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Abstract. We study the typical properties of polynomial Support Vector Machines within a Statistical Mechanics
approach that takes into account the number of high order features relative to the input space dimension. We analyze
the effect of different features’ normalizations on the generalization error, for different kinds of learning tasks.
If the normalization is adequately selected, hierarchical learning of features of increasing order takes place as a
function of the training set size. Otherwise, the performance worsens, and there is no hierarchical learning at all.
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1. Introduction

The theoretical basis of learning from examples relies on the possibility of bounding the
generalization error, which is the probability that the trained machine makes an error on
a new pattern. However, the rigorous bounds deduced with methods of statistical theory
(Vapnik, 1995), which hold for the worst case, turn out to be too pessimistic in most
real world applications. Bounds to the estimator of the generalization error, obtained by the
leave-one-out technique, are closer to experimental results (Vapnik & Chapelle, 2000). This
estimator is obtained through averaging the classification error on one pattern, when learning
was achieved by removing that pattern from the training set. Another approach to learning
theory, heralded more than a decade ago by the pioneering work of E. Gardner on perceptrons
(Gardner & Derrida, 1988), strives to determine analytically the fypical properties of the
learning machine under somewhat restrictive hypothesis. This is done using methods from
Statistical Physics, developed to study the properties of large, disordered physical systems.
The basic assumption of this approach is that average quantities are representative of the
machine’s properties, with a probability that tends to the unity as the system’s size goes
to infinity, a limit usually called the thermodynamic (TD) limit. Thus, in this limit, the
leave-one-out estimators and the Statistical Mechanics results are expected to converge to
the same values. The input patterns distribution plays the role of the disorder over which
averages are taken, the size of the system being the input space dimension. In the TD limit,
some control parameters, like the training set size relative to the input space dimension, are
kept fixed. This enables to deduce typical properties for small relative training set sizes,
in contrast to the bounds provided by the statistical theories, which are generally valid for
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sufficiently large training sets. In this paper we are able to get deeper insight on the typical
properties of Support Vector Machines (SVMs) by also keeping fixed other characteristic
quantities.

The typical properties of polynomial SVMs have been studied in two recent papers
(Dietrich, Opper, & Sompolinsky, 1999; Buhot & Gordon, 1999). Both consider SVMs in
which the input vectors x € )" are mapped onto quadratic features ® using the normalized
mapping (Dietrich, Opper, & Sompolinsky, 1999)

Dy (x) = (X, Xx1X//n, xaX//n, ..., X, X//n), ey
and the non-normalized mapping (Buhot & Gordon, 1999)
q)NN(X) = (X, X1X, X2X, ..., )CkX). (2)

respectively. The latter was studied as a function of &, the number of quadratic features. For
k = n the dimension of both feature spaces is the same. They correspond to the quadratic
kernels

Kx,y)=x-y(+ax-y), 3)

witha = 1//n for ®y and a = 1 for ®y. In spite of the seemingly innocuous differences
between the models, their properties are very different.

If the rule to be learned is a linear separation in input space, the generalization error
€, corresponding to the non-normalized mapping ®yy is much larger than the Maximal
Margin Hyperplane (MMH) solution of a simple perceptron in input space (i.e. with no
added features). The latter corresponds to a linear SVM, which is the smallest SVM able to
generalize this rule. This difference between the quadratic and the linear SVMs increases
dramatically with k, the number of quadratic features included. On the other hand, the
generalization error corresponding to the normalized mapping ® is only slightly larger
than that of the simple MMH perceptron. In the case of learning quadratic separations, the
generalization error €, of the normalized mapping exhibits a very interesting behaviour
(Dietrich, Opper, & Sompolinsky, 1999; Yoon & Oh, 1998): if the number of training
patterns scales with 7, the dimension of the linear subspace, €, decreases up to a finite
asymptotic lower bound, and it only vanishes asymptotically if the number of patterns
scales proportionally to n?. The generalization error of higher order polynomial SVMs
using the normalized mapping also presents different scaling regimes (Dietrich, Opper, &
Sompolinsky, 1999).

In order to understand these results, it is useful to consider the feature space of the
polynomial SVMs as the direct product of several subspaces, each one spanned by all the
monomials (of the same degree) that can be formed with the input components. The number
of subspaces is given by the degree of the polynomial. The dimension of each subspace,
equal to the number of different monomials, grows polynomially with n, the input space
dimension. For example, in quadratic SVM’s there are two subspaces, one corresponding to
the 7 linear features and the other to the n?> quadratic features. In the case of the normalized
mapping, if the training set size scales with the dimension of one particular subspace,
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only the features belonging to this and to the lower order subspaces contribute effectively
to learning (Dietrich, Opper, & Sompolinsky, 1999). As a result, the generalization error
decreases asymptotically to a lower bound. The latter is smaller the higher the particular
subspace dimension, and goes to zero when the number of training patterns is proportional
to the dimension of the highest dimensional subspace. We call this behaviour hierarchical
learning.

The only difference between the mappings ®y and @y is that the quadratic features in
® ) are squeezed by a factor a = 1/./n with respect to those of ®yy. This normalization is
very sensitive to the TD limit. In particular, at finite 7, the hierarchical learning behaviour
of the generalization error, sharply defined in the TD limit, is expected to give raise to
crossovers between successive regimes as a function of the number of training patterns, in
which features belonging to increasingly higher order subspaces are learned.

The aim of the present paper is to clarify to what extent the qualitative differences
between the normalized and the non-normalized mappings are still present in polynomial
SVMs working in finite dimension, and to characterize the signature of the hierarchical
learning. Within our approach, given the input space dimension n and the mapping, the
polynomial SVM is characterized by two kinds of quantities, the inflation factor and the
feature’s variance in each subspace. The former is given by the corresponding subspace
dimension relative to the input space dimension. The latter is proportional to the normalizing
factor a; depending on its value, the features distribution may be highly anisotropic in the
sense that in different subspaces the corresponding features have different variances.

Using the tools of Statistical Mechanics, we determine the typical properties of SVMs
of finite inflation factors and features variances, as a function of « = £/n, where ¢ is
the number of training patterns. This is different from the approaches of Dietrich, Opper,
and Sompolinsky (1999), Yoon and Oh (1998) who considered separately two different
scalings for ¢, namely £ o n and £ o n?. Our results give some insight on the inner
workings of finite SVMs, given their inflation factors and variances. The different scaling
regimes of the generalization error as a function of o become a crossover, as expected,
but more interestingly, its steepness depends not only on the particular SVM considered,
but also on the complexity of the rule to be learnt. The previous results (Dietrich, Opper,
& Sompolinsky, 1999; Buhot & Gordon, 1999) are recovered by performing the suitable
limits. Our analytical results are supported by the excellent agreement with the numerical
simulations.

The paper is organized as follows: in the next section we present our model. A short
introduction to the Statistical Mechanics approach, with its application to our analysis of
the quadratic SVMs is presented in Section 3, the details being left to the Appendix. The
analytic predictions are described and compared with numerical simulations in 4. The results
are discussed and generalized in Section 5. The conclusion is left to Section 6.

2. The model

We consider the problem of learning a binary classification task from examples with a SVM
in polynomial feature spaces. The learning set contains ¢ patterns (x;, y;) (i = 1,...,£)
where X; is an input vector in the n-dimensional input space, and y; € {—1, 1} is its class.
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We assume that the components x; (v = 1, ..., n) are independent identically distributed
gaussian random variables conveniently standardized, so that they have zero-mean and unit
variance:

n 1 2
P(x) = lj[l N exp(—%). “4)

These input vectors are mapped to a higher dimensional space (the feature space) wherein the
machine looks for the MMH. In the following we concentrate on quadratic feature spaces,
although our conclusions are more general, and may be applied to higher order polyno-
mial SVMs, as discussed in Section 5. The mappings ®yy (x) = (X, X1X, 10X, ..., X,X) and
Dy (x) = (X, x1X//1, X2X/ /1, ..., x,X/+/n) are particular instances of mappings of the
form ®(x) = (¢1,..., Py, D11, P12, ..., dyn) With ¢, =x,, and ¢,, = ax,x,. a is the
normalizing factor of the quadratic components: a = 1 for mapping ®yy and a = 1//n
for ®y. The patterns probability distribution in feature-space is:

n d ) 2 n
P (@) =f UM% exp(—%)awv—xv)l"[a(m—axvx,». 5)

u=1

Clearly, the components of ® are not independent random variables. For example, a number
O n3) of triplets of the form ¢,, ¢, ¢., have positive correlations. These contribute to the
third order moments, which should vanish if the features were gaussian. Moreover, the fourth
order connected correlations (Monasson, 1993) do not vanish in the thermodynamic limit.
Nevertheless, in the following we will neglect these and higher order connected moments.
This approximation, used in Buhot and Gordon (1999) and implicit in Dietrich, Opper, and
Sompolinsky (1999), is equivalent to assuming that all the components in feature space
are independent gaussian variables. Then, the only difference between the mappings ® y
and @y lies in the variance of the quadratic components distribution. The results obtained
using this simplification are in excellent agreement with the numerical tests described in
the next section.

Since, due to the symmetry of the transformation, only n(n + 1) /2 among the n> quadratic
features are different, hereafter we restrict the feature space and only consider the non re-

dundant components, that we denote z = (z", z°). The first n components z" = (zy, ..., 2,)
hereafter called u-components, represent the original input pattern of unit variance, lying
in the linear subspace of the feature space. The remaining components z° = (2,41, . - -, Z7)

stand for the non redundant quadratic features, of variance o, hereafter called o -components.
n = n(l 4+ A) is the dimension of the restricted feature space, where the inflation ratio A
is the relative number of non-redundant quadratic features per input space dimension. The
quadratic mapping has A = (n + 1) /2.

According to the preceding discussion, we assume that learning n-dimensional patterns
selected with the isotropic distribution (4) with a quadratic SVM is equivalent to learning
the MMH with a simple perceptron in an r2-dimensional space where the patterns are drawn
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using the following anisotropic distribution,

1 (le)2 1 (ZG)Z
P& = Gy P [_ 2 } @rotyar P [_F] ©
where
A" —; 1’ (7
2
o2 = % (8)

with a the normalization factor in (3). The second moment of the u-features is ((z*)?) =n
and that of the o-features is ((z°)%) =nAc?. If 62 A = 1, we get ((z°)?) = ((z*)?), which
is the relation satisfied by the normalized mapping considered in Dietrich, Opper, and
Sompolinsky (1999). The non-normalized mapping satisfies 0>A = n.

3. Statistical mechanics

Statistical Mechanics is the branch of Physics that deals with the properties of systems
with many degrees of freedom, characterized by their energy. In our case, this is the cost
function E (w; L;). It depends on the weights w € )", whose /i = n(1+ A) components are
the system’s degrees of freedom, and on the set of training patterns L,, which are random
variables selected with distribution (6). The equilibrium properties at temperature 7 = S~
are deduced through averages over the Gibbs distribution:

Pg(w; Ly) = exp(—=BE(W; Ly)), )]

1
Zg(Ly)

Zg (L) is a normalization constant called partition function, defined through

Zp(Ly) = /eXP[—ﬂE(W; Lo)] p(w)dw, (10)

where p(w)dw is a measure in the weights’ space. When S is very large, only weights
w with energies close to the minimum have significant probability, and contribute to the
integral in (10). In the limit 8 — oo, only those that have minimal energy have non-vanishing
probability.

The fraction of training errors corresponding to the minimal cost, or any other inten-
sive property of the system, may be deduced from the so called free energy fg(L;) =
—1InZg(Ly)/(Bn) (or through its derivatives with respect to 8), in the limit 8 — oo. These
quantities are random variables, as they depend on the realization of L,. In the TD limit
n — 00, their variance is expected to vanish like 1/4/n, which means that all the training
sets of the same size are expected to endow the system with the same intensive typical prop-
erties with probability one. This hypothesis, supported in particular by the good agreement
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between the predictions and the simulations on perceptrons, has been recently shown to
hold on theoretical grounds, at least for some quantities (Talagrand, 1998). As fg(L,) is
equal with probability 1 for all the training sets, we can get rid of the dependance on £, by
taking mean values over all the possible training sets. This non-trivial average is done using
a sophisticated technique, known as the replica trick, developed for the study of disordered
magnetic systems (Mézard, Parsi, & Virasoro, 1987), which uses the identity:

_ "1
InZ = lim
m—0 m

(1)

where the overline stands for the average over the training sets. The average of In Z has
been transformed into that of averaging the partition functions of m replicated systems. In
order to obtain non-trivial results, one takes also £ — oo with the number of patterns per
input space dimension & = ¢/n constant. If we want to compare the results given by this
approach with the corresponding quantities of finite machines, « is a relevant parameter.
This formalism has been successfully applied to the analysis of neural networks (Gardner
& Derrida, 1998; Seung, Sompolinsky, & Tishby, 1992; Watkin, Rav, & Biehl, 1993). In
particular, an interesting property is the generalization error of the trained machine, which in
principle depends on the training set. The above assumptions amount to saying that in the TD
limit, the probability that the generalization error is €, is a delta peak centered at the typical
value, of zero variance. At finite input dimension n, this probability distribution widens,
and its mean value is shifted. Both these corrections are of order O (1/4/n). This behaviour,
numerically verified within several learning scenarios (Buhot, Torres Moreno, & Gordon,
1997; Nadler & Fink, 1997; Schroder & Urbanczik, 1998), shows that the predictions of
the statistical mechanics approach are better for larger n.
z; = (z},z]) drawn with probability (6), the y; € {—1, +1} being the corresponding
classes. The natural cost function E is:

J4
Ew,i; L) =Y Ok —) (12)

i=1

where © is the Heaviside function, y; = y;z; - W/s/W - W is the margin of pattern z;, and
k is the minimal margin, the smallest allowed distance between the hyperplane and the
training patterns. Energy (12) is thus the number of patterns with margin smaller than «.
The perceptron with weights corresponding to a vanishing cost that maximizes x implements
the Maximal Margin Hyperplane (MMH).

The properties of the MMH for the most “natural” pattern distribution, an isotropic
gaussian, have been thoroughly studied (Opper et al., 1990; Gordon & Grempel, 1995). The
case of a single anisotropy axis has also been investigated (Marangi, Biehl, & Solla, 1995).
In our model, the properties of a polynomial SVM are those of a MMH perceptron with its
inputs lying in the feature space, drawn from the anisotropic gaussian (6), with macroscopic
subsets of components having different variances. Since the rules to be inferred are assumed
to be linear separations in feature space, we represent them by the weights w,, = (wj, w?)
of a teacher perceptron, so that the class of the patterns is y = sign(z - w,). Without any
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loss of generality we consider normalized teachers: w, - w, = n. For the students weights
w = (W", w?) we take the same normalization: w - w = w" - w" +w’ - w° =17.

Within our model, the values of A and o depend on the particular (finite size) SVM we
want to analyze, through Eqgs. (7) and (8). The main difference with respect to previous
work (Dietrich, Opper, & Sompolinsky, 1999; Buhot & Gordon, 1999) is that we can
make predictions that take into account the mapping normalization and some finite-size
characteristics of the SVM.

We calculate the typical properties of a particular SVM as follows: we fix A and o as
explained above, and calculate the averages using distributions (9) and (6), in the limits
B — 00, n — 00, — oo with £/n = « constant. A similar procedure has been used in a
toy model (Risau-Gusman & Gordon, 2000) in the context of Gibbs learning. To obtain the
properties of the MMH, we look for the maximal value of k¥ with vanishing cost (12). The
details of the calculations are left to the Appendix. In the following we describe the main
results.

It turns out that the typical properties of the SVM can be expressed as a function of the
(normalized) squared norm of the teacher weights in o -subspace,

wo - wo

Q= ——", 13)

n

and the following averages (also called order parameters, in physics):

o= MW (14)
ni
ivad—0)1-0.
RO = ——* 16
700, (16)

where (- --) represents the averaging over distribution (9). In the limit 8 — oo, this last
averaging is trivial because the MMH is unique. Q is the squared norm of the student
weights in o -subspace. R" is the average of the overlap between the weights of the teacher
and the student in the u-subspace. R? is the corresponding overlap in the o -subspace. Notice
that the denominators ensure that both R’s are conveniently normalized, that is, that their
values lie between 0 and 1.

The generalization error, defined as the probability that the machine with weights w
makes an error on an unknown pattern,

E, =/®[—(z-w*)(z~w)] P(z)dz, (17

can be expressed in terms of the order parameters. After a straightforward but cumbersome
calculation, we find that its typical value can be written as:

€, = (E,) = %arc cos(R) (18)
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where

R* 4 /ATAT R° (19)

BN (Y OEwX))

with A? and A{ given by

o _ 90

= . 20
® 1- Q(*) 20

The fraction of training patterns that are Support Vectors, averaged over all the possible
sets of patterns, pgy, is a bound to the leave-one-out estimator of the generalization error
(Vapnik, 1995). Within our approach it is straightforward to calculate it:

sy = 2/”“”””"‘” H <—tR/\/1 — R2> D1 Q1)
—o

where H(x) = [ Dx, with Dx = exp(—x2/2)/+/27.

Thus, the properties of the SVM depend on the teacher (through Q,), on the inflation
factor of the feature space A, on the normalizing factor a of the mapping (through o) and
on the number of patterns per input dimension of the training set («).

4. Results

We describe first the experimental data, obtained with quadratic SVMs, using both map-
pings, @y and @, which have normalizing factors a = 1 and a = 1/+/n respectively,
where n is the input space dimension. The { = an random input examples of each train-
ing set were selected with probability (4) and labelled by teachers of normalized weights
W, = (wi, w) drawn at random. wi are the n components in the linear subspace and wl are
the n? components in the quadratic subspace. We do not label the vectors like in the previous
section to stress the fact that the numerical simulations use the complete feature space, con-
trary to the theoretical approach where we only consider the non-redundant components.
Notice that, because of the symmetry of the mappings, teachers having the same value of
the symmetrized weights in the quadratic subspace, (w{ ,, + wf ,,)/2, are all equivalent.
The teachers are characterized by the proportion of (squared) weight components in the
quadratic subspace, Q, = w.wi /W, -w,. Inparticular, Q, = 0 and Q, = 1 correspond to
apurely linear and a purely quadratic teacher respectively. The experimental student weights
w = (w!, w9) were obtained by solving numerically the dual problem (Cortes & Vapnik,
1995), using the Quadratic Optimizer for Pattern Recognition program (Vanderbei, 1994;
Smola, 1999), that we adapted to the case without threshold treated in this paper. We deter-
mined Q7 = w? - w¥/n?, and the normalized overlaps R' = w! - w! //(w! - w') (W, - wl),

and R = wi - w? / /(w7 - w?) (w! - w?). They are represented on figures 1 to 4 as a func-
tion of @ = £/n, using full and open symbols for the mappings ® and ®yy respectively.
Notice that the abscissas correspond to the fraction of training patterns per input space
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Figure 1. Order parameters of SVMs for purely linear teacher rules, Q, = 0. Symbols are experimental results
for input space dimension n = 50, corresponding to the two kinds of quadratic mappings, ®y witha = 1//n
(full symbols) and ®yy with normalizing factor « = 1 (open symbols) respectively. Error bars are smaller than
the symbols. The lines are not fits, but the solutions of the Statistical Mechanics equations for A = (n + 1)/2 and

02 = na®/A with n = 50, and a corresponding to each mapping.
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Figure 2. Order parameters of SVMs for purely quadratic teacher rules, Q, = 1. Definitions are the same as in
figure 1.

dimension. For each value of ¢, averages were performed over a large enough number of
different teachers and training sets to get error bars smaller than the symbols’ size in the
figures. Experiments were carried out for n =50 and n =20. The corresponding feature
space dimensions n(n + 1) are 2550 and 420 respectively. As both show the same trends,
only results for n =50 are presented on the figures. For the sake of comparison with the
theoretical results, we characterize the actual SVM by A, its (finite size) inflation factor
(7), and o2, the variance (8) of the components in the o-subspace. Since n = 50, we have
A =25.5and 0> =1.960784a?, that is o> = 1.960784 for the non-normalized mapping and
02 =0.039216, for the normalized one.
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Figure 3. Order parameters of SVMs for isotropic teacher rules, Q.. ;5o = A/(1 + A). Definitions are the same
as in figure 1.
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Figure 4. Order parameters of SVMs for a general teacher rule, O, = 0.5. Definitions are the same as in figure 1.

The theoretical values of Q, the fraction of squared student weights in the o -subspace,
and the teacher-student overlaps R* and R, corresponding to the same classes of teachers
as the experimental results are represented as lines on the same figures. The excellent
agreement with the experimental data is striking, and gives an indication that the high order
correlations of the features, neglected in the model, are indeed negligible. Therefore, we
have R! = R", and R? = R’ so that from now on we can drop the indices /, ¢ and keep u, o
used in the theoretical approach.

Figure 1 corresponds to a purely linear teacher (Q, = 0), i.e. to a quadratic SVM learning
arule linearly separable in input space. As in this case R° = 0 because w{ = 0, only R" and
Q are represented. Conversely, in the case of a purely quadratic rule, Q, = 1, represented
on figure 2, R* = (. Notice that Q — Q. for « — o0 in both cases, meaning that the student
learns in which subspace lies the teacher. Correspondingly, the normalized teacher-student
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Figure 5. Learning curves of SVMs for different teacher rules Q.. Definitions are the same as in figure 1. The
inset is an enlargement of the small « region.

overlap increases smoothly to 1. However, the pace at which these quantities reach their
asymptotic limit depends on the features normalization factor, and it is their combination
given by Eq. (19) that determines the generalization error €, represented on figure 5. Clearly,
if Q. =0, i.e. if the problem is linearly separable in input space, the normalized mapping
has lower €, at finite o. Conversely, if the discriminating surface is purely quadratic in input
space, the non-normalized mapping gives better results. In the asymptotic limit « — oo
the mapping’s normalization becomes irrelevant, as in both cases the generalization error
vanishes.

Figure 3 shows the results corresponding to the isotropic teacher, Q. = Q.. ijo =A/
(14 A).For A =25.5 we have Q.. ;5o =0.962. A particular case of such a teacher, consid-
ered in Dietrich, Opper, and Sompolinsky (1999), Yoon and Oh (1998), has all its weight
components of equal absolute value |w,. | = |w..,, | = 1. Finally, the results corresponding
to a general rule, with Q, = 0.5, are shown in figure 4.

Notice that, irrespective of the mapping, the overlaps R" and R present different be-
haviours, as the latter increases much slower than the former. This reflects the fact that, as
the number of quadratic components scales like n A, a number of examples of the order of
nA are needed to learn them. Thus, as a function of «, the linear components are learned
first. Indeed, R" reaches a value close to 1 with « ~ O (1) while R° needs o ~ O(A) to
reach similar values. We call this general trend hierarchical learning.

As the generalization error depends on R* and R through the combination (19), the
signature of hierarchical learning is present on the learning curves €, corresponding to the
different rules, plotted against o on figure 5. The performance obtained with the normalized
mapping is better the smaller the value of Q,. The non-normalized mapping shows the
opposite trend: its performance for a purely linear teacher (Q, = 0) is extremely bad, but it
improves for increasing values of Q, and slightly overrides that of the normalized mapping
in the case of a purely quadratic teacher.

These results reflect the competition on learning the anisotropically distributed features.
The more the features are compressed, the more difficult the learning task. In the case of
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Figure 6. Fraction of learning patterns that belong to the subset of support vectors.

rules with 0, < 1, the linear components carry the most significant information. In those
cases, it is advantageous to use the normalized mapping, which has the o-components
compressed (0> = 0.039) with respect to the u-components, which have unit variance.

The non-normalized mapping has 6> = 1.96, meaning that the compressed components
are those of the u-subspace. This mapping is better whenever most of the information is
contained in the o -subspace, which is the case for teachers with large Q. and, in particular,
with O, = 1. In this last case, the linear components only introduce noise that hinders the
learning process. As the number of linear components is much smaller than the number of
quadratic ones, their pernicious effect is expected to be more conspicuous the smaller the
value of A.

Finally, for the sake of completeness, the fraction of support vectors psy =€y /£, where
Lsy is the number of training patterns with maximal stability, is represented on figure 6.
Notice that, although these curves present qualitatively the same trends as €,, they constitute
a very loose bound to the latter. Since the student’s weights can be expressed as a linear
combination of SVs (Vapnik, 1995), this result is of practical interest. It shows that increasing
the number of training patterns does not increase the typical number of non-vanishing
coefficients that have to be determined using the quadratic minimization program: although
at low o most of the training patterns are expected to be support vectors, this fraction
decreases smoothly with «. Notice that « in our approach is the number of training patterns
per input space dimension. Thus, even if pgy may seem large, this is not so in regard to
the dimension of the feature space. In our simulations for example, @ = 50 is of the order
of the VC-dimension of the feature space. However, from figure 6 we expect that less than
half of the training patterns be SVs.

5. Discussion

In order to understand the results obtained in the previous section, we first consider the
relative behaviour of R" and R“, deduced from the theoretical approach. If A7 <« A, which
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is the case for sufficiently small Q,, we get that R <« R". This means that the quadratic
components are more difficult to learn than the linear ones. On the other hand, if the teacher
lies mainly in the quadratic subspace, A7 >> A and R° > R". The crossover between these
different behaviours occurs at A7 = A, for which R” = R". For n =150, this arises for
Q. = 0.998 for the normalized mapping and for Q.. = 0.929 for the non-normalized one. In
the particular case of the isotropic teacher and the non-normalized mapping, Q.. is, > 0.929,
so that R? > R", as shown on figure 3.

These considerations alone are not sufficient to understand the behaviour of the gen-
eralization error, which depends on the weighted sum of R° and R* (see Eq. (19)). The
behaviour of R and R" at small « is useful to understand the onset of hierarchical learning.
In the limit o« — 0, we find that Q ~ Ac?/(Ac? + 1) to leading order in «. This result
may be understood with the following simple argument: if there is only one training pat-
tern, clearly it is a SV and the student’s weight vector is proportional to it. As a typical
example has n components of unit length in the u-subspace and n A components of length
o in the o-subspace, we have Q =nAc?/(nAc? + n). With the normalized mapping,
limy_.o Q = 1/2. In the case of the non normalized one limy, .o Q = (2A — 1)/2A, which
depends on the inflation factor of the SVM. In this limit, we obtain:
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Therefore, R ~ /a for o « 1, as for the simple perceptron MMH (Gordon & Grempel,
1995), but with a prefactor that depends on the mapping and the teacher.

In our model, we expect that hierarchical learning correspond to a fast increase of R at
small o, mainly dominated by the contribution of R”. As in the limit « — 0,
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we do not expect to have hierarchical learning if o*A > 1, as in that case mainly R° con-
tributes to R. This is what happens with the non normalized mapping. On the other hand,
hierarchical learning takes place if 0*A « 1 and AZ<1. The first condition establishes a
constraint on the mapping, which is only satisfied by the normalized one. The second condi-
tion, that ensures that R < R" holds, gives the range of teachers for which this hierarchical
generalization takes place. Under these conditions, R grows fast and the contribution of R
is negligible because it is weighted by \/o* A AZ. The effect of hierarchical learning is more
important the smaller AJ. The most dramatic effect arises for Q. = 0, i.e. for a quadratic
SVM learning a linearly separable rule.
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Notice that if the normalized mapping is used, the condition AJ <1 implies that
Qi < 0xiso = A/(1 + A), where Q.. 5, corresponds to the isotropic teacher. A straight-
forward calculation shows that if the teachers are drawn at random on the surface of the
hypersphere in feature space, the distribution of Q, is highly non symmetric, with a maxi-
mum at the value of Q.. 5, that depends on n. The fraction of teachers with Q. < Q.. s 18
smaller than 1/2. For example, only 47.5% of the teachers satisfy this constraint if n = 50.
When n — oo, the distribution becomes 8(Q, — Q.. iso), and Q.. s, tends to the median,
meaning that in this limit, only about 50% of the teachers give rise to hierarchical learning
when using the normalized mapping.

In the limit &« — o0, all the generalization error curves converge to the same asymptotic
value as the simple perceptron MMH learning in the feature space, namely
€, = 0.500489(1 + A)/a, independently of o and Q. Thus, €, vanishes slower the larger
the inflation factor A.

Since the inflation factor A of the SVM feature space in our approach is a free parameter,
it does not diverge in the thermodynamic limit N — oo . As a consequence, the two scaling
regimes for €, give rise to a simple crossover between a fast decrease at small « followed by
a slow decrease at large «. The results of Dietrich, Opper, and Sompolinsky (1999) for the
normalized mapping, that corresponds to 6>A = 1 in our model, can be deduced by taking
appropriately the limits before solving our saddle point equations. The regime where the
number of training patterns £ = an scales with n, is straightforward. Itis obtained, within our
approach, by taking the limit 0 — 0 and A — oo keeping 0>A = 1 and « finite. The regime
where the number of training patterns £ = an scales with nA, the number of quadratic
features, is obtained by keeping @ = «/(1 4+ A) finite whilst taking, here again, the limit
o — 0, A — oo with 2 A = 1. The corresponding curves are represented on figure 7 for the
case of an isotropic teacher. In order to compare with our results at finite A, the regime where
« is finite is represented as a function of « = (1 + A)a using the value of A corresponding
to n = 50, namely, A = 25.5. In the same figure we represented the generalization error
€, obtained with our model using the parameter values o> = 0.039 and A = 25.5.
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Figure 7. Generalization error of a SVM corresponding to different thermodynamic limits. See the text for the
definition of « in each regime.
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These results, obtained for quadratic SVMs, are easily generalizable to higher order
polynomial SVMs, as is the case with the approach of Dietrich, Opper, and Sompolinsky
(1999). We expect a cascade of hierarchical decreasings of the generalization error as a
function of «, in which successively more and more compressed features are learned.

6. Conclusion

We introduced a model that clarifies some aspects of the generalization properties of poly-
nomial Support Vector Machines (SVMs) in high dimensional feature spaces. To this end,
we focused on quadratic SVMs. The quadratic features, which are the pairwise products of
input components, may be scaled by a normalizing factor. Depending on its value, the gen-
eralization error presents very different behaviours in the thermodynamic limit (Dietrich,
Opper, & Sompolinsky, 1999; Buhot & Gordon, 1999).

We showed that any finite size quadratic SVM may be characterized by two parameters:
A and o. The inflation factor A is the number of quadratic features relative to the number
of input features, and is proportional to the input space dimension n. The variance o
of the quadratic features is related to the normalizing factor. Usually, either o ~ 1/4/n
(normalized mapping) or o ~ 1 (non normalized mapping). In previous studies, not only
the input space dimension diverges in the thermodynamic limit n — oo, but also A and o
are correspondingly scaled.

In our model, the proportion of quadratic features A and their variance o are considered as
parameters characterizing the (finite size) SVMs. Since we keep them constant when taking
the thermodynamic limit, we can study the learning properties of actual SVMs with finite
inflation ratios and normalizing factors, as a function of « = £/n, where £ is the number of
training examples.

Our theoretical results were obtained neglecting the correlations among the quadratic
features. Indeed, their effect does not seem to be important, as the agreement between our
computer experiments with actual SVMs and the theoretical predictions is excellent. This
approximation was also shown to give good predictions in other similar problems (Dietrich,
Opper, & Sompolinsky, 1999; Yoon & Oh, 1998), but further investigations are needed to
establish rigorously the conditions of its validity.

We find that the generalization error €, depends on the type of rule to be inferred through
0., the (normalized) teacher’s squared weight components in the quadratic subspace. If
the normalized mapping is used and Q. is small enough, the behaviour of €, at small o
is dominated by the high rate learning of the linear components. On increasing «, there
is a crossover to a regime where the decrease of €, becomes much slower. This crossover
becomes smoother for increasing values of Q,, and this effect of hierarchical learning
disappears for large enough Q.. If the limits A ~n— oo and o>~ 1/n — 0 are taken
together with the thermodynamic limit, the hierarchical learning effect gives rise to the
different scaling regimes, corresponding to £ ~n or £ ~ 2, described previously (Yoon &
Oh, 1998; Dietrich, Opper, & Sompolinsky, 1999).

On the other hand, if the features are not normalized, the contributions of both the
linear and the quadratic components to €, are of the same order, and there is no hier-
archical learning at all. For Q. > Q.. s, Which corresponds to the isotropic teacher, the
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non normalized mapping has a slightly smaller generalization error than the normalized
one.

It is worth remarking that if the rule to be learned allows for hierarchical learning,
the generalization error of the normalized mapping is much smaller than that of the non
normalized one. In fact, the teachers corresponding to such rules are those with Q. < Q.. iso»
where Q.. i5, corresponds to the isotropic teacher, the one having all its weights components
equal. For the others, both the normalized mapping and the non normalized one present
similar performances. If the weights of the teacher are selected at random on a hypersphere
in feature space, the most probable teachers have precisely O, = Q.. s, and the fraction of
teachers with Q. < Q.. s, represent of the order of 50% of the inferable rules. Thus, from
a practical point of view, without having any prior knowledge about the rule underlying a
given set of examples, the normalized mapping should be preferred.

Appendix

The average (11) within the replica approach can be expressed as a function of several order
parameters, whose values have to minimize the free energy of the system. Among these,
the overlaps of the weights corresponding to different replicas, a, b,

n
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As the tasks considered are learnable, the solution that minimizes the cost function (12)
with maximal « is unique. Thus, in the following we may assume that replica symmetry
holds. Then, ¢%* = q,, q(‘jb = g, for all a, b, and the saddle point equations corresponding
to the extremum of the free energy for the MMH are:
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where A? and AJ are defined by Eq. (20), Q., O, R" and R’ by Egs. (13) to (16),
and x = lim,,,,, (1 —q./(1 — 0))/(1 — g,/Q). The integrals in the left hand side of
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Egs. (27-29) are

L= /w D1 (t+E)2H(J%), (32)

I ¢127 VI-R? exp(;%/(zu —R) ey ( ﬁ ) ’ 33)

@:/jm&(rww(%), (34)
with Dt = dt exp(—t>/2)/+/2m, H(x) = [ Dt, R is given in Eq. (19), and

7= Emax (35)

VA=A +A%

After solving the above equations for Q, R*, R?, x and «, they allow to determine pgy
and €, through (21) and (18).
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