Skip to main content
Log in

Some a Posteriori Error Estimators for p-Laplacian Based on Residual Estimation or Gradient Recovery

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we first derive a posteriori error estimators of residual type for the finite element approximation of the p-Laplacian, and show that they are reliable, and efficient up to higher order terms. We then construct some a posteriori error estimators based on gradient recovery. We further compare the two types of a posteriori error estimators. It is found that there exist some relationships between the two types of estimators, which are similar to those held in the case of the Laplacian. It is shown that the a posteriori error estimators based on gradient recovery are equivalent to the discretization error in a quasi-norm provided the solution is sufficiently smooth and mesh is uniform. Under stronger conditions, superconvergnece properties have been established for the used gradient recovery operator, and then some of the gradient recovery based estimates are further shown to be asymptotically exact to the discretization error in a quasi-norm. Numerical results demonstrating these a posteriori estimates are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Ainsworth, M., and Craig, A. W. (1992), A posteriori error estimators in finite element method, Numer.Math. 60(4), 429–463.

    Google Scholar 

  2. Ainsworth, M., and Oden, J. T. (1997), A posteriori error estimators in finite element analysis, Computer Methods in Applied Mechanics and Engineering 142, 1–88.

    Google Scholar 

  3. Ainsworth, M., and Day, K., The Approximation Theory for the p-Version Finite Element Method and Application to Non-Linear Elliptic PDEs, in review.

  4. Ainsworth, M., and Day, K. (1998), Approximation Theory for the hp-Version Finite Element Method and Application to the Non-Linear Laplacian, Report of MCS, Leicester University, No. 2.

  5. Baranger, J., and Amri, H. El. (1991), Estimateurs a posteriori d'erreur pour le calcul adaptatif d'écoulements quasi-Newtoniens, R.A.I.R.O.M 2 AN 25, 31–48.

    Google Scholar 

  6. Barrett, J. W., and Liu, W. B. (1993), Finite element approximation of the p-Laplacian, Math.Comp. 61, 523–537.

    Google Scholar 

  7. Barrett, J. W., and Liu, W. B. (1994), Finite Element Approximation of Some Degenerate Quasi-Linear Problems, Lecture Notes in Mathematics, Vol. 303, Pitman, pp. 1–16.

    Google Scholar 

  8. Barrett, J. W., and Liu, W. B. (1994), Quasi-norm error bounds for finite element approximation of quasi-Newtonian flows, Numer.Math. 68, 437–456.

    Google Scholar 

  9. Bermejo, R., and Infante, J. A., A multigrid algorithm for nonlinear monotone elliptic problems, to appear in SIAM J.Sci.Computing.

  10. Ciarlet, P. G. (1978), The Finite Element Method for Elliptic Problems, North-Holland Publ., Amsterdam.

    Google Scholar 

  11. Farhloul, M. (1998), A mixed finite element method for a nonlinear Direchlet problem, IMA J.Numer.Anal. 18, 121–132.

    Google Scholar 

  12. Glowinski, R., and Marrocco, A. (1975), Sur l'approximation par éléments finis d'ordre un, et la résolution, par pénalisation-dualité, d'une classe de Direchlet non linéaires, RAIRO Anal.Numer. 2, 41–76.

    Google Scholar 

  13. Kufner, A., John, O., and Fucik, S. (1977), Function Spaces, Nordhoff, Leyden, The Netherlands.

    Google Scholar 

  14. Lieberman, G. M. (1988), Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal. 12, 1203–1219.

    Google Scholar 

  15. Liu, W. B., and Barrett, J. W. (1993), Higher order regularity for the solutions of some nonlinear degenerate elliptic equations, SIAM J.Math.Anal. 24(6), 1522–1536.

    Google Scholar 

  16. Liu, W. B., and Barrett, J. W. (1993), A further remark on the regularity of the solutions of the p-Laplacian and its applications to their finite element approximation, J.Nonlinear.Anal. 21, 379–387.

    Google Scholar 

  17. Liu, W. B., and Barrett, J. W. (1996), Finite element approximation of some degenerate monotone quasi-linear elliptic systems, SIAM J.Numer.Anal. 33, 88–106.

    Google Scholar 

  18. Liu, W. B. (2000), Degenerate quasilinear elliptic equations arising from bimaterial problems in elastic-plastic mechanics II, Numer.Math. 86, 491–506.

    Google Scholar 

  19. Liu, W. B., and Yan, N. N. (2001), Quasi-norm local error estimates for the finite element approximation of p-Laplacian, SIAM J.Numer.Anal. 39, 100–127.

    Google Scholar 

  20. Liu, W. B., and Yan, N. N. (2001), Quasi-norm a posteriori error estimates for Non-conforming finite element approximation of p-Laplacian, Numer.Math. 89, 341–378.

    Google Scholar 

  21. Oden, J. T., Demkovicz, L., Strouboulis, T., and Devloo, P. (1986), Adaptive methods for problems in solid and fluid mechanics. In Babuska, I., and Zienkiewicz, O. C., etc. (eds.), Accuracy Estimates and Adaptive Refinements in Finite Element Computations, Wiley, pp. 249–280.

  22. Padra, C. (1997), A posteriori error estimators for nonconforming approximation of some quasi-Newtonian flows, SIAM J.Numer.Anal. 34, 1600–1615.

    Google Scholar 

  23. Scott, L. R., and Zhang, S. (1990), Finite element interpolation of nonsmooth functions satisfying boundary conditions, Math.Comp. 54, 483–493.

    Google Scholar 

  24. Simms, G. (1995), Finite Element Approximation of Some Nonlinear Elliptic and Parabolic Problems, thesis, Imperial College, University of London.

  25. Tai, X. C., and Xu, J. (1998), Global Convergence of Subspace Correction Methods for Convex Optimization Problems, Report of Department of Applied Mathematics, University of Bergen, No. 114.

  26. Verfürth, R. (1989), A posteriori error estimators for the Stokes equations, Numer.Math. 55, 309–325.

    Google Scholar 

  27. Verfürth, R. (1994), A posteriori error estimates for non-linear problems, Math.Comp. 62, 445–475.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, W., Yan, N. Some a Posteriori Error Estimators for p-Laplacian Based on Residual Estimation or Gradient Recovery. Journal of Scientific Computing 16, 435–477 (2001). https://doi.org/10.1023/A:1013246424707

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013246424707

Navigation