;:‘ Machine Learning, 46, 203-223, 2002
' © 2002 Kluwer Academic Publishers. Manufactured in The Netherlands.

An Analytic Center Machine

THEODORE B. TRAFALIS ttrafalis @ou.edu
ALEXANDER M. MALYSCHEFF alexm@ou.edu
Laboratory for Optimization and Intelligent Systems, School of Industrial Engineering, The University of
Oklahoma, 202 West Bord, Norman, OK 73019, USA

Editor: Nello Cristianini

Abstract. Support vector machines have recently attracted much attention in the machine learning and optimiza-
tion communities for their remarkable generalization ability. The support vector machine solution corresponds
to the center of the largest hypersphere inscribed in the version space. Recently, however, alternative approaches
(Herbrich, Graepel, & Campbell, In Proceedings of ESANN 2000) have suggested that the generalization per-
formance can be further enhanced by considering other possible centers of the version space like the center of
gravity. However, efficient methods for calculating the center of gravity of a polyhedron are lacking. A center that
can be computed efficiently using Newton’s method is the analytic center of a convex polytope. We propose an
algorithm, that finds the hypothesis that corresponds to the analytic center of the version space. We refer to this
type of classifier as the analytic center machine (ACM). Preliminary experimental results are presented for which
ACMs outperform support vector machines.

Keywords: support vector machines, analytic center, interior point methods

1. Introduction

Support vector machines (SVMs) (Vapnik, 1995; Scholkopf, Burges, & Smola, 1999; Smola,
1998) have been recently introduced as a new tool for machine learning applications. One of
the most outstanding characteristics of this learning machine is its impressive performance
in generalization on unseen data. However, in cases where the version space, i.e. the space of
hypotheses consistent with the training data, is elongated or asymmetric SVMs are not very
effective. Recently, an alternative approach has been proposed by Herbrich et al. (2000) and
Rujan (1997), the so-called Bayes point machine, which is based on an approximation of
the center of mass of the version space. In fact, the SVM classifier corresponds to the center
of the largest inscribed hypersphere in version space. However, computing the center of
gravity of a polyhedron in an n-dimensional space is hard, since it involves the computation
of its volume, which is a #P-hard problem (Kaiser, Morin, & Trafalis, 1991). An easily
computable center has been proposed by Sonnevend (1985), the so-called “analytic center”
of a convex polytope. This point depends on the data analytically (i.e. rather smoothly),
is invariant with respect to affine transformations, and can be computed effectively by
minimizing a strictly convex function over the convex polytope. In an earlier study Bouten
et al. (1995) have investigated the generalization performance of perceptrons and found that
the Bayes point solution in version space can be approximated by computing the minimum
of a special class of potential functions. As this research effort originated initially from the

204 T.B. TRAFALIS AND A.M. MALYSCHEFF

support vector machine approach, it seems most appropriate to follow a genetic approach in
this article. Consequently, we will start by giving a brief review of support vector machines
and expand from there to the analytic center machine.

Support vector machines can be implemented in two different environments. Specifi-
cally, regression analysis and pattern classification. In this study we will focus on pattern
classification problems, which can be expressed as a quadratic programming problem.

Next, we cast this type of problem into a quadratic optimization problem. Let the
training data consist of [points, each of which is represented by a vector x; € R,
where j = 1,...,] and assign to each of the points a label y; with y; € {—1, +1}.
Here, we only distinguish between two classes. Hence the training set can be written as
T={(xj,y j)ljzl} C R x {—1, +1}. Constructing a learning machine that will separate the
data of two training sets in pattern space finds its geometrical equivalent in identifying a
hyperplane that separates the data points labeled by y; = —1 from the data points labeled
by y; = +1. As there are situations, where datasets can not be linearly separated, we will re-
strict ourselves for the moment to those problem sets that are linearly separable. This type of
classifier is often also referred to as the hard margin classifier. Vapnik (1995) has shown that
the linear support vector machine algorithm requires a solution of the following optimization
problem:

I TR
(P) min wl

(1
subjectto y;(x;-w+b)>+1 Vj=1,...,[,

where w € R is the vector normal to the separating hyperplane and b € 9 the offset with
respect to the origin. By assigning a Lagrangian multiplier A; to each constraint and by
introducing the variables A = (A1, A2, ..., A1), Dijj = (y;iyjxixj), e = (1,1,...,1), and

y = (1, ¥2, - - -, Y1), the dual problem can be formulated in closed form:
1
(D) max -ﬁUé+§ATDA
subjectto ATy =0 2

Aj>0 Vji=1,..,L

A nonlinear separable problem in pattern space becomes a linearly separable problem in
feature space using the concept of a kernel function (Vapnik, 1995). As can be seen, the dual
problem (D) allows expressing all data pertinent to the problem, x; and y;, to be expressed
in terms of inner products. We will revisit this idea in a later section.

In this paper concepts from interior point methods will be employed to solve pattern
classification problems. However, interior point methods suffer from the difficulty of find-
ing an initial feasible solution, when all constraints that define the feasible region are
considered simultaneously. An alternative approach would be to deal with every sample
point (constraint) at a time. Hence, the problem is solved for the first data point, then
the next data point enters the system and another optimization problem is solved using
the previous solution and so forth. We might call this iterative type of approaching the

AN ANALYTIC CENTER MACHINE 205

problem an online approach. Moreover, recent research has suggested to verify the gen-
eralization ability of support vector machines, as some results point to alternative learn-
ing machines with powerful generalization performance (Herbrich, Graepel, & Campbell,
2000).

In order to implement this online-approach, the support vector algorithm will be modified
reducing the constraints of problem (P) essentially to what is known as the perceptron. Then,
turning our attention to the weight space, it can be seen that each pattern will correspond to a
hyperplane with normal vector yx = (yxy, yxa, ..., yXq),if we are in a d-dimensional space.
Moreover, after a slight modification we will be able to let all hyperplanes corresponding to
examples pass through the origin. Therefore, the collection of all patterns, i.e. [hyperplanes,
will reduce the region containing acceptable results for w to a cone in a d-dimensional
space. Some studies refer to this cone as the version space V(7T') (Mitchell, 1997). While
the perceptron allows any of these feasible w’s to be selected as a solution, our objective
will be to choose a w* which remains far away from all the edges of the cone, since we do
not know how future test patterns will scatter. This refers to as a large margin classifier
(Smola et al., 2000)

The paper is organized as follows: we will highlight ideas pertaining to the selection of
w* in Section 2 by explaining, what type of problem must be solved, in order to retrieve
w*. In Section 3 we will make the connection to the solution in feature space, thus allowing
nonlinear separable problems to be solved. Section 4 describes, how the analytic center is
calculated using a projected Newton descent approach. These ideas will then be revisited
and modified for an online version of the gradient Newton descent approach in Section 5.
In Section 6 preliminary results are presented to illustrate the generalization performance
of analytic center machines compared to support vector machines. Section 7 will close this
paper outlining possible directions for future improvements.

2. Statement of the problem
2.1. Geometry of linear learning machines

We would like to construct a learning machine based on the concept of the analytic center,
which behaves also as a large margin classifier. Later, it will be shown that a similar learning
machine can be derived for the feature space using the concept of kernel functions. In order
to convey the basic ideas, we review the concepts that characterize the perceptron. In contrast
to support vector machines no optimization process is invoked and the right-hand-side of the
constraints becomes zero. Specifically in the perceptron algorithm it is our objective to solve
the feasibility problem:

yi-Xj-w4+b) =0 Vji=1..,1 3)

wherex;, we R and y j» b € M. Any feasible solution (w, b) of (3) will separate the training
set T. Thus, for linearly separable problems the perceptron will arbitrarily identify one out
of infinitely many linear classifiers and generalization will be rather poor in most instances.
We will return to the issue of selecting a good hyperplane in Section 2.2. For the moment let

206 T.B. TRAFALIS AND A.M. MALYSCHEFF

us slightly rewrite the set of constraints. By introducing the variables W = (w, b) € R¢+!
and X; = (x;, 1) € RNI*! the perceptron problem simplifies to:

yi- X -w)=0 Vj=1,...,L “4)

Essentially, b is now being considered as an additional weight, say w, . Therefore, the
problem dimension is expanded by one. As can be seen each pattern j is now described by
the simple linear inequality

yjijv?/zo ijl,,l, (5)

which corresponds in weight space to a hyperplane with normal vector y;X;. Note that all
hyperplanes are passing now through the origin of the weight space.

When the first pattern (x;, y;) enters in the system of linear inequalities, the set of feasible
solutions is reduced to a (d + 1)-dimensional halfspace. The second pattern (X,, y;) will
reduce the halfspace to a cone with the apex of the cone at the origin. After that, each
additional pattern will either leave the current version space unchanged or even further
reduce it. Once all patterns have been learned, the cone of the training patterns has been
identified. Note that some training points (X;, y;) might be redundant for the determination
of the cone. The set of all W’s, inside the cone, V (T'), constitute the set of feasible solutions;
hence infinitely many solutions exist. This situation corresponds to the perceptron in pattern
space. Keep in mind that here we consider problems, which can be linearly separated (hard
margin classifier). In this case the set of feasible w’s will never be empty. The advantage
of this approach lies in the nice geometry of the problem, which allows a rather simple
implementation. Once the final cone is identified, it is intuitively clear that we would like
to identify a solution as close to the central trajectory of the cone as possible. In doing so,
we guarantee that the selected optimal w* will correspond to a separating hyperplane in
the space of patterns (x-space) that lies far away from the data samples of both classes. The
next question to be addressed is, how to select the optimal w* from all feasible w’s in the
version space.

2.2. Analytical center of version space

Next, we will use an idea that stems from the concept of interior point methods, the so-called
analytic center. In order to describe the analytic center, we first introduce the concept of
logarithmic barrier functions. Define the slack 5; € 9 as a measure of how close or how
far away the current solution is from constraint j. If the current solution violates constraint
J» §; will be negative. If the current solution fulfills constraint j as an equality, 5; will be
zero. An interior point of the feasible region is defined as a point, for which all slacks s; are
positive. For the set of constraints, which currently describe our feasible region the slacks
can be expressed as follows:

§=y% -Ww=0 Vji=1,...1 (6)

AN ANALYTIC CENTER MACHINE 207

Furthermore, we need to identify a function, called potential function (Nesterov &
Nemirovskii, 1994), which goes to infinity as we approach the boundary of the feasible
region. A logarithmic function ® : R+ — R fulfills our requirements. More specifically,

®(E) = —In@). 0

In analogy to electrostatics the function ®(S) could describe the potential of some
electrostatic field, if we consider the hyperplanes defining the feasible region as infi-
nite plates of electric charge. For ! constraints the logarithmic barrier function & be-
comes:

l
OE) =—) Gy, §=Gr.....8). (8)
j=1

Here, the vector § € %! represents the collection of slacks for all / constraints, § =
(51, 82, ..., 85). The minimum of the logarithmic barrier function ®(S) constitutes an ex-
cellent means of computing a point that will be far away from all constraints. The point
at which the barrier function attains its minimum is defined as the analytic center of the
feasible region.

Now, let us return to the problem we would like to solve. We consider an augmented
weight space (keep in mind that the offset b is treated as the (d + 1)-th element of W),
in which the set of all patterns (X;, y;) is represented by hyperplanes passing through the
origin. After all hyperplanes have been defined, a cone in %¢*! will describe the set of
feasible solutions in the augmented weight space. It is our objective, to retrieve a weight
vector w*, which will be as far away from the “walls” of the cone as possible. The tool we
are going to employ is the concept of the analytic center. Unfortunately, the minimum of the
logarithmic barrier function can only be calculated, if the feasible region is compact, which
is decidedly not the case for a cone in %t¢*!. In order to compactify the feasible region, we
add as a constraint a hypersphere in %“+! with radius R around the origin. In other words,
the solution, which will lie without doubt very close to the central trajectory of the cone
will be projected onto a hypersphere of radius R.

Therefore, our goal is to calculate the minimum of ®(S) while making sure at the same
time that the optimal weight vector w* satisfy the spherical constraint. For calculation
purposes we choose R = /2. Taking into account the labels y ; as well, the slacks can be
expressed through

S5i=y;- & -W)>=0 Vj=1,...,1)

and the logarithmic barrier function becomes

[
OE) =— Y InG)). (10)
j=l1

208 T.B. TRAFALIS AND A.M. MALYSCHEFF

Following the above, the optimal weight vector can be computed by solving the opti-
mization problem:

I
min ®(W)=— Zln()’j(ij - W))
=l (11)

st. —wiw=1.

| =

Since the slacks depend on W, we will write from now on & (W) or in feature space ® («),
instead of ®(S). Remember that by definition W also includes the offset b of the optimal
separating hyperplane. Before we will continue our discussion and demonstrate, how the
optimization problem in (11) can be solved, we will extend the current formulation using
the concept of kernel functions to the case of nonlinear separation.

3. Kernelization

In the first section the reader was introduced to the basic concepts of linear separation of
datasets. In Section 2 the classification problem was reformulated, such that each pattern
can be interpreted as a hyperplane in weight space. We will now perform yet another
transformation moving the problem to some high-dimensional feature space. The algorithm,
which is discussed in this paper actually does not really solve nonlinear problems. However,
it is possible to map classification problems that can not be linearly separated to the feature
space using a function ¢ : x — ¢(x). The mapping creates the corresponding classification
problem in feature space, which can be solved employing linear classifiers. The price we
have to pay is to significantly increase the number of dimensions. Thus a nonlinear problem
behaves in feature space as if it was linearly separable.

Unfortunately, very often the function ¢ (X) is not available, can not be computed, or does
not even exist. However, the inner product of two vectors can be computed, both, in pattern
and in feature space. In other words, while ¢ (x) might not be available, we can still compute
the inner product ¢ (x;)” ¢ (x,) in feature space. This inner product can be expressed by the
kernel function

kRO xR — R k(xg,x0) = dx) @ (x2).

The reader might verify that besides the label y; in Eq. (4) in Section 2 every constraint
can be formulated using solely inner products. Nonetheless, the constraints still contain the
weight vector, while it would be desirable to express the inner products only through the
data vectors x;. However, if we express the weight vector by a linear combination of data
vectors, we can successfully avoid this problem. Indeed, if we define w = Z§=1 o;X; we
have:

I ! r
k(w, x;) = k(Zaixi,xj) = (Zm«p(x») (X))
i=1 i=1

1
:Za,-k(x,-,xj) Vi=1,...,1. (12)
i=1

AN ANALYTIC CENTER MACHINE 209

Therefore, the set of [equations in (3) defining hyperplanes in weight space can be
reformulated using inner products. Specifically,

i i
yj(xj . ZO{,’X,' +b) =yj<ZOliXiTXj +b> >0 Vj=1, ool (13)

i=1 i=1

After having preprocessed the set of constraints, it is now easy to replace the pure inner
products by the kernel function k(x;, X;). Therefore, the set of constraints representing the
[patterns can be described in the dual space of «’s as follows:

/
yj<Zaik(Xi,Xj)+b>20 Vi=1,...,1 (14)

i=1

Obviously, this new set of linear inequalities must be solved in the space of «’s. Note,
that the decision function to test for a new pattern x can be formulated and calculated based
only on the information contained in the set of ¢;’s:

i=1

!
f(x) = sign(Zaik(xi,x) —|—b). (15)

We are now ready to define our learning problem in «-space. Define the matrix K €
RUEDL gq-

yikin ki ... yiky
yikor koo ... yiky
K= . (16)
yikn - ko ... yiky
Y1 Y2 e N

We follow the convention that the k;; represent the kernel evaluated at the points x; and
X;. Specifically, k;; = k(x;,X;). Note that K is not symmetric. Moreover, introduce the
vectors

yikij
yjkaj
kKi=| ... [.Vi=1,....,1, (17
yikij
Yj

210 T.B. TRAFALIS AND A.M. MALYSCHEFF

where k; € M/*+1, Therefore the matrix K can also be expressed as K = (ki, kp, ..., k)).
Furthermore, if we let the vector & € 1! to be

o]

o
a=1...1, (18)

o

b
we can write the set of equations for all / patterns as Kla>0, V j =1,...,1. Note

that the offset b is included as the (I + 1)-element and the corresponding adjustments
were made for K and k;. Alternatively, the j-th constraint in a-space can be defined by
kJTa >0,Vj=1,...,1,since

k?()[= ijllk(Xl, X_,‘) + ijlgk(Xz, X_,') + -4+ ijl[k(Xl, Xj) + ylb > 0. (19)

Replacing the kernel expressions by simple inner products, equivalence between Eq. (19)
and the more commonly known perceptron formulation becomes more obvious as is
described by the following inequality:

[
YiOUX[X; + VjeaX; X; + o+ yjouX, X; + yib = y; - (meiT>Xj F
i=1
=y;-(w'x; +b) > 0. (20)

Since it is necessary to rewrite the optimization problem from Eq. (11) for the space of
a’s, computation of the slacks for each constraint is required. We have [slacks, which can
be computed from s; = k/T -, Vj = 1,..., 1. Previously, each pattern was characterized
by its normal vector y;X;. This vector defined a hyperplane in the space of weights reducing
the final feasible region to a cone in :+!. We have now moved the problem to the space
of a’s. Therefore, the normal vector defining each hyperplane in a-space is given by k;.
Note that the offset is included in k;, consequently, each hyperplane passes again through
the origin; this time however, in the space of «’s. The logarithmic barrier function evalu-
ates the summation over all slack values, which are given by s; = kJToz, Vi=1,...,1L
Hence the barrier is a function of «, i.e. & = ®(«). Again, as in Section 2, the feasible
region has the shape of a cone, which implies that the analytic center without any projection
or box limitations imposed on the variables, does not exist. The analytic center of the barrier
function is therefore calculated with the additional requirement that the set of variables (the
a’s) be projected on a hypersphere of radius R = +/2. Consequently, we have to solve the
following optimization problem:

)
min <I>(oz)=—Zln(k]T-a)
. @1
st. h(a) = E(xTa— 1=0.

AN ANALYTIC CENTER MACHINE 211

Figure 1. Feasible region in a-space.

Figure 1 illustrates this situation graphically. We need to find the analytic center of the
feasible region, which is described by the intersection of several hyperplanes with the
surface of the sphere. In the next section it will be shown, how the optimization problem
can be solved using a projected Newton descent method.

4. A projected Newton descent method

In the previous section our discussion resulted in a constrained optimization problem, which
must be solved by changing the set of ¢;’s. We started with the concept of a cone, which
described all feasible w’s in weight space that would qualify to separate the two classes. It
was then shown that a similar approach could be used to solve nonlinear instances resulting
in roughly the same optimization problem. The two approaches differ in the space, in which
the variables “live”, as well as in the parameters. For the linear case information can be
stored in y;X;, while for the nonlinear case the Kk;’s need to be computed. The vector k;
depends on the kernel function as well as on the input data (x;, y;). In the following we

212 T.B. TRAFALIS AND A.M. MALYSCHEFF

have to address the optimization problem in (21) and implement an algorithm that allows
solving this type of problem.

Letus start the analysis by introducing the Lagrangian of (21). With u being the Lagrangian
multiplier we have:

L(a) = ®(a) + u - h(a). (22)

The Karush-Kuhn-Tucker (KKT) optimality conditions (Bazaraa, Sherali, & Shetty,
1993) require that at optimality the gradient of the Lagrangian vanish (feasibility of the
corresponding dual optimization problem). Moreover, primal feasibility is required as well,
hence, the constraint in (21) represents an additional optimality condition. The following
equations account for dual and primal feasibility and represent the optimality conditions:

VeL(a) = Vo @ () + u - Voh(a) (23)
h(e) = %aToc —1=0. (24)

Next, define a new variable Z(«, ©) and let us rewrite the optimality conditions in matrix
form. Thus,
Vq.L(a) Vo® (@) +u - Voh(a) 0
Z(o,u) = = =

h(e) LoT 0]

a'a—1 25)

2
In a more compact form the optimality conditions require Z(«, #) = 0. Employing the
Newton-Raphson method to calculate o* and u*, the first-order approximation linear system

o — o 0
Z(ay, uy) + Vo Z(ay, Mk)[u B uk} = |:0i| (26)

must be solved, in order to calculate the next iterate (¢, u) = (otx+1, Ur+1). Equation (26)
allows to iteratively approach the solution («*, u*), with which we can compute the classifier.
Here, VZ denotes the Jacobian of Z and (o, uy) represents the current iterate. We find for
the Jacobian of Z

V2L(ay, ux) Vh(a, Mk)] 27

VZ(ag, w) =
Vh (Olk, Mk)T 0
Next, we need to compute the elements of VZ and Z in order to move to the next
iterate (o1, Ug+1)- Let us first examine the derivatives of the logarithmic barrier function
and introduce a matrix S € R/ that carries in its diagonal the slack values s; =k]Tozk,

where o represents the current iterate. Moreover, let e= (1,1, ..., 1) denote a vector
of ones in an appropriate dimension, here e € /. Then the gradient of ®(«) becomes
V®(a) = —KS~'e. An alternative way of expressing the gradient of the barrier would be
Vo(a) = —l;—l‘ — l;—j ————— 15%1 The Hessian of the barrier can be computed similarly,
resulting in V2® () = KS™2K or alternatively, V2®(a) = klsll;‘r + kigg +-+ k’;’;’r)

AN ANALYTIC CENTER MACHINE 213

Considering next the gradient and the Hessian of &, we find for the gradient Vi (¢) = «
and for the Hessian V2h(a) = I, with T e RUFD*U+D representing the unit matrix. Now it
is easy to extend the discussion to the gradient and to the Hessian of the Lagrangian. In fact,

V2L (a,u) = V2@ () +u-V*h(e) = KST?K! +u -1 (28)
VL (t,u) =V® (@) +u-Vh(e) = —-KS'e+u-«a 29)

Putting it all together we find for Z:

—KS~'e + uy - o
Z(Olk, uk) = 1T (30)
o o — 1
and for the Jacobian of Z:
KS72K”" +u; -1 «
VZ(@, uy) = [. "}. 31)
oy 0

We have now presented a modified Newton procedure, which allows finding the minimum
value of the barrier function subject to the constraint that all «’s be elements of a hypersphere
in 9%'*!. Note the dimensions of Z € R%/*? and VZ € RUFD*E+2) since the (I 4 1)-th
element corresponds to the offset b, while the (I 4 2)-th element refers to the Lagrangian
multiplier u.

5. Implementation issues

Until now, we have proposed a new method of selecting the optimal weight w* for learning
linear classifiers. Hereafter, the idea of selecting a value close to the central trajectory of a
cone was extended to the nonlinear case. We have studied ways to obtain the optimal value
(a* or w*) from an open cone using concepts based on the analytic center. However, several
remarks should be made about the current version of the algorithm. First, it is necessary to
identify an interior point of the feasible region. Keep in mind that the barrier function is
logarithmic; hence, it is not defined for «’s yielding negative slacks. It might not be trivial
to find an initial feasible solution, for which the Newton algorithm will work, in particular
in the nonlinear case. Instead, it might be wiser to solve the problem in a sequential way.
What do we mean by that? So far, the algorithm is confronted with all available data right
from the beginning. We might call this the batch approach. If we initiate on the other hand
the Newton procedure pattern by pattern, we will be able to circumvent the problem of
finding an initial feasible solution. Therefore, we will next turn our attention to the issue of
implementation of this new approach in machine learning.

5.1. How to process a “good” pattern

We propose an online approach in computing the analytic center a-space by evaluating an
approximation of the center for some current set of constraints. Once a pattern is classified

214 T.B. TRAFALIS AND A.M. MALYSCHEFF

correctly, which means that the current iterate is inside the current cone, we let a new
pattern (a new hyperplane) enter the system of linear inequalities. Hence, for each new
pattern feasibility of the current solution is verified and adjusted. In the next few paragraphs
we will outline the mechanics behind this way of solving the problem.

We initiate the algorithm with arbitrary starting values, g and . Next, the normal vector
for the hyperplane in a-space is calculated:

K| = ik, yikats -, yikin, y1)
= kX1, X1), yik(X2, X1), ..., yik(X;, X1), ¥1). (32)

Upon evaluating k]« two alternative outcomes are possible. If the value for k! «g is
negative, which by definition also means that the slack s; = k! o is negative, we have to
correct our current solution . Let us postpone for the moment the discussion of this case
by assuming that ¢ is feasible, hence the slack is strictly positive. Remember that even for
slack values equal to zero, the Hessian might be ill-conditioned as the logarithmic barrier
approaches +oo in those cases. The gradient and the Hessian of the barrier function can be
found respectively from

k;

VO (o) = - (33)
T
V20 (o) = SIAL. (34)
S

1
Next, evaluate h(oy) = %aOT ap — 1 as well as the gradient Vh(xg) = og. With this in
mind we find for Z:

k
s:+uo-0l0i|. (35)

Z(ay, ug) =
(a0, o) |:%a0Ta0—1

Since the Hessian of A (o) equals the unit matrix with dimension (I 4+ 1) x (I 4 1), the
Jacobian of Z is easily computed using

Kk! _
VZ(ato. 1) = { o o1 “0]. (36)

T
o 0

Based on the calculations of Z and VZ, the next iterate can be computed by solving the
linear Newton approximation in Eq. (26). However, we would like to point out that this
subproblem will not be solved to optimality, as we are not interested in the solution after
having processed only one pattern.

Consequently, after having successfully computed what amounts to ¢«¢; and #; the normal
vector corresponding to the second pattern is evaluated:

K3 = (y2kia, yokaa, - .., yokia, ¥2)
= (n2k(X1,X2), 2k (X2, X2), . .., y2k(X;, X2), y2). (37

AN ANALYTIC CENTER MACHINE 215

Again, one needs to verify, whether the slack s, = sz o is positive and if so, the new
values for Z and VZ are computed:

Kk
-5 5 Tur-a
Z(Oll,ul):|: R] (38)
oo —1
Kk | kok! .
VZ(u)=| 5 T fwela (39)
al 0

Hereafter, we conduct an additional Newton search and update the current solution
(o2, up) using Eq. (26) before repeating this procedure for the remaining patterns. Starting
from an initial solution at ¢g = (0.5, 0.5) figure 2 illustrates, how the current solution is
adjusted, when we process successively the patterns K, ky, and k3. The updated solution
is given by 3.

Next, we will explain, how to adapt the algorithm for the case where the cone is sig-
nificantly reduced by a new pattern such that the previous solution lies outside the new
cone.

ki

%] %4

k2

oy

05=(0.5,0.5)

1.41

Figure 2. The previous solution o1 is always feasible with respect to the pattern k ;.

216 T.B. TRAFALIS AND A.M. MALYSCHEFF

5.2. How to correct a “bad” pattern

If patterns are not correctly classified, the current iterate represents an infeasible starting
point for the Newton optimization process, which excludes using this type of optimization
technique. To be more precise, suppose that we are at iteration j and that the j-th pattern
reduces the feasible region so significantly that for the (j — 1)-th solution (ozj_y, uj—y),
a;_ lies outside of the cone. Looking at the set of slacks, this implies that the j-th slack
s; will be negative. However, all remaining slacks sy, ..., s;_; are still positive. Hence, we
either need to move the current iterate into the new cone or alternatively relax the shape of
the feasible region, such that the new feasible set still comprises the «;_; of the previous
iterate (o;_1, u ;). Since we have only very limited information about the current position
of (aj_1,u;_1) we decided to pursue the latter approach of relaxing the j-th constraint of
the feasible region.

Since there is only one constraint (constraint j, the last one that entered the system of
patterns), which is violated by the current iterate, we only need to focus on the j-th slack
value. Keep in mind that s; is a measure of distance between «;_; and the hyperplane
k]Ta = 0. Modification of the feasible region will be realized as follows. Since s; is the sole
parameter defining the position of the hyperplane, we can shift the hyperplane parallel to
itself by changing the value for s;. For instance, the hyperplane kjroz = s, passes exactly
through the current iterate «;_;. Obviously, the parallel shift is not yet sufficient, as the
barrier function approaches +oo for this situation. For this reason, we need to shift the
last hyperplane a little farther, say, about ten percent of the slack value to guarantee that
the current iterate o;_; lies inside this “extended” cone. Consequently, the j-th shifted
hyperplane is defined by the set of all «’s for which kJToz =1.1s;. This hyperplane will
change the entry for the j-th slack to —0.1s;. Remember that s; is negative, therefore
—0.1s; is positive. We have now adjusted the feasible region such that «z;_; is an element
of the feasible perturbed set.

Next, we need to invoke Newton’s algorithm to virtually “push” «;_; to the analytic
center of the feasible region. This will be realized by conducting five consecutive Newton
steps. Leti =1, ..., 5 count the Newton steps on the relaxed problem. At each step, we will
examine, whether the updated solution (ot;_1;, u ;1 ;) still violates the original constraint
k]T.oz j—1,i = 0.1If so, the remaining Newton steps are executed. Of course, one must be very
careful about updating the slack s; during this process.

Store the overall shift of the j-th hyperplane in the variable fotal = —1.1s;. That way,
once Newton’s algorithm offers a new o;_1 ;, the j-th slack value is calculated with respect
to the original (unrelaxed) problem, s = K” - «. However, the Newton procedure requires a
positive slack value s; ;, which means that the j-th slack must be separately updated with
respect to the relaxed problem. Therefore, s; is replaced by an intermediate slack valid
only for the i-th Newton iteration on the relaxed problem s;; =total +s;;_; in order to
yield the slacks for the i-th Newton iteration on the relaxed problem (define s; o = s;). This
approach essentially measures the distance between o;_;; from the relaxed hyperplane
k]Ta = —total.

Nonetheless, it is possible that even after five Newton steps the analytic center of
the relaxed feasible region does not yet satisfy the j-th constraint. Keeping in mind that

AN ANALYTIC CENTER MACHINE 217

total= —1.1s; defined the position of the relaxed j-th hyperplane we can calculate a
new relaxed problem with a relaxed hyperplane that will lie between the first relaxed
hyperplane and the original unrelaxed hyperplane (all parallel, we did not modify k;).
Obviously, our situation will have improved after five Newton iterations, however, it is
possible that the analytic center of the relaxed problem still violates the original problem.
The new offset for the second relaxed problem can be computed as total = —1.1s;_; 5
yielding the hyperplane kjra = —total. In other words the first relaxed hyperplane is
moved to a new position reducing the relaxed cone. Hereafter, we invoke once more
Newton’s descent algorithm. Either one of the intermediate iterates (oj_p ;, u;—1,;) finally
lies within the original cone, or we have to construct a third intermediate hyperplane after
five Newton steps. Recapitulating we have to deal with two different counters. Specifically,
j indicates the pattern and i indicates the Newton step executed. To increase readability
we have refrained from introducing a third index denoting the number of relaxed hyper-
planes needed until we have moved the current iterate (o;_;;, #;_1,;) inside the original
cone.

Note that for each newly computed solution (ct;_1 ;, u j—1 ;) ones needs to verify all slacks
s, since it is possible that a pure Newton step leaves the feasible region. In our case the new
a could violate a constraint other than the one (s;), which has just been relaxed. This case
arises particularly, if «;_; of the current solution (or;_1;, u ;) is located already rather
close to one or more constraints (Wright, 1995). We decided to halve the step size of a pure
Newton step and verify whether feasibility is given. If not, the step size is cut in half again
and constraint violation is checked again.

Figure 3 displays the procedure of adjusting infeasible «;’s. As can be seen « is feasible
for the first pattern k; moving the current solution to «;. Hereafter, the second training
pattern k, reduces the feasible region significantly so that ¢ is no longer feasible. Thus
the second constraint is relaxed by roral' = —1.1s, = —1.1s} ;. Conducting five successive
Newton steps results in the new iterate a s = o . Obviously, the current solution is not yet
feasible with respect to the original problem. Therefore, a second relaxation (indicated by
a second prime) has to be conducted. Hence, s 5 = s3 ; and the Newton method is invoked
again. Feasibility is achieved at i =2 and the training pattern can now be considered as a
“good pattern”. Therefore, one more Newton step is conducted with respect to the original
feasible region to classify k.

We will now recapitulate our discussion until this point. The following generic pseudo
code provides an overview of all steps necessary for the implementation of an online analytic
center machine.

Step 1: Initialize
L - Number of patterns
Jj - Current pattern, j =1, ..., L
i - Index to identify all patterns from 1, ..., j
oy - Initial starting point, vector of ones
u - Initial Lagrangian multiplier for projection on sphere

Step 2a: Center and Add
Set j=1

218 T.B. TRAFALIS AND A.M. MALYSCHEFF

2. Relaxation 1. Relaxation

. + + ,,ny'”:_ql’”” ;
By

+ 2=(05.05)

Figure 3. The current solution ¢ is infeasible for the second pattern k5.

Compute the newest k; according to k_]T =jkij, yikoj, ..., yvikij, ¥,
the slacks s; :kiToz, Vi=1,...,j,and let S=diag(s;),Vi=1,...,]
Let K=(ki,...,k;)
ifs; <0

go to step 2b: Correct

else
go to step 2¢: Update

Step 2b: Correct

Set total= —1.1 - s and §y,0r = —0.1 - 5; (Problem relaxation)

Let Syeox = diag(si, 52, ..., Sj—1, Srelax)

while (s; = ij»oz <0)

for newtoncounter =110 5

compute Z and VZ using equations (30) and (31)
calculate new (o,) using Newton’s approximation (26)
if(s=K" -a>0)

AN ANALYTIC CENTER MACHINE 219

go to step 2¢: Update

else
update the j-th slack, s; =total + s; (s; is still negative!)
check feasibility of all other slacks (sy, ..., s;_1)

while min(s(, ..., s;-1) <0

halve the pure Newton step
compute s =K -« and replace s;, 5; =total + s;

endwhile
endfor
Set total = —1.1-5; (Construct new relaxation)
Replace s, s; = —0.1-5;
endwhile

Step 2c: Update
compute Z and VZ using equations (30) and (31)
calculate new (o, u) using the newton approximation (26)
Jj=1Jj 4+ 1, return to step 1

6. Computational results
6.1. Tests on synthetic data

Preliminary experiments were conducted comparing the performance of the analytic
center machine to support vector machines. Both approaches were implemented in
MATLAB and compared on two datasets, which have been previously used by Herbrich,
Graepel, and Campbell (2000). Ten thousand points were randomly generated in [—1, 1]°
C 93 and assigned a random label of +1 or —1. Hereafter, a sample of ten points was
selected for training. The size of the test set comprised all 10,000 points for each one of the
experiments. An exponential kernel k(X;, X;) = exp(— %) with o = 1 was used for the
analysis. Table 1 displays the percentage values for the generalization error. As can be seen
analytic center machines clearly outperform support vector machines for both experiments.
Moreover, analytic center machines demonstrate a similar generalization behavior as Bayes
point machines (Herbrich, Graepel, & Campbell, 2000).

Furthermore, we solved some problems graphically indicating the change of the deci-
sion surface. Figures 4 and 5 display the solutions for the analytic center machine and

Table 1. Generalization error.

SVM BPM
Dataset (Herbrich, Graepel, & Campbell, in press) (Herbrich, Graepel, & Campbell, in press) ACM

Dataset 1 6.50 6.10 6.22
Dataset 2 15.10 8.00 8.68

220 T.B. TRAFALIS AND A.M. MALYSCHEFF

8t 0 00 0 A
o}
6 00 0 g
0 0O
4 o] 0 1
o+
2 ++o 0 1
+
k']
E o + + + + + 1
> + + + + o}
2t + + 4
_+
4L + 1
G i
Bl 4
-8 -6 -4 -2 0 2 4 6 8
X-Axis

Figure 4. Analytic center solution.

Y-Axis

Figure 5. Support vector solution.

AN ANALYTIC CENTER MACHINE 221

Table 2. Generalization error on standard benchmark data.

SVM BPM
(Herbrich, Graepel, (Herbrich, Graepel,
Dataset & Campbell, 2000) & Campbell, 2000) ACM o p-value
Heart 25.40 £0.40 22.80 £0.34 21.87 £3.51 10.00 1.0000
Thyroid 5.30£0.24 440 £0.21 491 £2.28 3.00 0.9548
Banana 16.20 £0.15 15.10 £0.14 14.73 £ 1.69 0.50 1.0000

a support vector machine, respectively. Two classes were separated using again an ex-
ponential kernel k(x;, X;) = exp(—”)‘i;T"z’”) with o = 1. It can be seen that the separation
achieved by the analytic center machine is much smoother than for the support vector
machine. This is due to the fact that the analytic center solution is influenced by all
patterns, while the support vector machine includes only information from the support

vectors.

6.2. Tests on standard benchmark data

In addition, performance of the analytic center machine was examined using three real-
world datasets. The datasets “Heart” and “Thyroid” originate from the UCI Repository
(Blake & Merz, 1998), while the dataset “Banana” was previously used as a benchmark in
Herbrich, Graepel, and Campbell (2000) and Rétsch, Onoda, and Miiller (2001). Each of
the datasets consists of 100 training and test sets, which are randomly partitioned as fol-
lows. The datasets “Heart” and “Thyroid” exhibit a training to test set ratio of 60% : 40%,
while the dataset “Banana” is partitioned based on a ratio of 10% :90%' Table 2 shows
the means and standard deviations for the support vector machine, the Bayes point ma-
chine, as well as for the analytic center machine, with the analytic center machine ex-
periments being conducted using ACCPM (Péton & Vial, 2000), an analytic center opti-
mization software. The fourth column indicates o as it was used in the kernel function
k(x;i, Xx;) =exp(— %) Finally, the fifth column represents the p-values for a pooled-
variance t-test using a level of significance of 0.05 and verifying the hypothesis SVM is
greater than ACM.

7. Conclusion

Preliminary experimentation has demonstrated that analytic center machines possess a
promising potential for generalization. Future research might focus on an algorithm which
deletes some or all of the nonbinding constraints of the cone. This could lead to a consider-
able improvement in performance, when large-scale problems are discussed. In our current
implementation the analytic center of the version space is computed using all patterns.
Reducing the set of characteristic patterns to those that are essential in the definition of the
version space would increase the sparsity of the matrices and could lead to a significant

222 T.B. TRAFALIS AND A.M. MALYSCHEFF

speed-up of the algorithm. We are currently investigating heuristics to delete redundant
constraints that are not necessary for the description of the version space. Efficient factor-
ization techniques can be used for solving Newton’s system of equations for large-scale
implementations.

Acknowledgments

The authors would like to thank Nello Cristianini, the guest editor of this special issue, as
well as two anonymous referees for comments that greatly improved the paper. The authors
also would like to express their gratitude to Ralf Herbrich for providing some of the datasets
and to Huseyin Ince for helping with the implementation. This research has been supported
partially by the National Science Foundation, NSF Grant ECS-9978813.

Note

1. These datasets are publically available at http://www.first.gmd.de/raetsch/.

References

Bazaraa, M. Z., Sherali, H. D., & Shetty C. M. (1993). Nonlinear Programming: Theory and Algorithms, New
York, NY: John Wiley & Sons.

Blake, C. L. & Merz, C. J. (1998). UCI Repository of machine learning databases, http://www.ics.uci.edu/
~mlearn/MLRepository.html.

Bouten, M., Schietse, J., & van den Broeck, C. (1995). Gradient descent learning in perceptrons: A review of its
possibilities, Physical Review, E, 52:2, 1958-1967.

Herbrich, R., Graepel, T., & Campbell, C. (2000). Robust bayes point machines. In Proceedings of ESANN 2000.
pp. 49-54.

Kaiser, M. J., Morin, T. L., & Trafalis, T. B. (1991). Centers and invariant points of convex bodies. In P. Gritzmann
& B. Sturmfels (Eds), Applied geometry and discrete mathematics: The victor klee festschrift. AMS DIMACS
Series in Discrete Mathematics and Theoretical Computer Science (pp. 367-385). American Mathematical
Society, Providence, RI.

Mitchell, T. M. (1997). Machine Learning. McGraw-Hill.

Nesterov, Y. E. & Nemirovskii, A. S. (1994). Interior point polynomial methods in convex programming,
Philadelphia: STAM Publications.

Péton, O. & Vial, J.-Ph. (2000). A tutorialon ACCPM. Technical report, HEC/Logilab, University of Geneva.
http://ecolu-info.unige.ch/logibab/software/accpm/index.html.

Ritsch G., Onoda, T., & Miiller, K.-R. (2001). Soft margins for AdaBoost. Machine Learning, 42:2,287-320. In
press.

Rujan, P. (1997). Playing billard in version space. Neural Computation, 9, 99-122.

Scholkopf, B., Burges, C. J. C., & Smola, A. J. (1999). Advances in kernel methods: Support vector learning.
Cambridge, Massachusetts: The MIT Press.

Smola, A.J. (1998). Learning with kernels, Ph.D. Thesis, Technical University, Berlin.

Smola, A., Bartlett, P., Scholkopf B., & Schuurmans, D. (2000). Advances in large margin classifiers. Cambridge,
Massachusetts: The MIT Press.

Sonnevend, G. (1985). An analytical center for polyhedrons and then new classes of global algorithms for linear
(smooth, convex) programming. Lectures Notes in Control Information Sciences (pp. 866-876). New York:
Springer-Verlag.

AN ANALYTIC CENTER MACHINE 223

Vapnik, V. (1995). The nature of statistical learning theory. Berlin: Springer Verlag.
Wright, M. H. (1995). Why a pure primal newton barrier step may be infeasible. SIAM Journal on Optimization,
5:1,1-12.

Received March 23, 2000
Revised March 9, 2001
Accepted March 9, 2001

Final manuscript March 6, 2001

