’ constraint that rules out influences from the
measurement apparatus to the particle source (cf. Section 6).

Screening-off. The idea of Screening-off was introduced by (Reichen-
bach, 1956) in his attempt to provide an interpretation of causality in an
indeterministic framework. It embodies an ideal of causal explanation.
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Figure 1. SOBST model with two upward compatible events E and F . Left: atomic
outcomes ‘+’ and ‘−’ of E and F as well as the atomic outcomes ‘++’, ‘+−’, ‘−+’, and
‘−−’ of the event E ∪ F are shown as a SOBST graph. Right: the relation between the
atomic outcomes of the events E and F and the atomic outcomes of the event E ∪ F is
illustrated for the case of joint outcome ‘++’ via a space-time diagram: the outcome ‘++’
of E ∪ F is the intersection of the outcome ‘+’ of E and the outcome ‘+’ of F .

The SOBST reading of Reichenbach’s idea is that there should be no (un-
explained) correlations between outcomes of space-like separated events
(which by definition cannot causally influence one another), i.e., for space-
like separated E and F and respective outcomes e and f , we should always
have

µE∪F (e ∩ f ) = µE(e) · µF (f ).(2)

If, however, there are correlations between space-like separated events, i.e.,
if Equation (2) is violated for some e and f , then, according to Reichen-
bach, there has to be a common cause that explains these correlations: in
an extended model with a common cause event C in the common past of
E and F , Equation (2) holds for the outcomes of E and F conditional on
the atomic outcomes ωi of the common cause, i.e.,

µE∪F∪C(e ∩ f | ωi) = µE∪F∪C(e | ωi) · µE∪F∪C(f | ωi).
17(3)

In the context of Bell’s inequalities, the requirement that there be a com-
mon cause is the requirement that there be a certain hidden variable (h.v.)
model. In Section 7 we will show that Screening-off is a much stronger
criterion than one might expect.
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3. THE MATHEMATICS OF JOINT PROBABILITIES AND FINE’S

THEOREM

In this section, we will review some mathematical probability theory, state
the theorems by Fine and Pitowsky mentioned in the introduction, and
prove their equivalence.

In mathematics, one is accustomed to interpreting probability spaces
as descriptions of chance experiments. Joint probability spaces thus have
to be somehow connected to joint chance experiments. However, the in-
terpretation of joint spaces, which is crucial in reasoning about quantum
correlation experiments, is not straightforward. After comments on joint
probabilities in QM in Section 4, Section 5 will therefore connect the
mathematics with the SOBST framework, thus clarifying the issue.

In order to separate the mathematics clearly from the SOBST in-
terpretation, we will use letters from the beginning of the alphabet for
mathematical structures, whereas SOBST events will be denoted E, F

etc. Also, we will use p for purely mathematical probability measures that
have no SOBST interpretation, saving the letter µ for empirical probability
measures, i.e., probabilities that have a SOBST interpretation in terms of
weights on outcomes of events.

3.1. The Mathematics of Joint Probabilities

In sharp contrast to questions of interpretation, the mathematics of joint
probability spaces is quite simple.

Given two Boolean algebras BA and BB , their cartesian product,
equipped with the obvious operations (e.g., 〈a, b〉⊥ := 〈a⊥, b⊥〉, 〈a1, b1〉∧
〈a2, b2〉 := 〈a1∧a2, b1∧b2〉, 1A,B := 〈1A, 1B〉), is again a Boolean algebra.
Thus, given two probability spaces A = 〈BA, pA〉 and B = 〈BB, pB〉,
the Boolean algebra BA,B := BA × BB will again admit of probability
structures A × B = 〈BA,B, pA,B〉, where the probability measure pA,B

so far is entirely arbitrary. As a restriction on the probability measure pA,B

that reflects the origin of the structure A×B, it is natural to demand that
pA,B return the single measures pA and pB as marginals, i.e.,

pA,B(〈a, 1B 〉) = pA(a), pA,B(〈1A, b〉) = pB(b).(4)

This restriction, called the marginal property, is easy to fulfill – in fact,
there are generally infinitely many such measures. As an example, consider
A = B, BA = {∅, a, b, 1}, b = a⊥, p(a) = p(b) = 1/2. Then for any
r ∈ [0, 1/2], the measure pA,B with pA,B(〈a, a〉) = pA,B(〈b, b〉) = r,
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pA,B(〈a, b〉) = pA,B(〈b, a〉) = 1/2 − r will satisfy (4). A particularly
simple joint measure is the product measure

pA,B(〈a, b〉) := pA(a) · pB(b).(5)

With the product measure, there will be no correlations of the form

pA,B(〈a, b〉) �= pA,B(〈a, 1B 〉) ·pA,B(〈1A, b〉) = pA(a) ·pB(b),(6)

whereas with other measures, such correlations will be present. – As the
mathematical method outlined here builds one probability space from two,
it can be iteratively extended to any finite number of probability spaces.18

These considerations show that mathematically, given any number of
probability spaces, the existence of a joint probability space is always
guaranteed. Furthermore, there is generally much freedom in defining a
probability measure in the joint space. Thus, the mathematically interest-
ing questions about joint probabilities are not of the form, “does a joint
probability space for . . . exist?”, but of the form, “can one define a prob-
ability measure in the joint space so that it satisfies certain constraints?”
We have seen that the constraint (4) can always be satisfied. It is only with
more elaborate constraints that the question gets truly interesting.

3.2. The Bell/Aspect Experiment, Random Variables, and Statistical
Observables

The Bell/Aspect quantum correlation experiment that we are consider-
ing has two wings with two possible settings in each, and each of the
measurements has two possible outcomes (for the SOBST diagram, see
Figure 2 below). This experiment has been chosen because it is one of
the simplest setups that allow for a violation of Bell’s inequalities and is
thus rich enough for our aims. The model, and our argument, can easily be
generalized to arbitrary ‘finite’ setups.

The restriction to finitely many outcomes allows us to keep to a simple
notation in line with (Placek, 2000). The question about joint probabilities
in QM is usually stated in terms of joint probability distributions for stat-
istical observables, which in our framework we would have to define via
random variables, and so far we have not even introduced random variables
in the SOBST framework. While the introduction of random variables
fE in the SOBST framework poses no problem,19 it is unnecessary in
the finite case, and thus, we can stay at the level of probabilities of out-
comes (or results). As we can take fE to be injective, there is the natural
correspondence fE(e) = r, µE(f −1

E ({r})) = µE(e) for outcomes e of
event E. In the Bell/Aspect case with two atomic outcomes ‘+’ and ‘−’
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Figure 2. SOBST model of the Bell/Aspect experiment without hidden variables. C

is the event of creating a particle pair, AE (AF ) is the event of selecting the polar-
izer setting in the left (right) wing. Ei and Fj are the respective events of measuring
the spin projection in the selected direction. Thick lines indicate a case of unexplained
correlations: assuming, e.g., the polarizer setting in E1 and F1 to be parallel, we have
µE1∪F1(+∩+) = 0 �= µE1 (+) ·µF1(+) = 1/2 · 1/2, even though events E1 and F1 are
space-like separated.

and with the standard mapping fE(+) = 1, fE(−) = −1, we have ac-
cordingly µE(f −1

E (R+)) = µE(+) and µE(f −1
E (R−)) = µE(−) (where

R+ = {x | x > 0} and R− = {x | x < 0}).

3.3. Fine’s Theorem

Fine’s theorem establishes the equivalence of certain constraints on joint
probability measures. Thus, on a purely mathematical reading, the theorem
answers an ‘interesting question’ of exactly the form mentioned at the
end of Section 3.1. In a watered-down version (which is sufficient for our
purposes here), Fine’s theorem states the following:20

THEOREM 3. Given four probability spaces Ai , Bj , i, j = 1, 2, each with
two atoms ‘+’ and ‘−’, and four measures pAi,Bj

in the joint probability
spaces Ai ×Bj , i, j = 1, 2 that return the four probabilities pAi

and pBj

as marginals, the following two conditions are equivalent:

1. It is possible to define consistently a joint probability measure
pA1,A2,B1,B2 on the Boolean algebra BA1 × BA2 × BB1 × BB2 that
returns the four joint probabilities pAi,Bj

(and thus a fortiori the four
probabilities pAi

and pBj
) as marginals.
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2. The eight given probability measures satisfy the following four
(Bell/CH) inequalities

−1 ≤ pAi,Bj
(+,+)+ pAi,Bj ′ (+,+)+ pAi′ ,Bj ′ (+,+)(7)

− pAi′ ,Bj
(+,+)− pAi

(+)− pBj ′ (+) ≤ 0

for i, i′, j, j ′ ≤ 2, i �= i′, j �= j ′.

3.4. Pitowsky’s Theorem

Pitowsky’s theorem is formally similar to Fine’s theorem, since it also links
the fulfillment of inequalities to the possibility of constructing a probability
space: a given vector of numbers can be treated as probabilities defined
on a single probability space if and only if the numbers satisfy certain
inequality constraints.

THEOREM 4. Given an 8-tuple s = 〈p1, p2, p3, p4, p13, p14, p23, p24〉
of real numbers from the interval [0,1], the following three conditions are
equivalent:

1. The 8-tuple s is an element of the Clauser-Horne correlation polytope
c(4, S) with S = {{1, 3}, {1, 4}, {2, 3}, {2, 4}}, i.e., it can be represen-
ted as a weighed classical truth value assignment for four propositional
variables p1, . . . , p4 and their four conjuncts p1&p3, . . . , p2&p4.21

2. There exists a probability space 〈B, p〉 and A1, A2, A3, A4 ∈ B such
that

pk = p(Ak) and pij = p(Ai ∩ Aj)(8)

for k ≤ 4, i = 1, 2, j = 3, 4.

3. The numbers pi and pij satisfy the following system of inequalities:

−1 ≤ pij + pij ′ + pi′j ′ − pi′j − pi − pj ′ ≤ 0,(9)

pi ≥ pij , pj ≥ pij , pi + pj − pij ≤ 1

for i, i′ = 1, 2, i �= i′ and j, j ′ = 3, 4, j �= j ′.

3.5. Fine’s and Pitowsky’s Theorems are Equivalent

Pitowsky claims that his theorem is equivalent to Fine’s.22 Still, there are
dissenting views.23 After all, Fine’s theorem is about eight given probab-
ility spaces, whereas Pitowsky’s is about eight given real numbers, so the
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premises of the theorems are different. However, we can identify the prob-
ability pAi

(+) mentioned in Theorem 3 with the number p1 from Theorem
4, pA1,B1(+,+) with p13, etc., thus unifying the premises.

We first prove that Theorem 3 entails Theorem 4. Given the eight prob-
ability spaces Ai , Bj , and Ai × Bj , i, j = 1, 2, as in the premises
of Theorem 3 and satisfying clause 2 of the theorem, the 8-tuple s =
〈pA1(+), pA2(+), pB1(+), pB2(+), pA1,B1(+,+), . . . , pA2,B2(+,+)〉 is
an element of [0, 1]8 satisfying clause 3 of Theorem 4.

Proof. s ∈ [0, 1]8 is clear, since the elements of s are probabilities. As
to the inequalities (9), the four of the first line are exactly inequalities (7).
In the second line, pi ≥ pij and pj ≥ pij follow from the premises of
Theorem 3, as pi and pj are marginals of pij (thus, e.g., p1 = pA1(+) =
pA1,B1(+,+)+ pA1,B1(+,−) ≥ pA1,B1(+,+) = p13). The last inequality
follows since, e.g., p1 + p3 − p13 = pA1(+)+ pB1(+)− pA1,B1(+,+) =
1− pA1,B1(−,−) ≤ 1. �

In the other direction, given an 8-tuple s ∈ [0, 1]8 satisfying clause 3 of
Theorem 4, we can construct uniquely eight probability spaces satisfying
the premises and clause 2 of Theorem 3 by taking pA1(+) = p1, pA1(−) =
1 − p1, . . . , pB2(−) = 1 − p4, pA1,B1(+,+) = p13, pA1,B1(+,−) =
p1 − p13, pA1,B1(−,+) = p3 − p13, pA1,B1(−,−) = 1 + p13 − p1 − p3,
. . . , pA2,B2(−,−) = 1+ p24 − p2 − p4.

Proof. The construction is unique. The fact that s ∈ [0, 1]8 guarantees
that the probability spaces Ai and Bj , i, j = 1, 2, are well-defined. By
s ∈ [0, 1]8 and the second line of (9), the probability spaces Ai×Bj , i, j =
1, 2, are also well-defined (i.e., the probabilities of their atoms (+,+), . . . ,
(−,−) are in [0, 1] and sum up to 1). The inequality (7) holds because of
the first line of (9). By construction, the measures pAi,Bj

return the right
marginals. �

Thus, Fine’s and Pitowsky’s theorems are equivalent. In what follows,
we will always discuss Fine’s theorem; the implications for Pitowsky’s
result should be obvious.24

4. THE ISSUE OF JOINT PROBABILITIES IN QUANTUM MECHANICS

A natural reading of Fine’s theorem, and one suggested by Fine him-
self, shows that if the Bell/CH inequalities hold, then a joint probability
distribution for all the observables in the Bell/Aspect experiment is defin-
able. Now, some of these observables do not commute, and it is a
well-entrenched view that QM prohibits the existence of joint probabil-
ity distributions for non-commuting observables.25 Thus, the minimalist
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interpretation, via modus tollens, argues that the Bell/CH inequalities must
be violated on purely mathematical grounds, quite independently of any
considerations about hidden variable models or locality.26 In this section,
we will comment on the rationales for accepting the premise that joint
probability distributions for non-commuting observables are prohibited.

In classical mechanics, experimental propositions correspond to pro-
jectors on subsets of a system’s phase space. The algebra of these project-
ors, which is the usual set algebra, is Boolean. Thus, it is unproblematic to
introduce a global probability measure providing for joint probabilities for
any experimental propositions whatsoever.

In standard quantum mechanics, the situation is different. Experimental
propositions correspond to projectors on closed subspaces of a Hilbert
space, and the ensuing algebra, which is not the usual set algebra, is non-
Boolean. If attention is restricted to commuting observables, the resulting
algebra is again Boolean and allows for joint probabilities. However, in
the general case of non-commuting observables, joint probabilities are
problematic.

In what follows, we will assess the claim that joint probabilities for
non-commuting quantum observables are not just problematic, but in fact
prohibited. We will consider four arguments of increasing strength that
purport to show this.

4.1. Non-Commuting Observables are Not Comeasurable

It is commonly held that observables that QM classifies as non-commuting
cannot be measured simultaneously. Is this premise already sufficient
to argue that there can be no joint probabilities for non-commuting
observables?

Let us assume that two measurements that cannot be carried out simul-
taneously are characterized by probability spaces 〈B1, p1〉 and 〈B2, p2〉,
respectively. We are asking whether there exists a joint probability measure
p12 on B1×B2 such that p12(〈a1, a2〉) can be interpreted as the probability
that measurement 1 yields the result a1 and measurement 2 yields the result
a2 – keeping in mind that the two measurements cannot be carried out
simultaneously.

To put the matter down to earth, imagine that (contrary to the facts)
no two fair Polish coins can be tossed simultaneously, and that 〈B1, p1〉
and 〈B2, p2〉 describe tosses of two such coins. By the product probability
construction (eq. (5)), you arrive at a probability measure p12 = p1 · p2.
However, you cannot read, say, p12(〈t1, h2〉) as the probability of simul-
taneously obtaining tails on the first coin and heads on the second coin:
assigning a positive value to a probability like p12(〈t1, h2〉) is at odds with
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the fact that the two coins cannot be tossed simultaneously. On the other
hand, if you assign all probabilities p12 the value zero, you will not recover
the marginals, e.g., p1(t1) = p2(h2) = 1/2. Is there any way out of this
quandary? Yes, there are actually two ways out: (i) You may assign zero to
all the probabilities p12, but then you must consequently read the returned
marginal probabilities, e.g., p(h1) = 0, as the probability that in this kind
of experiment, i.e., with two coins tossed simultaneously, the first coin
lands heads up. (ii) You may also take any p12 that returns as marginals
the single probabilities like p1(t1) = p2(h2) = 1/2, but then you must
consequently refuse to interpret the probabilities p12 as empirical, i.e., you
may not read them as the probability of simultaneously obtaining a result
on the first coin together with a result on the other coin: the probabilities
p12 will be purely mathematical probabilities.

The upshot of this discussion is that the impossibility of performing
two measurements simultaneously does not speak against defining corres-
ponding joint probabilities, although the probabilities may have a purely
mathematical meaning.

4.2. Joint Probabilities are not Defined in QM

The second argument against joint probability distributions for non-
commuting quantum observables cites a simple matter of fact: The probab-
ilistic algorithm of QM does not define such distributions. The algorithm
defines joint probabilities for measurement results of pairs of commuting
observables, but it fails in the case of non-commuting observables. The
algorithm says that if D is a quantum system’s state, A and B are observ-
ables, e and f are Borel sets on real line, and PA(e) and PB(f ) are the
respective projectors from the spectral resolution of A and B, then we get
the following probability:

pD
A,B(e × f ) = tr(D PA(e) PB(f )).(10)

This expression makes sense only for commuting A and B, because only
commuting observables resolve into projectors such that for all Borel sets
e and f , PA(e) PB(f ) is again a projector, and this is a necessary condition
for the right hand side of equation (10) to be meaningful. For commuting
A and B, the formula naturally gives the probability that, for a system in
state D, the measurement of A yields a result in e and the measurement
of B yields a result in f ; for non-commuting A and B, the formula is
meaningless.

However, the fact that the probabilistic algorithm of standard QM does
not define joint probabilities for non-commuting observables does not
speak against defining them otherwise. As QM does not probably have
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the last word about physical reality, one may still believe that a next theory
will ascribe joint distributions to non-commuting observables of QM.

4.3. Joint Probabilities Cannot be Defined

The third argument draws on the most abstract layer of standard QM – its
algebraic structure. As was mentioned above, experimental propositions
like “the measurement of A yields a result from e” correspond to pro-
jectors on closed subspaces of an appropriate Hilbert space H. Thus, the
family of experimental propositions about a QM system is characterized
by the set of closed subspaces of H, which algebraically has the structure
of an orthomodular lattice – a structure that is weaker than the Boolean
algebra structure of classical experimental propositions, on which clas-
sical (Kolmogorov) probability spaces can be defined. Thus, the problem
is to ascribe probabilities to an orthomodular lattice. This can be affected
by structures usually called “generalized probability spaces”. These prob-
ability spaces should be used to define joint probabilities for quantum
observables. Now, classical joint probabilities satisfy certain natural prop-
erties, e.g., the marginal property (cf. Equation (4) above). The dramatic
mathematical fact is that, generally speaking, not all these properties can
be supported by probabilities defined on an orthomodular lattice. However,
if only commuting observables are considered, joint probabilities with the
relevant properties can be defined.27 The immediate moral of this fact is
that given the algebraic structure of standard QM, joint probabilities for
non-commuting observables cannot be defined (in addition to the simple
“are not defined” of the last argument) . Moreover, in order to define them
in a generalized theory, there is a a rather high price to be paid: roughly, the
algebraic structure of this theory must be “stronger” than an orthomodular
lattice.

However, if one wants to build on these facts a general argument to the
effect “no joint probability distributions for non-commuting observables”,
this will suffer the same drawback as the analogical move in the last argu-
ment: QM probably does not have the last word about the physical world,
and a superseding theory may solve the matter differently.

4.4. Joint Probabilities Cause Trouble

The data of the Bell/Aspect experiment violate the Bell/CH inequalities.
Via Fine’s theorem, this means that in this experiment, the existence of
joint probabilities for all the four quantum observables involved, two pairs
of which do not commute, causes empirical trouble. This observation could
easily be generalized to the following claim: there is an empirical penalty
for defining joint probabilities for non-commuting quantum observables.
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A number of theorems seem to point in this direction,28 but the claim is in
fact false.29

Note that already in the discussion of Section 4.1., we defined math-
ematically a joint probability for outcomes of two incompatible measure-
ments, e.g., measurements of non-commuting quantum observables. This
is already sufficient to refute the above claim. In Section 5 we will use
the SOBST framework to shed more light on this issue, explicitly giving a
reading of joint probabilities in terms of hidden variables.

4.5. Assessment of the Arguments

We have analyzed four arguments against joint probabilities for non-com-
muting quantum observables. The first and the fourth argument were seen
to be fallacious, whereas the second and third established that in standard
QM, such joint probabilities are not defined, and cannot be defined either.
What these arguments fail to establish is the general claim that any two ob-
servables that standard QM characterizes as non-commuting cannot have
joint probability distributions in some future theory. This claim can only
be supported by a leap of faith committing one to the truth of an abstract
layer of QM. In terms of the data, it is not warranted.

We started this section by pointing out that the minimalist interpreta-
tion would like to use Fine’s theorem to support the following argument:
(i) joint probabilities for non-commuting quantum observables cannot be
defined, (ii) in the Bell/Aspect experiment, non-commuting quantum ob-
servables are involved. Therefore, (iii) no joint probabilities can be defined
for the observables in the experiment. Via Fine’s theorem, this means that
(iv) the Bell/CH inequalities will be violated. In this argument, neither
hidden variables nor locality considerations etc. are mentioned; thus (v)
the violation of the inequalities is a purely mathematical fact.

We have now seen that the known arguments purportedly establishing
(i) are a failure. Furthermore, (i) is not just unsupported, but actually false.
Thus, the attempt of using Fine’s theorem to support the minimalist in-
terpretation is a non-starter. Still, there is a lesson to be learned from the
theorem, if you read it the other way round: As the Bell/CH inequalities are
violated in the Bell/Aspect experiment, joint probabilities for all the four
observables involved must not be definable in an adequate model for the
experiment. Fine’s theorem should thus guide your search for an adequate
model. We will come back to this in Section 6.
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5. JOINT PROBABILITIES IN SOBST MODELS

As we already announced in Section 4.4„ we will now show (i) that it is
not the case that introducing joint probabilities for non-commuting observ-
ables will generally lead to empirically inadequate models and (ii) how to
interpret such joint probabilities in the SOBST framework. To this end,
we will first address the SOBST interpretation of joint probabilities in a
very general way. Recall the distinction made in Section 3: With respect
to a given SOBST model, we call a mathematical probability space 〈B, p〉
empirical iff it is the probability space 〈BE,µE〉 of the outcomes of an
event E in the given model; otherwise, we call the probability space 〈B, p〉
purely mathematical.

Assume that we are given a SOBST model with two events E and F

and associated probability spaces E = 〈BE,µE〉 and F = 〈BF , µF 〉,
respectively. We have seen in section 3.1 that mathematically, the existence
of a joint probability space E × F = 〈BE,F , pE,F 〉 is always guaranteed,
and that we may require the joint probability measure pE,F to have the
marginal property (eq. (4)). The question we are going to consider now is,
can we give a SOBST interpretation of the joint space E ×F such that the
initially purely mathematical probability pE,F will be empirical?

5.1. The Joint Space E × F

From the representation Theorem 2 we know that whenever there is a
probability space A = 〈BA, pA〉 with B complete and atomic (conditions
that are always satisfied in the finite cases considered here), there exists a
SOBST model with an event E the outcomes of which have the Boolean
algebra structure of BA and the respective probability measure pA. This
means that for the space E × F , there is a SOBST model with an event
C the outcomes of which have the structure of BE,F and the probabilities
pE,F . However, nothing guarantees that the initial SOBST model in which
E and F are defined has any connection with the model in which C is
defined. So far, Theorem 2 is of little help – with respect to the initial
model, pE,F is still purely mathematical. We will now show how to con-
struct a unified model for the events E, F , and C, i.e., a model in which
pE,F is an empirical probability measure. To this end, we will need to
distinguish carefully the case when E and F are upward compatible from
the case of upward incompatible events.

Upward compatible events. In Section 2.2 we have seen that for upward
compatible events E and F of the kind appropriate for modeling a correl-
ation experiment (i.e., such that for non-empty outcomes e of E and f of
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F , e ∩ f is non-empty), SOBST with the Locality Requirement gives a
natural interpretation of the joint space:

BE,F = BE∪F , pE,F (〈e, f 〉) = µE∪F (e ∩ f ).(11)

Thus, the event C mentioned above can in this case be identified with the
event E ∪ F . This case is completely unproblematic, both from the point
of view of SOBST and from the point of view of QM – upward com-
patible events can only model comeasurable, i.e., commuting, quantum
observables. Moreover, it is this construction that we need in familiar ap-
plications of joint probabilities in describing multiple chance experiments,
like multiple coin tosses. In the case of two coins, e.g., the joint probability
pE,F (r1, r2) of obtaining result r1 on the first coin and result r2 on the
second coin can be interpreted as the probability µE∪F (e1 ∩ e2) of the
outcome e1∩e2 of the event E∪F of tossing the two coins, where ei is the
atomic outcome of E (the event of tossing the first coin) or F (the event of
tossing the second coin) corresponding to result ri .

Upward incompatible events. Assume that E and F are probability
spaces associated with upward incompatible events E and F in a SOBST
model, such as measurements of non-commuting quantum observables,
and that we are given a purely mathematical probability measure pE,F that
returns the measures µE and µF as marginals (recall from Section 3.1 that
the existence of such a measure is always guaranteed).

As E and F are upward incompatible, E ∪ F is not an event, and we
need to read the probability measure pE,F as the probability for outcomes
of an event C different from E ∪ F . If this event C is to be incorporated
in the given SOBST model, the only possible choice for the location of C

is the common past of E and F , i.e., C ≺ E and C ≺ F – for C to be an
event, it has to be a segment of one history, and within or after E and F ,
histories have split already. We will require for simplicity that all atomic
outcomes of C contain E or F . (It will be helpful to picture a situation
where E and F occur after C in two alternative futures of C.) Then, E∪C

and F ∪ C will be events as well, with their outcomes satisfying (via the
Locality Requirement) for all outcomes e, f , and ω of E, F and C, resp.:

µE∪C(e ∩ 1C) = µE(e), µE∪C(1E ∩ ω) = µC(ω),(12)

µF∪C(f ∩ 1C) = µF (f ), µF∪C(1F ∩ ω) = µC(ω).

It remains to give a SOBST interpretation for pE,F .
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5.2. Upward Incompatible Events: The Joint Measure pE,F

With E and F upward incompatible and C in their common past, histories
leading to E or F will split somewhere. This could be in C or not. If
the splitting occurs in C, C will be an event of selecting between E and F .
The more general option is to let the splitting depend on influences from an
event A outside of C (think of the independent agent or the random device
selecting among the possible directions of spin projection measurement
in the Bell/Aspect experiment). C has thus no power over which of the
upward incompatible events actually occurs, but the outcomes of E and F

will be differentiated through the outcomes of C.
The mathematically given joint measure pE,F is defined on pairs 〈e, f 〉,

with e an outcome of E and f an outcome of F . The outcomes of C must
correspond one-to-one to such pairs, and the probability for each of the
outcomes of C must be the probability for the corresponding pair. Thus,
to take a simple example, if E and F both have two atomic outcomes ‘+’
and ‘−’, C has four atomic outcomes ω±,±, which are assigned probabil-
ities µC(ωx,y) = pE,F (〈x, y〉). The requirement that pE,F return the given
single probabilities as marginals yields

µE(x) = µC(ωx,+)+ µC(ωx,−),(13)

µF (y) = µC(ω+,y)+ µC(ω−,y).

These equations suggest reading µE and µF as surface probabilities that
can be derived from underlying hidden probabilities µC . The move of
incorporating the event C into the initial model allowed us to read the
purely mathematical joint probabilities pE,F as empirical probabilities µC ,
namely, as the probability of outcomes of the event C. On this reading, the
atomic outcomes ω±,± of C differentiate the outcomes of E and F into two
kinds: the outcome ‘+’ of E, e.g., can happen as one of ω+,+ and ω+,− (cf.
the left part of Figure 3 for an illustration).

This situation allows one to interpret the atomic outcomes ω±,± of C

as instruction sets for both E and F , i.e., as determinate-value hidden
variables: If, e.g., C results in ω−,+, then if E occurs, the outcome will be
‘−’, whereas if F occurs, the outcome will be ‘+’ (cf. the middle and right
part of Figure 3). On this interpretation, the occurrence of E or F (which
is governed by event A) has the effect of reading out the first or the second
slot of the instruction set provided by the outcome of C. The model is
subject to counterfactual definiteness: the hidden state ωx,y predetermines
not only the outcome of the event that actually occurs, but also of the event
that does not occur and about which we can only speak counterfactually
(the event that could have occurred). Thus, there is no genuine splitting (no
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Figure 3. Determinate-value (‘fatalistic’) hidden variable model for two upward incom-
patible events E and F . Left: A SOBST graph shows the causal relations between the event
A of selecting either E or F , the (‘hidden’) event C providing the instruction sets (indicated
by four different line types), the events E and F , and the surface outcomes ‘+’ and ‘−’
of E and F . As the graph shows, each surface outcome in the hidden variable model
integrates two ‘hidden’ outcomes of C. E.g., the outcome ‘+’ of F comprises outcomes
ω++ (dashed) and ω−+ (solid) of C. Middle and right: two space-time diagrams for the
outcome ω−+ of C illustrate the epistemic status of the splitting at A, justifying the name
‘fatalistic model’. In the middle, A selects E, while C has already given the instructions
ω−+. Accordingly, E reads out the outcome ‘−’. On the right, A selects F , resulting in
outcome ‘+’.

objective chance) in the events E or F any more – the splitting has already
occurred in C. (This does not mean that there can be no objective chance in
the model any more: A as well as C may still operate indeterministically.)
From Equation (13) it follows that on this reading, the surface probabilities
will be correctly reproduced. Even though A and C may still host objective
chance, we call determinate-value models fatalistic: from the point of view
of E and F , the outcomes are selected on a pure ‘it was to be’ basis.

This brings us to the modal aspect of the situation. Initially, by specify-
ing in SOBST two upward incompatible events E and F , there were two
successive levels of modality present: (i) which of the two events actually
takes place?, and (ii) which outcome will the actually occuring event have?
These modalities corresponded (i) to splittings in A and (ii) to splittings
in E or in F , which occurred after A. In the hidden variable model, the
splittings in E or F have been cut short, as C already predetermines the
outcomes of both E and F . Thus, there are no two successive levels of
modality in the model any more: the splitting in A, while still present on
the surface description (so that the model can be adequate), does not ‘set
the stage’ for a further splitting in E or F , but only determines which of
the two slots of the instruction sets given through the outcomes of C is
read out. If we know which outcome of C we are in, we already know
the results of E and F , no matter which of the two actually occurs. In the
hidden variable model, the splitting in A thus has a purely epistemic status
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– even if we might be limited in principle to reading out only one slot.
Therefore, the hidden variable model has affected a collapse of modalities
to just one genuine level, which is provided by the splittings in C.

Nothing in this argument depends on the fact that E and F have two
atomic outcomes each, like in the example just given. In fact, if E and F

have any finite number nE and nF of atomic outcomes, resp., then taking C

to have nE · nF atomic outcomes will allow for exactly the same fatalistic
construction. More generally, for any number of events with finitely many
outcomes each, the mathematical existence of global joint probabilities
allows the above construction of a fatalistic hidden variable model. In the
Bell/Aspect experiment, this means that if there is a joint probability meas-
ure pE1,E2,F1,F2 for all the four observables involved, then one can construct
a determinate-value hidden variable SOBST model for the experiment.

5.3. Empirical Implications

There is nothing wrong empirically with the mathematical existence of
a joint probability measure for two upward incompatible events E and
F , nor with the possibility of giving a determinate-value hidden variable
model, even if E and F are taken to represent incompatible quantum meas-
urement events (i.e., measurements of non-commuting observables of a
quantum system). Standard ‘quantum-mechanical wisdom’ will only dic-
tate that in this case E and F are not comeasurable, and accordingly, that
E ∪ F is not an event, which is adequately captured in the SOBST model
for the situation given here that takes E and F to be upward incompatible.
Empirically, any assignment of probabilities pE,F = µC for the hidden
states, i.e., any probability measure on the mathematical joint space, will
yield an adequate picture as long as the measure returns µE and µF as
marginals.

Note that already by defining the joint probability pE,F , we have left
the orthodox quantum mechanical framework: in quantum mechanics, the
joint probability pE,F that could be introduced purely mathematically is
not defined for incompatible measurements.30 The interesting fact is that
while we may well have violated the spirit of QM through our construction,
no empirical penalty is forthcoming so far. Thus, we have the following
result: It is always possible to introduce a determinate-value hidden vari-
able model for the outcomes of two incompatible events with finitely many
outcomes – for two events, fatalism is always an option.

To sum up this section, we have cashed in our announcement of Section
4.4: contra the minimalist interpretation, there may exist joint probabilities
for non-commuting observables, without any empirical penalty forthcom-
ing. Moreover, by interpreting joint probabilities in the SOBST framework,
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we know now that introducing joint probabilities for upward incompatible
events amounts to constructing an instruction set for the possible outcomes
of these events – a determinate-value hidden variable model subject to
counterfactual definiteness.

Given the result of this section, the following question remains: In
some cases, joint probabilities for non-commuting observables are em-
pirically unproblematic. In other cases, most prominently in the case of
the Bell/Aspect experiment, the definability of such joint probabilities in
a model causes the model to be empirically inadequate. What is the dif-
ferentiating feature – what is the common aspect of those setups for which
joint probabilities lead to empirical trouble? We have seen that the fact that
non-commuting observables are involved does not differentiate. Also, the
number of observables involved is not a good measure: for the Bell/Aspect
experiment with the direction setting fixed in one wing, joint probabilities
cause no trouble.31

We believe that an easy answer to this question is not to be had. It
should be clear that intricate details of the setup will be decisive. Thus, if
joint probabilities cause empirical trouble for a certain setup, this signals
something about the physics of the setup, not just about mathematics.

6. FACTORIZABLE STOCHASTIC HIDDEN VARIABLES

We have already shown that the minimalist interpretation cannot be sus-
tained. Yet, here is a moral to be drawn from Fine’s theorem: do not put all
the probabilities of the Bell/Aspect experiment in a single large probability
space. In the light of the preceding section, this means that determinate-
value models, in which a global joint probability measure pE1,E2,F1,F2 is
definable, are out. Suppose thus one sets out to analyze the experiment,
consistently using only the four probability measures µE1∪F1 , µE1∪F2 ,
µE2∪F1 , and µE2∪F2 that are defined on the families of outcomes of the
corresponding events. In order to be explanatorily adequate, the analysis
should respect Screening-off and the Locality Requirement (cf. Section
2.2). In hidden variable terminology, the task is therefore to construct a
factorizable stochastic h.v. model.

Figure 4 represents a factorizable stochastic hidden variable model
of the Bell/Aspect experiment. The model contains additional (‘hidden’)
structure (a common common cause event C with K atomic outcomes)32

that is not present in the surface description of the experiment (cf. Figure
2). The new model must reproduce the given surface probabilities (con-
dition of Adequacy). The additional structure is introduced in order to
make the resulting model explanatorily satisfying; it has to respect the con-
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Figure 4. SOBST model of the Bell/Aspect experiment with factorizable stochastic hid-
den variables. The K-multiplied extended outcomes are only shown for the outcome ‘++’
of E1∪F1 and for outcome ‘−−’ of E2∪F2 in order to keep the picture tractable. Ovals on
the top correspond to surface outcomes, i.e., they integrate outcomes differentiated through
the outcomes of the common common cause C.

straints of Screening-off and the Locality Requirement. We have already
motivated these constraints in Section 2.2. With respect to the Bell/Aspect
experiment, Screening-off embodies a conviction about how correlations
can be (causally) explained. The (‘hidden’) Locality Requirement has two
sides. First, it allows one to deduce the usual demand for Locality:

∗
µEi∪F1∪C(ei ∩ 1F1 ∩ ωk) = ∗

µEi∪F2∪C(ei ∩ 1F2 ∩ ωk)(14)
∗
µE1∪Fj∪C(1E1 ∩ fj ∩ ωk) = ∗

µE2∪Fj∪C(1E2 ∩ fj ∩ ωk)

This condition makes sure that what happens in one wing is independent of
what happens in the other wing and thus guarantees that the distant correl-
ations are really explained in a local way: if you allow for nonlocality in a
‘hidden’ model in order to explain puzzling nonlocal surface correlations,
you can be accused of a combination of question-begging and mysticism
– if you are willing to accept nonlocality, why not rest satisfied with the
surface description? Secondly, the Locality Requirement yields the ‘No
Conspiracy’ constraint, which reads

∗
µC (ωk) =∗

µEi∪Fj∪C (1Ei
∩ 1Fj

∩ ωk).(15)
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This condition rules out influences from the direction settings in the two
wings on the particle source. It thus embodies the conviction that while
our model should explain the surface probabilities, it must not explain the
direction settings – otherwise, the model would be close to global determ-
inism: an option that is always open logically, but that does not explain
anything.

The constraints imposed on the model of Figure 4 are widely recog-
nized as well motivated. However, in the model the Bell/CH inequalities
are derivable.33 Thus, while the model would be accepted as explanatorily
sufficient, it is empirically inadequate: the surface probabilities are sub-
ject to the Bell/CH inequalities, which have been found to be empirically
violated.

Fine’s theorem suggests that the model of Figure 4 should allow for the
definition of a joint probability measure pE1,E2,F1,F2 . We will now show
how this joint measure can in fact be defined. The definition is exactly
like Fine’s, and should come as no surprise. Still, we will show explicitly
how all the features used to specify the model play a crucial role in the
definition.

We thus define the joint probability measure34 as

pE1,E2,F1,F2(e1, e2, f1, f2)(16)

=
K∑

i=1

∗
µE1∪C (e1 ∩ 1C | ωi)· ∗µE2∪C (e2 ∩ 1C | ωi)·

∗
µF1∪C (f1 ∩ 1C | ωi)· ∗µF2∪C (f2 ∩ 1C | ωi)· ∗µC (ωi).

In this definition, we made use of the Locality Requirement in order to
define, e.g.,

∗
µE1∪C (ei ∩ ωj) =∗

µE1∪F1∪C (ei ∩ 1F1 ∩ ωj)(17)

=∗
µE1∪F2∪C (ei ∩ 1F2 ∩ ωj).

Appendix B shows that the measure (16) indeed returns the given single
and joint surface probabilities. Significantly, in this proof we need no
more and no less than the entire set of all the conditions of the common
common cause and all the conditions imposed on the SOBST model that
also allowed for the derivation of the Bell/CH inequalities. If one of the
conditions is dropped, the joint measure is not consistently definable.35
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Note that the joint probability pE1,E2,F1,F2 of Equation (16) is not an
empirical probability in the model – it is defined purely mathematically
as a weighed average over the probabilities of hidden states, not as the
probability of hidden states themselves. Nevertheless, by the construction
of Section 5, we can construct a determinate-value (fatalistic) model, in
which pE1,E2,F1,F2 is the probability of outcomes of an event C providing
instruction sets. We will comment on this in Section 7 below.

The moral to be drawn from this section is simple: the prudent
strategy of working with four small probability spaces fails. Given that the
model is constrained by the physically motivated conditions of Adequacy,
Screening-off, and the Locality Requirement, the initially disconnec-
ted small probability spaces can be pasted together to form one large
probability space in which the troublesome measure pE1,E2,F1,F2 is defined.

7. DETERMINATE-VALUE VS. STOCHASTIC HIDDEN VARIABLES

A question that remains is the relation between determinate-value models
discussed in Section 5 and factorizable models discussed in Section 6.
Is there any generality achieved by moving from the former to the latter
model?

We will now show that for the Bell/Aspect experiment, if it is possible
to construct a model of the first kind, then it is also possible to construct
the model of the second kind, and the other way round. Starting with the
stochastic model from Section 6, we showed that the global joint prob-
ability measure pE1,E2,F1,F2 is definable. The event C in the stochastic
model is required to be a common common cause and not a source of
instruction sets. Thus, the number K of atomic outcomes of C does not
have to coincide with the number of possible instruction sets. However,
preserving the location of C in the model, we can turn the purely math-
ematical probability pE1,E2,F1,F2 into an empirical probability and give an
alternative SOBST model of the situation in which the event C has as many
atomic outcomes as there are quadruples of atomic outcomes of the Ei, Fj ,
i.e., 16 in our example. Thus, the mathematical definability of the joint
measure pE1,E2,F1,F2 allows for the construction of a determinate-value h.v.
model. – In the other direction, given a factorizable determinate-value h.v.
model (i.e., a model with an event C with 16 atomic outcomes ω±,±,±,±
corresponding to the possible instruction sets), we can simply read off the
joint probability measure:

pE1,E2,F1,F2(e1, e2, f1, f2) = µC(ωe1,e2,f1,f2).(18)
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In this way, we have given a SOBST interpretation of one more of the
equivalences Fine has established:36

The probability measure pE1,E2,F1,F2 can be defined to return
the given joint probabilities µE∪,Fj

, i, j = 1, 2, of the setup as
marginals if and only if we can give a factorizable determinate-
value hidden variable model for the setup.

The implication to the right means that if you can produce a factor-
izable stochastic model, then you can trivialize it, in the sense of giving
a determinate-value model for the same surface probabilities. This may
come as a surprise, given the philosophical rationales for preferring the
stochastic models. In determinate-value (fatalistic) models, the probab-
ilities µC(ωi) of outcomes of the common cause event C are generally
nontrivial, but they can naturally be interpreted epistemically, thus allow-
ing for an ignorance interpretation of the statistical character of QM. The
conditional probabilities of outcomes of the events Ei and Fj , conditioned
on atomic outcomes ωk of C, are either 0 or 1. It is exactly the feeling
that the determinism embodied in fatalistic models might be too restrictive
to allow for reproducing the experimental data, that motivates the con-
struction of stochastic models. By allowing for two levels of modality,
i.e., two kinds of nontrivial probabilities (on the outcomes of the common
cause and on the measurement results conditional on such outcomes), it
is hoped that the class of surface data that can be modeled will be en-
larged considerably. This hope is frustrated, as the equivalence shows.
Also on a purely mathematical level, the equivalence is surprising, since
for a model to be stochastic, it has to fulfill the Screening-off Equations
(3), whereas a determinate-value model has to fulfill these equations with
trivial conditional probabilities, e.g., µE∪F∪C(e | ωi) ∈ {0, 1} – a much
more stringent requirement. The demand for Screening-off itself appears
not too restrictive.

Contrary to these appearances, the above equivalence shows that given
the constraints imposed on the stochastic model, the hidden variable
construction can be reiterated (via the definition of the global joint prob-
ability measure pE1,E2,F1,F2), collapsing the two levels of modality into
one without imposing any new constraints on the surface probabilities that
the model is able to reproduce. Contrary to what was intended, stochastic
models do not embody two genuine levels of modality.

A closer look at the situation reveals that for a proponent of stochastic
hidden variables, the situation is actually worse than that; most setups do
not allow for truly stochastic models (i.e., stochastic models with nontrivial
conditional probabilities). Even barring the physically motivated argument
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by Suppes and Zanotti to the effect that one should not consider stochastic
models in the first place,37 it is a mathematical fact that only very few
situations allow for the satisfaction of the Screening-off equations with
non-trivial conditional probabilities. You cannot even satisfy these equa-
tions in a two-wing setup with three atomic outcomes in each wing, if you
do not allow for trivial conditional probabilities.38

Thus, contrary to whatever pushed people into constructing stochastic
models, such models are either more restrictive than determinate-value
models (if they are truly stochastic), or amount to the same (if they are
stochastic in the broad sense) – the condition of Screening-off is in fact
very strong.

8. CONCLUSIONS

Our aim in this paper was to show that the minimalist interpretation of the
violation of Bell’s inequalities is wrong: the reason why Bell’s inequal-
ities are violated is not to be identified with the non-commutativity of
the quantum observables involved. We first argued that (i) no argument
is known supporting the claim that observables that QM classifies as in-
compatible cannot have a joint probability distribution, and (ii) the claim
is actually false. Thus, the argument in favor of the minimalist interpreta-
tion that uses Fine’s theorem is a non-starter, since its premise is missing.
Secondly, we explicitly constructed in the SOBST framework joint probab-
ilities for outcomes of incompatible events, and observed that a model for
two events can be made empirically adequate. We saw that the introduc-
tion of empirical joint probabilities for incompatible events in a SOBST
model amounts to introducing a determinate-value hidden variable model
subject to counterfactual definiteness. As is implied by Fine’s theorem, the
definability of joint probabilities for all the observables in the Bell/Aspect
experiment causes a model to obey the Bell/CH inequalities, and thus, to be
empirically inadequate. In a third step, therefore, we read the equivalence
of Fine’s theorem backward, arriving at a guide to strategy: an adequate
model for the Bell/Aspect experiment must not define joint probabilities
for all observables. This strategy, embodied by the class of factorizable
stochastic models, was however seen to fail: the physically motivated
constraints of Screening-off and the Locality Requirement imposed on
such models allowed us to paste the four initially disconnected probability
spaces in the model into one large space, defining the troublesome joint
probabilities. In the fourth and final step, we discussed whether stochastic
models are less restrictive than determinate-value models, coming to the
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conclusion that, surprisingly, truly stochastic factorizable models are much
more restrictive than deterministic factorizable models.

The upshot of our paper is that (1) the minimalist interpretation is
wrong in claiming that the violation of Bell’s inequalities is a purely math-
ematical fact, and (2) it is really the physically motivated constraints of
Screening-off, Locality and No Conspiracy imposed on hidden variable
models that are to blame for Bell’s inequalities. Thus, the majority view
is right: the violation of Bell’s inequalities teaches a lesson at least about
explanation, if not about metaphysical issues. Bell’s inequalities belong to
physics, not just to mathematics.

APPENDIX A. COMMON CAUSES IN THE SOBST FRAMEWORK

The idea of a common cause as advocated by (Reichenbach, 1956) has
already been motivated in the discussion of Screening-off in Section 2.2:
correlations between outcomes of space-like separated events E and F

are (causally) explained if and only if you can give an adequate extended
SOBST model (i.e., one with the same surface probabilities) in which there
is a common cause C in the common past of E and F such that conditional
on the atomic outcomes of C, the correlations disappear. (Thus, the idea is
roughly that the population in which the outcomes of E and F are correl-
ated can be partitioned (through the atomic outcomes of C) in such a way
that in each of the partitions, the correlations vanish.)

Technically, the common cause event C will have K atomic outcomes.
The events E and F and their atomic outcomes ei (i ≤ I ) and fj (j ≤ J )
will be replaced by K copies Ek, Fk , ek

i , and f k
j , k ≤ K, such that in each

atomic outcome ωk of C there will be just the corresponding (space-like
separated) events Ek and Fk and the corresponding atomic outcomes ek

i

and f k
j of Ek and Fk . Furthermore, it is required that for i ≤ I , j ≤ J and

k, l ≤ K,

ek
i ∩ f l

j �= ∅ iff k = l.(19)

In the model thus extended, there is now new freedom to adjust the (hid-
den) probabilities µ∗Ek∪Fk∪C(ek

i ∩ f k
j ∩ ωk) in such a way that conditional

on the ωk, the correlations disappear. As the surface probabilities of the
original model have to be reproduced, the condition of Adequacy demands
that the hidden probabilities, summed over all the atomic outcomes of C,
return the original surface probabilities.

In the situation of the Bell/Aspect experiment, we need to generalize
the above idea of a common cause to what has been called a common
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common cause.39 Recall that the experiment is designed such that at the
time the particle pair leaves the source, it is not yet established which
of four possible correlations will be measured.40 The common cause C

located in the common past of the measurements (read: at the position of
the particle source) should thus be able to account not just for one, but for
all four types of correlations that can be observed (cf. Figure 2). Therefore,
we define a common common cause as follows:41

DEFINITION 11 (of common common cause). Let {E1, F1}, {E2, F2} . . .
{EN,FN } be a collection of space-like sets in a SOBST model 〈W,≤
,E, ϒ〉. Let En ∪ Fn and Em ∪ Fm be upward incompatible for all n �= m

(n,m ≤ N), and let events AE and AF exist such that AE ≺ En and
AF ≺ Fn for all n ≤ N . Further, let en;1, . . . , en;I be atomic outcomes of
En and fn;1, . . . fn;J be atomic outcomes of Fn, such that en;i ∩ fn;j �= ∅
for any i ≤ I , j ≤ J and n ≤ N . Let also, for each n ≤ N some outcomes
of En ∪ Fn be correlated, i.e., for some (possibly all) i ≤ I and j ≤ J :

µEn∪Fn
(en;i ∩ fn;j ) �= µEn∪Fn

(en;i) · µEn∪Fn
(fn;j ).

A common common cause C that accounts for all these correlations is an
event with K atomic outcomes ωk in a model 〈W ∗,≤∗,E∗, ϒ∗〉 that is
enlarged in respect to 〈W,≤,E, ϒ〉 by:

1. K-extending all the En − Fn structures;
2. adding an event C with K atomic outcomes ωk;
3. requiring that for n ≤ N , i ≤ I , and j ≤ J , all ek

n;i and all f k
n;j split in

C, i.e.,

∀x ∈ ek
n;i , y ∈ el

n;i , k �= l C(x, y) ∩ C �= ∅ and

∀x ∈ f k
n;j , y ∈ f l

n;j , k �= l C(x, y) ∩ C �= ∅;

4. defining measures
∗
µ ∈ ϒ∗ that satisfy the conditions of Screening-off

and Adequacy (below).

The common common cause C should satisfy:

For all i ≤ I , j ≤ J , k ≤ K, n ≤ N ,

∗
µ

Ek
n∪Fk

n∪C(ek
n;i ∩ f k

n;j | ωk)

= ∗
µ

Ek
n∪Fk

n∪C(ek
n;i | ωk) · ∗µEk

n∪Fk
n∪C(f k

n;j | ωk), (Screening-off)

where
∗
µ

Ek
n∪Fk

n∪C(ωk) = ∗
µ

Ek
n∪Fk

n∪C(1Ek
n
∩ 1Fk

n
∩ ωk);
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For all i ≤ I , j ≤ J , n ≤ N ,

µEn∪Fn
(en;i ∩ fn;j ) =∑K

k=1

∗
µ

Ek
n∪Fk

n
(ek

n;i ∩ f k
n;j ). (Adequacy)

Events En ∪Fn and Em ∪Fm, n �= m are assumed to be upward incompat-
ible, since they represent alternative measurements. As they are alternative,
there is some even at which one or another measurement is chosen, and this
translates into requiring that the events AE and AF exist.

9. PROOFS FROM SECTION 6

We will prove that the global joint probability measure pE1,E2,F1,F2 defined
in equation (16) indeed returns the given single and joint surface probabil-
ities as marginals. For the single probabilities µEi

and µFj
, note that, e.g.

(the other three cases are exactly analogous),

∗
µE1∪C(1E1 ∩ 1C | ωi) =

∗
µE1∪C(1E1 ∩ 1C ∩ ωi)

∗
µE1∪C(1E1 ∩ ωi)

= 1(20)

and, e.g.,

K∑
i=1

∗
µE2∪C(e2 ∩ 1C | ωi) ·

∗
µC(ωi)(21)

=
K∑

i=1

∗
µE2∪C(e2 ∩ 1C | ωi) ·

∗
µE2∪C(1E2 ∩ ωi)

= ∗
µE2∪C(e2 ∩ 1C) = ∗

µE2(e2) = µE2(e2),

where the first equation is based on the Locality Requirement in the form
of No Conspiracy, the second follows from the theorem of total probability,
the third is a consequence of the Locality Requirement, and the last follows
from the condition of Adequacy.

Thus, the posited measure pE1,E2,F1,F2 indeed returns the single probab-
ilities as marginals. To see that it also returns the given joint probabilities
for the four pairs of upward compatible events, let us calculate as an
example (the other three cases are again analogous):



375

pE1,E2,F1,F2(e1, 1E2 , 1F1 , f2)(22)

=
K∑

i=1

∗
µE1∪C(e1 ∩ 1C | ωi) · ∗µF2∪C(f2 ∩ 1C | ωi) · ∗µC(ωi).

By the Locality Requirement we can identify

∗
µE1∪C(e1 ∩ 1C | ωi) =

∗
µE1∪F2∪C(e1 ∩ 1F2 ∩ 1C | ωi),(23)

∗
µF2∪C(f2 ∩ 1C | ωi) = ∗

µE1∪F2∪C(1E1 ∩ f2 ∩ 1C | ωi).

Screening-off then gives us

∗
µE1∪C(e1 ∩ 1C | ωi) · ∗µF2∪C(f2 ∩ 1C | ωi)(24)

= ∗
µE1∪F2∪C(e1 ∩ f2 ∩ 1C | ωi).

Next, the Locality Requirement in the form of ‘No Conspiracy’ guarantees:

∗
µC(ωi) =

∗
µE1∪F2∪C(ωi) =

∗
µE1∪F2∪C(1E1 ∩ 1F2 ∩ ωi).(25)

Accordingly, by the theorem of the total probability:

K∑
i=1

∗
µE1∪F2∪C(e1 ∩ f2 ∩ 1C | ωi) · ∗µE1∪F2∪C(1E1 ∩ 1F2 ∩ ωi)(26)

= ∗
µE1∪F2∪C(e1 ∩ f2 ∩ 1C),

and the Locality Requirement guarantees

∗
µE1∪F2∪C(e1 ∩ f2 ∩ 1C) = ∗

µE1∪F2(e1 ∩ f2),(27)

from which, via Adequacy, we get in fact the desired result

pE1,E2,F1,F2(e1, 1E2 , 1F1 , f2) = µE1∪F2(e1 ∩ f2).(28)

Thus, the posited joint measure indeed yields the ‘double’ joints. In the
derivation above, observe how this fact is secured by the conditions of
Screening-off, Adequacy, and the Locality Requirement, each of which
had to be invoked for the derivation to go through.
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In addition to returning the joint surface probabilities for pairs of up-
ward compatible events, the measure pE1,E2,F1,F2 also allows for a coherent
definition of joint probability measures for upward incompatible events,
for which there are no surface µ’s to compare them with. For instance,

pE1,E2(e1, e2) = pE1,E2,F1,F2(e1, e2, 1F1 , 1F2)(29)

=
K∑

i=1

∗
µE1∪C(e1 ∩ 1C | ωi) ·

∗
µE2∪C(f2 ∩ 1C | ωi) ·

∗
µC(ωi).
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NOTES

1 Cf., e.g., (Aspect et al., 1982; Weihs et al., 1998). For a critical assessment of this
claim, cf., e.g., (Huelga et al., 1995). The experiment is pictured in Figure 2 below. In
what follows, we will assume that (i) is correct, i.e., that the inequalities have in fact been
violated.
2 (Fine, 1982a; Fine, 1982b).
3 (Pitowsky, 1989).
4 We do not wish to insinuate that Fine or Pitowsky explicitly argued in favor of a min-
imalist interpretation, only that their results have been used to back such an interpretation.
While Pitowsky’s view seems quite close to a minimalist position (cf. (Pitowsky, 1989,
pp. 8, 50, 180) and also note 9 below), Fine seems much less committed to a minimalist
interpretation.
5 (Fine, 1982a, p. 294).
6 Pitowsky, who insists that all the experimental data must be embeddable in a single
probability space of some sort, takes this result to teach us that we need to change our
notion of probability: certain non-classical probability spaces do allow for an embedding.
Cf., e.g., (Pitowsky, 1989, p. 50).
7 (Kowalski and Placek, 1999; Placek, 2000).
8 In particular, the finite probability spaces used in Bell-type arguments can always be
thus represented. Cf. Theorem 2 below.
9 (Belnap, 1992).
10 (Kowalski and Placek, 1999).
11 (Placek, 2000).
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12 This is the main algebraic result proved in (Kowalski and Placek, 1999).
13 For a proof, cf. (Kowalski and Placek, 1999).
14 Cf. (Kowalski and Placek, 1999, lemma 6).
15 In line with the emphasis on algebraic structures inherent in our approach, we will spe-
cify probability spaces as pairs 〈B, µ〉. Standard usage treats probability spaces as triples
〈,,B, µ〉, where , is the sample space and B is a Boolean σ -algebra of subsets of ,. In
fact, the sample space is already uniquely specified through the unit of the Boolean algebra
B, so that we do not need to mention the sample space explicitly.
16 For a proof, cf. the Appendix of (Placek, 2000).
17 In analyzing Bell’s inequalities, we will need the concept of a common common cause,
not just common causes as motivated here. For the somewhat lengthy definition of ‘com-
mon common cause’ in the SOBST framework and for the notion of an ‘extended model’,
cf. Appendix A.
18 A natural extension to countably many spaces is also possible, but we will not need to
consider it here.
19 Given an event E with associated probability space 〈BE,µE〉, we define a random
variable fE in the standard way as a measurable real-valued function on the atoms of BE .
20 The theorem is originally stated in terms of joint distributions for quantum observables
(Fine, 1982a; Fine, 1982b). We give here an equivalent reading that only uses probability
measures.
21 For the definition of correlation polytopes, cf. (Pitowsky, 1989, chap. 2.3).
22 He attributes his theorems (2.4) and (2.5) to (Fine, 1982a); cf. (Pitowsky, 1989, p. 50).
23 Cf. (Szabó, 2000).
24 We chose Fine’s formulation because it is more frequently discussed in the current liter-
ature. For more general considerations, Pitowsky’s formulation would be a better starting
point, since the correlation polytope approach reveals the geometrical background of the
inequalities in an easily generalizable way.
25 Cf., e.g., (De Beare et al., 1999, p. 69): “the nonvanishing of a commutator between two
observables is equivalent to the nonexistence of a jpd [joint probability distribution] for
these observables.”
26 Cf. again (De Beare et al., 1999, p. 69): “(non)locality is irrelevant for accounting for
the conflict between BI [Bell’s inequalities] and QM.”
27 For a review of the relevant theorems, see (Bugajski, 1976; Bugajski, 1978).
28 Cf., e.g., Fine’s Theorem 7 (Fine, 1982b, p. 1309) and Nelson’s Theorem 14.1 (Nelson,
1967, p. 117).
29 The theorems, on the other hand, are of course correct, but they establish something else,
namely that defining joint probabilities for non-commuting observables amounts to leaving
the formalism of QM. In our view, this tells against using Fine’s (jd) condition (Fine,
1982b) that links the existence of joint distributions with commutativity of the involved
operators, as (jd) is too strong: many joint probabilities not allowed by (jd) may peacefully
be defined as purely mathematical probabilities. For a similar point, cf. (Svetlichny et al.,
1988).
30 Cf. the discussion of section 4 above, esp. Section 4.2.
31 Cf. (Landau, 1987; Svetlichny et al., 1988).
32 Cf. Appendix A for details on the notion of a common common cause employed here
as well as for the notion of an extended model. Below, µ∗ denotes probability measures
defined in the extended model.
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33 For a proof in the SOBST framework, cf. (Placek, 2000).
34 Cf. (Fine, 1982a, eq. (3)).
35 In the surface model of Figure 2, the joint measure is not definable – as is to be expected
from Fine’s theorem, since the surface probabilities violate the Bell/CH inequalities.
36 (Fine, 1982a). He uses ‘deterministic’ for ‘factorizable determinate-value’.
37 (Suppes and Zanotti, 1976).
38 For a proof, cf. (Placek, 2000).
39 Cf. (Hofer-Szabó et al., 1999).
40 The recent experiment reported by (Weihs et al., 1998) gives strong support to this
reading.
41 It is arguable whether this constitutes a genuine extension of Reichenbach’s original
idea of a common cause. At any rate, Reichenbach has not formulated his common cause
principle in a way that would be applicable to the Bell/Aspect experiment, so that we need
to be at least more explicit about the condition.
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