Skip to main content
Log in

A Bayesian Multiple Models Combination Method for Time Series Prediction

  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

In this paper we present the Bayesian Combined Predictor (BCP), a probabilistically motivated predictor for time series prediction. BCP utilizes local predictors of several types (e.g., linear predictors, artificial neural network predictors, polynomial predictors etc.) and produces a final prediction which is a weighted combination of the local predictions; the weights can be interpreted as Bayesian posterior probabilities and are computed online. Two examples of the method are given, based on real world data: (a) short term load forecasting for the Greek Public Power Corporation dispatching center of the island of Crete, and (b) prediction of sugar beet yield based on data collected from the Greek Sugar Industry. In both cases, the BCP outperforms conventional predictors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bakirtzis, A., Petridis, V., Kiartzis, S., Alexiadis, M., and Maissis, A.: A neural network short term load forecasting model for the Greek power system, presented at the IEEE/PES 1995 Summer Meeting.

  2. Bakirtzis, A., Theocharis, J., Kiartzis, S., and Satsios, K.: Short term load forecasting using fuzzy neural networks, paper 95 WM 155-2-PWRS presented at the IEEE/PES 1995 Winter Meeting.

  3. Baxt, W. G.: Improving the accuracy of an artificial neural network using multiple differently trained networks, Neural Computation 4 (1992), 135-144.

    Google Scholar 

  4. Billingsley, P.: Probability and Measure, Wiley, New York, 1986.

    Google Scholar 

  5. Cacciatore, T. W. and Nowlan, S. J.: Mixtures of controllers for jump linear and nonlinear plants, in: J. D. Cowen, G. Tesauro and J. Alspector (eds), Advances in Neural Information Processing Systems 6 (NIPS 93), San Francisco, CA, Morgan Kaufmann, 1994, pp. 719-726.

    Google Scholar 

  6. Christiaanse, W. R.: Short term load forecasting using general exponential smoothing, IEEE Trans. Power Appl.

  7. Drucker, H. et al.: Boosting and other ensemble methods, Neural Computation 6 (1994), 1289-1301.

    Google Scholar 

  8. Gross, G. and Galiana, F. D.: Short term load forecasting, in: Proc. IEEE 75 (1987), 1558-1573.

    Google Scholar 

  9. Hertz, J., Krogh, A., and Palmer, R. G.: Introduction to the Theory of Neural Computation, Addison-Wesley, Redwood City, 1991.

    Google Scholar 

  10. Hilborn, C. G. and Lainiotis, D. G.: Optimal estimation in the presence of unknown parameters, IEEE Trans. Systems Man Cybernet. 5 (1969), 38-43.

    Google Scholar 

  11. Ho, K. L., Hsu, Y. Y. and Yang, C. C.: Short term load forecasting using a multilayer neural network with an adaptive learning algorithm, IEEE Trans. Power Systems 7 (1992), 141-149.

    Google Scholar 

  12. Jacobs, R. A., Jordan, M. I., Nowlan, S. J., and Hinton, G. E.: Adaptive mixtures of local experts, Neural Computation 3 (1991), 79-87.

    Google Scholar 

  13. Jacobs, R. A. and Jordan, M. I.: Linear piecewise control strategies in modular neural network architectures, IEEE Trans. Systems Man Cybernet. 23 (1993), 337-345.

    Google Scholar 

  14. Jordan, M. I. and Jacobs, R. A.: Hierarchies of adaptive experts, in: J. Moody, S. Hanson and R. Lippman (eds), Neural Information Processing Systems 4, Morgan Kaufmann, San Mateo, CA, 1992.

    Google Scholar 

  15. Jordan, M. I. and Jacobs, R. A.: Hierarchical mixtures of experts and the EM algorithm, Neural Computation 6 (1994), 181-214.

    Google Scholar 

  16. Jordan, M. I. and Xu, L.: Convergence results for the EM approach to mixtures of experts architectures, Neural Networks 8 (1995), 1409-1431.

    Google Scholar 

  17. Kadirkamanathan, V. and Niranjan, M.: Application of an architecturally dynamic neural network for speech pattern classification, Proc. of the Inst. of Acoustics 14 (1992), 343-350.

    Google Scholar 

  18. Kehagias, A. and Petridis, V.: Predictive modular neural networks for time series classification, Neural Networks 10 (1997), 31-49.

    Google Scholar 

  19. Lainiotis, D. G.: Adaptive estimation and structure identification, IEEE Trans. Automat. Control 16 (1971), 160-170.

    Google Scholar 

  20. Lu, C. N., Wu, H. T., and Vemuri, S.: Neural network based short term load forecasting, IEEE Trans. Power Systems 8 (1993), 336-342.

    Google Scholar 

  21. Maslaris, N., Christodoulou, P., and Zountsas, G.: Quantitative effect of root/leaf growth rate on root quality parameters in sugarbeet, in: Proc. of the 20th General Assembly of the C.I.T.S., Munich, pp. 85-93.

  22. Murray-Smith, R. and Johansen, T.: Multiple Model Approaches to Modeling and Control, Taylor and Francis, 1997.

  23. Niebur, D. et al.: Artificial neural networks for power systems, CIGRE TF38.06.06 Report, ELECTRA, 1995, pp. 77-101.

  24. Park, D. C., El-Sharkawi, M. A., Marks, R. J., Atlas, L. E., and Damborg, M. J.: Electric load forecasting using an artificial neural network, IEEE Trans. Power Systems 6(2) (1991), 442-449.

    Google Scholar 

  25. Pawelzik, K., Kohlmorgen, J. and Muller, K.-R.: Annealed competition of experts for a segmentation and classification of switching dynamics, Neural Computation 8 (1996), 340-356.

    Google Scholar 

  26. Peng, T. M., Hubele, N. F., and Karady, G. G.: Advancement in the application of neural networks for short term load forecasting, Trans. Power Systems 7 (1992), 250-258.

    Google Scholar 

  27. Perrone, M. P. and Cooper, L. N.: When networks disagree: ensemble methods for hybrid neural networks, in: R. J. Mammone (ed.), Neural Networks for Speech and Image Processing, Chapman-Hall, New York, 1993.

    Google Scholar 

  28. Petridis, V. and Kehagias, A.: A recurrent network implementation of time series classification, Neural Computation 8 (1996), 357-372.

    Google Scholar 

  29. Petridis, V. and Kehagias, A.: Modular neural networks for Bayesian classification of time series and the partition algorithm, IEEE Trans. Neural Networks 7 (1996), 73-86.

    Google Scholar 

  30. Petridis, V. and Kehagias, A.: Predictive modular fuzzy systems for time-series classification, IEEE Trans. Fuzzy Systems 5 (1997), 381-397.

    Google Scholar 

  31. Petridis, V. and Kehagias, A.: Predictive Modular Neural Networks: Time Series Applications, Kluwer Academic, Dordrecht, 1998.

    Google Scholar 

  32. Shadafan, R. S. and Niranjan, M.: A dynamic neural network architecture by sequential partitioning of the input space, Neural Computation 6 (1994), 1202-1222.

    Google Scholar 

  33. Srinivasan, D., Chang, C. S., and Liew, A. C.: Demand forecasting using fuzzy neural computation, with special emphasis on weekend and public holiday forecasting, paper 95 WM 158-6-PWRS presented in: IEEE/PES 1995 Winter Meeting.

  34. Sugeno, M. and Yasukawa, T.: A fuzzy logic-based approach to qualitative modeling, IEEE Trans. Fuzzy Systems 1 (1993), 7-32.

    Google Scholar 

  35. Stoicos, G.: Sugar beet yield prediction with artificial neural networks, in: Modern Automatic Control Technologies, Technical Chamber of Greece, Athens, 1995.

    Google Scholar 

  36. The nitro-test leaf diagnostic, Internal Report, Greek Sugar Industry.

  37. Tong, H. and Lim, K. S.: Threshold autoregression, limit cycles and cyclical data, J. Roy. Statist. Soc., Part B 42 (1980), 245-292.

    Google Scholar 

  38. Vemuri, S., Huang, W. L. and Nelson, D. J.: On-line algorithms for forecasting hourly loads of an electric utility, IEEE Trans. Power Appl. Systems 100 (1981), 3775-3784.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petridis, V., Kehagias, A., Petrou, L. et al. A Bayesian Multiple Models Combination Method for Time Series Prediction. Journal of Intelligent and Robotic Systems 31, 69–89 (2001). https://doi.org/10.1023/A:1012061814242

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012061814242

Navigation