
Machine Learning, 47, 257–295, 2002
c© 2002 Kluwer Academic Publishers. Manufactured in The Netherlands.

Theory Revision with Queries: DNF Formulas

JUDY GOLDSMITH∗ goldsmit@cs.uky.edu
Department of Computer Science, University of Kentucky, 763 Anderson Hall, Lexington, KY 40506, USA

ROBERT H. SLOAN† sloan@uic.edu
Department of Computer Science, University of Illinois at Chicago, and National Science Foundation

GYÖRGY TURÁN∗∗ gyt@uic.edu
Math, Stat., & Computer Science Department, University of Illinois at Chicago, Research Group on AI
of Hungarian Academy of Sciences at University of Szeged

Editor: Jyrki Kivinen

Abstract. The theory revision, or concept revision, problem is to correct a given, roughly correct concept. This
problem is considered here in the model of learning with equivalence and membership queries. A revision algorithm
is considered efficient if the number of queries it makes is polynomial in the revision distance between the initial
theory and the target theory, and polylogarithmic in the number of variables and the size of the initial theory. The
revision distance is the minimal number of syntactic revision operations, such as the deletion or addition of literals,
needed to obtain the target theory from the initial theory. Efficient revision algorithms are given for three classes
of disjunctive normal form expressions: monotone k-DNF, monotone m-term DNF and unate two-term DNF. A
negative result shows that some monotone DNF formulas are hard to revise.

Keywords: theory revision, query learning, computational learning theory, knowledge revision, disjunctive
normal form, Boolean function learning

1. Introduction

Consider the following situation. You hire a domain expert (whom we shall call “Mommy”)
and a knowledge engineer to develop an expert system for predicting what your picky
preschooler will eat. The following “pretty close” initial theory is developed:

WillEat := VeryBland OR ((NOT vegetables) AND bland AND Meat).

Then, though you use the initial theory as a general guide, you happen to observe
the preschooler consume a full pound of grilled lamb ribs in spicy black pepper-teriyaki
marinade. You must revise or edit your initial theory, perhaps to either

WillEat := VeryBland OR((NOT vegetables) AND Meat),

∗Partially supported by NSF grant CCR-9610348; work done while visiting the Dept. of EECS at the University
of Illinois at Chicago and the Dept. of Computer Science at Boston University.
†Partially supported by NSF grant CCR-9800070.
∗∗Partially supported by NSF grant CCR-9800070, and OTKA T-25721.

258 J. GOLDSMITH, R. H. SLOAN AND G. TURÁN

or

WillEat := VeryBland OR ((NOT vegetables) AND bland AND Meat) OR Lamb.1

This is the problem known in machine learning as theory revision (or knowledge-base
revision) (e.g., Towell & Shavlik, 1993; Ourston & Mooney, 1994; Richards & Mooney,
1995; Koppel, Feldman, & Segre, 1994). Note that the artificial intelligence term theory,
as used in this paper, has the same meaning as what the computational learning theory
community calls a concept.2 Thus the machine learning problem of theory revision may be
viewed as the problem of correcting a given, roughly correct concept or theory.

A typical application for theory revision is revising a theory such as a set of rules generated
by an expert. A common assumption is that the theory comes with a set of labeled examples,
which always includes some that disagree with the classification provided by the theory.
Typically in the AI literature one is supposed to make a “small” revision to the theory so
that it classifies all the given examples correctly.

In this paper we study the theory revision problem for several sorts of disjunctive normal
form (DNF) formulas, in the context of Angluin’s (Angluin, 1988) model of learning with
membership and equivalence queries. Briefly, a membership query allows the learner to ask
the classification of any instance, and an equivalence query allows the learner to ask whether
its hypothesized theory is the correct one, and if the hypothesized theory is incorrect, then
the learner is given a counterexample—one instance for which its hypothesized theory and
the true theory give different classifications.

The use of equivalence queries appears to be reasonable in the scenario just discussed,
as each equivalence query can be simulated by cycling through the given set of examples
until we find a counterexample to our current version of the theory. If no counterexamples
are found, then the learning process terminates. This simulation can never require more
queries than the worst-case number in the formal model. In addition, when the initial theory
is provided by an expert, it may be realistic to assume that the expert can correctly answer
membership queries.

In a companion paper (Goldsmith et al., 2001), we give results for various other forms,
including Horn sentences and read-once formulas.

1.1. Related work

Theory revision is one of several problems, also including theory restructuring, which
is aimed at making a theory more efficient or transparent, that make up the area of theory
refinement in machine learning (see, e.g., Wrobel, 1995). There are many systems for
theory revision in propositional and predicate logic (e.g., Koppel, Feldman, & Segre, 1994;
Ourston & Mooney, 1994; Richards & Mooney, 1995; Towell & Shavlik, 1993). For instance,
the EITHER system (Ourston & Mooney, 1994) uses deductive, abductive, and inductive
components to revise a propositional Horn theory from a given set of counterexamples, and
the KBANN system (Towell & Shavlik, 1993, 1994) uses neural networks for the same task.

Formal work in theory revision includes (Koppel, Feldman, & Segre, 1994). They consid-
ered the problem of fixing a given theory for a given set of examples, and gave an algorithm

THEORY REVISION WITH QUERIES 259

together with a proof of its convergence under certain assumptions. Argamon-Engelson
and Koppel also considered a version of the revision problem called theory patching where
there is a prespecified part of the initial theory that cannot be modified (Argamon-Engelson
& Koppel, 1998).

Mooney (1995) formulated an approach to the study of theory revision in computational
learning theory based on syntactic distances. The syntactic distance between a given con-
cept representation and another concept is the minimal number of elementary operations
(such as the addition or the deletion of a literal or a clause) needed to transform the given
concept representation to a representation of the other concept. Mooney proposed consider-
ing the PAC-learnability of the class of concepts having a bounded syntactic distance from
a given concept representation. This approach provides an interesting formalization of the
availability of prior knowledge to the learner, even in propositional logic. Mooney observed
that for a fixed number of revisions, the polynomial size of these concept classes implies
that only logarithmic sample size is needed. Mooney’s work was extended by Greiner.
Greiner concentrates on Horn sentences, and we will discuss his results in our companion
paper (Goldsmith et al., 2001).

The problem of theory revision appears in several other guises, including program de-
bugging and system diagnosis. Indeed, one of the motivating examples in Angluin’s seminal
paper on learning with queries (Angluin, 1988) is Shapiro’s interactive program debugging
system (Shapiro, 1983), where the user is required to provide the answers to the queries.
Reducing the query complexity of Shapiro’s algorithm has been of some interest in machine
learning (e.g., Alexin, Gyimóthy, & Boström, 1997).

When theories are expressed as propositional Boolean formulas, the theory revision
problem is related to fault analysis of circuits in switching theory (see, e.g., Kohavi, 1978).
There a major problem is simply fault testing, determining whether the given circuit works
correctly. (Faulty circuits may simply be thrown away.)

Model-based diagnosis is a similar but slightly less closely related field. Davis and
Hamscher (1988) give a good survey of the field through 1987 or so; there is also lots of
more recent work (e.g., de Kleer, Mackworth, & Reiter, 1992; Marcotte et al., 1992). One
of the key concerns of model-based diagnosis is handling a very broad set of errors that
is typically unknowable in advance. However, for theory revision, while a great variety of
errors are considered, the set of possible errors can be specified in advance. In the revision
of theories in propositional logic it may be assumed that literals and clauses are superfluous
and/or missing. We view these possibilities as operations available to edit the initial formula,
and therefore refer to them as revision operators. Many model-based diagnosis systems rely
implicitly or explicitly on solving some NP-complete or inherently exponential problem
(e.g., enumerating all the minimal hitting sets of a set system (Reiter, 1987)).

Several areas of machine learning have at least some connection to theory revision. The
study of drifting concepts in learning theory (Helmbold & Long, 1994) may perhaps be
viewed as a “dynamic” version of theory revision. Much has been written about learning
from partial information. A few examples include SOAR (Laird, Newell, & Rosenbloom,
1987) in systems-building machine learning (Case et al., 1997) and (Jain & Sharma, 1991)
in inductive inference, and Rivest and Sloan (1994) in PAC learning. Of course, theory
revision can be viewed as simply “learning from a lot of partial information.” (And all

260 J. GOLDSMITH, R. H. SLOAN AND G. TURÁN

machine learning is then the special case of learning from partial information where the
partial information is the empty set.) However, in practice, different techniques can be
brought to bear when one knows a close approximation to the correct concept instead
of just some partial information about it. In this work, we seek to formally model this
phenomenon.

1.2. Overview of this paper

We extend Mooney’s syntactic distance approach to query models, in particular to learning
with equivalence and membership queries. We consider the complexity of concept revision
for several subclasses of DNF formulas. We consider two sets of revision operators, or,
equivalently, error models. Our first set of revision operators allows for the replacement of
an occurrence of a variable by a constant 0 or 1. This corresponds to allowing the deletion
of a variable or a clause in a DNF in theory revision (Argamon-Engelson & Koppel, 1998),
and to the “stuck at” faults in circuit fault analysis. Hence we call this the deletions-only
model of theory revision. In this model, a revision algorithm for a formula ϕ has to identify
a target concept represented by a formula that can be obtained from ϕ by replacing certain
variable occurrences by constants, using equivalence and membership queries. Our second
set of revision operators also permits the addition of literals to terms (arbitrary literals in
the case of unate or more general formulas, only positive literals in the case of monotone
formulas); we call this model the general model.

Definition. A revision algorithm is query efficient if its query complexity depends poly-
nomially on the syntactic distance between the initial formula and the target, but only
polylogarithmically on both the total number of variables in the universe and the size of the
concept representation.

We will normally write simply “efficient” when we mean “query efficient,” because all
the algorithms presented in this paper have running time that is not much larger than the
query complexity.

It is an interesting feature of revision complexity that a single formula, such as a particular
DNF formula, induces a concept class, rather than being a single concept in a concept class.
Thus a revision query complexity is associated with each individual formula through the
(standard) learning complexity of the concept class of its revisions, perhaps parameterized
by a revision distance.

Moreover, technically the algorithms we give in this paper are all meta-algorithms, as
they take any formula from a specified class of formulas (e.g., monotone DNF formulas)
and then function as a revision algorithm for the corresponding concept class. Incidentally,
the choice of revision operator(s) has a double role. First it defines the concept class. For
instance, for a monotone k-DNF, the deletions-only revision operators give us a class of
certain monotone k-DNFs, but the general revision operators give us a class of monotone
DNFs with arbitrarily many variables per term. Second, the choice of revision operator(s)
determines the revision distance, which gives us a performance metric.

The efficiency criterion is similar to the notion of efficiency for attribute efficient learning
algorithms (Blum, Hellerstein, & Littlestone, 1995; Bshouty & Hellerstein, 1998). In fact,

THEORY REVISION WITH QUERIES 261

there seems to be an interesting relationship between concept revision and attribute efficient
learning. Informally, in attribute efficient learning, most variables are irrelevant, while in
concept revision most variables act in a known way.

Let e be the syntactic distance between an initial formula and a target formula. In Section 3,
we give a revision algorithm for k-DNF formulas over n variables using O(ke log n) queries
in the deletions-only model. In Section 4, we give a revision algorithm for monotone DNF in
the general model. Its query complexity for revising a monotone m-term DNF in a universe
of n variables is O(m3e log n) This meets our definition of “efficient revision” when m is
polylogarithmic in n—that is, if m is small or n is very large. Very large values of n will
arise in practice when we have a universe with very many variables, but not so many of
them occur in the target formula. The query complexity of learning a monotone DNF from
scratch is O(mn) (Angluin, 1988). Thus, for small e, revision is more efficient than learning
from scratch whenever m is significantly smaller than n. In the deletions-only model, we
show that the monotone DNF revision algorithm simplifies considerably and has query
complexity O(m2 + em).

In Section 5, we give an efficient revision algorithm for two-term unate DNF using
the general model of revision operators. Bshouty et al. (1994), building on earlier work
(Angluin, Hellerstein, & Karpinski, 1993), give a general technique for converting mem-
bership and equivalence query algorithms for monotone classes to corresponding unate
classes. However, we cannot use Bshouty et al.’s conversion from monotone to unate in our
context of theory revision, because the conversion multiplies query complexity by a factor
of n. That conversion gives a query complexity of O(n2) for learning any unate DNF with
a constant number of terms; the revision algorithm we present for two-term unate DNF has
query complexity O(e2 log n), where e is the revision distance.

In general, as the concept classes considered are small, but very efficient learning al-
gorithms are required, one needs somewhat different techniques than the previous ones
(Angluin, 1988; Angluin, Hellerstein, & Karpinski, 1993) for these much studied concept
classes.

We also give an example of a monotone DNF for which there is no efficient concept
revision algorithm, in Section 6. In Section 7, we mention some further results and open
problems.

2. Notation

We consider a variety of types of Boolean formulas here. We use standard notions from
propositional logic, such as variable, literal, term (a conjunction of literals), disjunctive
normal form (DNF), etc. A formula is

– monotone if no variable occurs negated;
– unate if no variable ever occurs in it both negated and unnegated;
– k-DNF if it is DNF and every term contains at most k literals.

For a given fixed universe of variables {v1, . . . , vn}, we can represent a truth assignment
or instance as a Boolean vector x ∈ {0, 1}n . The all-zero (resp., all-one) vector is denoted
by 0 (resp., 1).

262 J. GOLDSMITH, R. H. SLOAN AND G. TURÁN

A DNF (resp., monotone DNF) formula can be viewed as a collection of subsets of the set
of literals (resp., variables), with each term defining a subset. We say that one term covers
another if it is a superset of the other. When convenient, we sometimes treat monotone terms
as elements of {0, 1}n , where the bit vector has a 1 exactly in those positions where the term
contains a variable. Moreover, in a mild abuse of notation, we then sometimes treat those
elements of {0, 1}n as subsets of {1, . . . , n}.
Definition. For bit vectors y and z, and by extension, for monotone terms, we write y ≤ z
if y is below z in the Boolean lattice; that is, if z has a 1 in every position where y has a 1.

The symbol ⊂ will always denote strict subset.
When all formulas are monotone, we define the operation of turning off a bit or position of

an instance as setting that bit to 0. In the unate case, only for positions of known orientation,
we again define turning off position i of instance x to mean setting x[i] to 0 if x[i] has
positive orientation, and to 1 if x[i] has negative orientation.

We will need to combine terms with instances in various ways.

A term and an instance can be combined to form a term. We define the operation t ∩ x
for a term t and an instance x to be a term that is the conjunction of those literals in t that
are satisfied by x . Thus, for example v1v̄2v̄5 ∩ 11000 = v1v̄5.

A term and an instance can be combined to form an instance. When we intersect an
instance x with a term t to form a new instance, intuitively, we want to say that we will
leave all bits of x that occur in t unchanged, and turn off all variables of x that do not occur in
t . For monotone formulas this is straightforward, and we define x ∩ t in the monotone case as

(x ∩ t)[i] =
{

x[i] if vi ∈ t

0 otherwise.

In the unate case, there may be many variables whose orientation is unknown, and we
cannot reliably turn off those variables. Instead, we define two different operations: x ∩ t and
x ∩ t for “intersecting” instance x ∈ {0, 1}n with term t to get back a new instance. These
intersections are always with respect to a set K of literals of known orientation. The literals
in the initial theory ϕ are always in K , as are any literals in the current hypothesis h. Both
operations leave variables of x that are mentioned in t unchanged, and both turn off variables
of x that are not mentioned in t but that have known orientation. The operations differ in how
they treat variables of unknown orientation not mentioned in t : intersect down (denoted ∩)
flips those variables of x , and intersect up (denoted ∩) leaves those variables unchanged.

Formally, let K be the set of literals of known orientation, each oriented in its on direction.
“Intersect down” is defined by

(x ∩ t)[i] =

x[i] if one of vi , v̄i ∈ t

0 if vi ∈ K\t

1 if v̄i ∈ K\t

x̄[i] otherwise,

THEORY REVISION WITH QUERIES 263

and “intersect up” is defined by

(x ∩ t)[i] =

x[i] if one of vi , v̄i ∈ t

0 if vi ∈ K\t

1 if v̄i ∈ K\t

x[i] otherwise.

(A small mnemonic for this notation is that if the term comes first, then a term is returned,
as in t ∩ x , and if the instance comes first an instance is returned, as in x ∩ t .)

The differences of terms and instances. For two instances x, y ∈ {0, 1}n , we will use
x ⊗ y to denote the set of indices or variables on which x and y disagree; thus |x ⊗ y| is the
number of variables on which x and y disagree. We overload this operator also to indicate
the symmetric difference of two terms, namely the set of literals that appears in exactly
one of the two terms. In the cases where we use this notation, literals will not occur with
different orientations in the different terms.

If ϕ = T1 ∨ T2, then Tı̄ denotes the term other than Ti .

2.1. Revision: Distance, operators

The revision distance between a formula ϕ and some target concept C is defined to be the
minimum number of applications of a specified set of revision operations to ϕ needed to
obtain a formula for C . In the deletions-only model, our specified set of revision operators
is fixing an occurrence of a variable to the constant 0 or 1. This corresponds to allowing
deletions of variables and terms in DNF theory revision.

In the general revision operator model, we are also allowed to add literals to a DNF term.
In the monotone case, of course, we can add only unnegated variables. In the unate case,
we add the restriction that a literal that appears in the initial formula cannot appear negated
in the target formula. This technical assumption is needed by our algorithm.

Note that for DNF formulas, our definitions allow us to replace one term of the initial the-
ory by a new term with entirely distinct variables. The revision distance for this replacement
is the sum of the length of the deleted term (all of whose variables must be fixed to true) and
the length of the added term. However, under our definitions, we cannot have a target with
more terms than were in the initial DNF, as the additions are not allowed to start a new term.

Notice finally that the revision distance for simply deleting any one term of a DNF with
no replacement is only 1, since this can be done merely by fixing any one variable of the
term to be false.

2.2. Learning model

Angluin introduced two types of oracles for learning formulas: a membership oracle and
an equivalence oracle (Angluin, 1988). These are the tools that we use here for revising
formulas.

264 J. GOLDSMITH, R. H. SLOAN AND G. TURÁN

In an equivalence query, the learning algorithm proposes a hypothesis, a concept h
from the concept class, and the answer depends on whether h = ϕ∗, where ϕ∗ is the target
concept.3 If so, the answer is “Yes!” and the learning algorithm has succeeded in its goal of
exact identification of the target concept. Otherwise, the answer is a counterexample: any
instance x such that h(x) �= ϕ∗(x).

In a membership query, the learning algorithm gives an instance x , and the answer is
either 1 or 0, depending on ϕ∗(x); that is, MQ(x) = ϕ∗(x), where again ϕ∗ is the target
concept. In each algorithm and lower bound considered here, we allow the concepts TRUE
and FALSE as equivalence queries. Note that membership queries are on instances and
equivalence queries are on formulas.

3. Deletions-only revisions of monotone k-DNF expressions

In this section we present a revision algorithm for monotone DNF in the deletions-only
model. The algorithm is efficient for k-DNF.

Lemma 1. Let x be a satisfying truth assignment for an unknown monotone DNF ψ .
Then one can identify a term of ψ satisfied by x, using O(k log n) membership queries to
ψ , where k is the maximum number of variables in any term of ψ .

Proof: We give an informal description of a procedure FINDMINTERM(ψ, x) that performs
this task. An initial membership query MQ(0) decides if ψ is TRUE. Let us assume that
this is not the case. For every term t in the unknown formula, let us consider the sequence
of the indices of variables occurring in t in decreasing order. Let t∗, corresponding to the
sequence i1 > · · · > i
,
 ≤ k, be the lexicographically first term in ψ satisfied by x . (In
this ordering, a set precedes another if at the first position where they differ it has a smaller
number (or none). Thus, e.g., {10, 7} precedes {10, 7, 3}, which precedes {10, 7, 4, 2}.) We
claim that this term can be found using O(k log n) membership queries to ψ .

Let x j , for 0 ≤ j ≤ n, be the vector obtained from x by leaving it unchanged on the
first j positions, and setting all its other bits to 0. Then i1 is the smallest number j such
that MQ(x j) = 1. It can be found using binary search on the sequence 0 = x0 ≤ x1 ≤ · · · ≤
xn = x , and it holds that i1 > 0. Now ask the membership query MQ(ei1), where ei1 has
a single bit that is 1, at the i1th position. If the answer is 1, then t∗ = xi1 . Otherwise, let
xi1

j , for 0 ≤ j < i1 be the vector obtained from x by keeping it unchanged on the first j
positions and on the i1th position, and turning all its other bits off. Then i2 is the smallest
number i such that MQ(xi1

i) = 1 and again it can be found by binary search. Now ask the
membership query MQ(ei1,i2), where ei1,i2 is 1 in positions i1 and i2, and it is 0 otherwise.
If the answer is 1 then t∗ = xi1 xi2 . Continuing this process, t∗ is identified using O(k log n)

membership queries.
We note that FINDMINTERM can be applied to any monotone DNF ψ ; it is only the upper

bound for its query complexity which depends on the size of the terms in ψ . ✷

The query algorithm REVISEkDNF is shown in Algorithm 1. It starts with initial formula ϕ

as its initial hypothesis, and repeatedly makes equivalence queries with current hypothesis h.

THEORY REVISION WITH QUERIES 265

Algorithm 1 REVISEkDNF(ϕ)

1: h = ϕ

2: while (x = EQ(h)) �= “Yes!” do
3: if x is a negative counterexample then
4: delete all terms satisfied by x from h
5: else
6: t∗ = FINDMINTERM(ψ, x)

7: h = h ∨ t∗

8: Delete from h every proper implicant of t∗

9: end if
10: end while

First we give a small example, and then we will argue that the algorithm’s complexity is
reasonable.

As a small example, consider revising wxy ∨wxz to wx ∨xz. Assume that the first coun-
terexample is 1100. Then we use FINDMINTERM(ψ, 1100) to find the term wx , we add it to
the original formula, and we delete the termswxy andwxz. Thus, we are left with the hypoth-
esis wx . Now assume that the next counterexample is 0111. Then FINDMINTERM(ψ, 0111)

finds the term xz, and adding it to wx , it identifies the target concept. We note that terms
may disappear and reappear in the course of the revision process.

Lemma 2. Let ϕ be an arbitrary monotone DNF. Then REVISEkDNF(ϕ) is a correct
revision algorithm for ϕ. The number of calls to FINDMINTERM is at most the revision
distance between ϕ and the target.

Proof: The algorithm terminates only when it identifies the target; therefore it is sufficient
to prove the upper bound for the number of calls to FINDMINTERM.

Whenever we receive a negative counterexample x , we delete from our hypothesis those
terms t that x satisfies. Note that if t (x) = 1, then deleting variables from t will not change
that condition. Thus, if t (x) = 1 and x is a negative counterexample, the only way to rectify
that is to delete t from the formula. Thus the deleted terms must be deleted in any editing
to reach the target. So when we get negative counterexamples we “spend” only one query
for at least a gain of one in revision distance. Also notice that the deleted terms must be
original terms of ϕ, not terms added by FINDMINTERM. This holds because if a term added
by FINDMINTERM is satisfied by some x , then x is a positive example. Thus terms added
by FINDMINTERM will never be deleted.

Now let us assume that we receive a positive counterexample x . Then x satisfies a term
in the target that is obtained from some term in ϕ by deleting at least one variable. We run
the procedure FINDMINTERM to find such a term t∗, and then we add t∗ as a new term of h.

Notice that right after setting h to h∨t∗, our hypothesis h will generally not be as compact
as possible and sometimes will not be of the form of an allowable revision of ϕ. (e.g., with
n = 3, we might update h from xy ∨ xz to xy ∨ xz ∨ x , which has more terms than the
original formula.) Therefore, we need to transform h to a semantically equivalent formula

266 J. GOLDSMITH, R. H. SLOAN AND G. TURÁN

that is a revision of ϕ, by removing all proper implicants of t∗ from h. Below we argue that
the output h is indeed a revision of ϕ.

We now finish our analysis of the number of calls to FINDMINTERM, begun with the
discussion of negative counterexamples. Each call to FINDMINTERM on a positive coun-
terexample finds a distinct new minterm of the target that was not contained in ϕ. At least one
edit is required to obtain each such minterm. So the total number of calls to FINDMINTERM

is at most the revision distance between ϕ and the target.
Now we must argue that there is a revision that edits ϕ to the h produced at the end of

the main while loop.
First we introduce some terminology. Let ϕ be of the form t1 ∨ · · · ∨ t
, and let ψ be a

representation of the target. Assume that a monotone DNF g is of the form t1 ∨ · · · ∨ tm ∨
t∗
1 ∨ · · · ∨ t∗

r , for m ≤
 such that the following properties hold:

– every t∗
j is a minterm of ψ but not an implicant of ϕ

– every ti for m < i ≤
 (i.e., the terms of ϕ missing from g) either is satisfied by a negative
instance of ψ , or is a proper implicant of some t∗

j
– no ti for 1 ≤ i ≤ m (i.e., the terms of ϕ present in g) is a proper implicant of any t∗

j .

We claim that under these conditions g is a revision of ϕ and we can even find a suitable
revision in polynomial time (without using any queries). This follows by considering the
bipartite graph that has the terms of ϕ as its left vertices and the terms of g as its right vertices,
with edges corresponding to the implicant relation. We show that this bipartite graph has
a matching that matches every right vertex. Finding such a matching then provides the
required revision.

Every t∗
j is a term of ψ , and there are r distinct terms ti j in ϕ that are revised to these

terms by the deletion of at least one variable from each term. The correspondence between
old and new terms is not necessarily unique, but any such correspondence is suitable. By
the third condition, i j > m for every j . Thus the edges (t∗

j , ti j) for j = 1, . . . , r , together
with the edges (ti , ti) for i = 1, . . . , m indeed form a matching.

To complete the proof, we show by induction on the iteration of the while loop of
REVISEkDNF that h satisfies the above conditions for g. In the beginning, h = ϕ, so the
claim holds vacuously.

If the last counterexample is negative, then the number of terms missing from h increases.
The newly deleted terms are satisfied by a negative instance of ψ , showing that the second
condition remains valid. The validity of the other two conditions is automatic.

If the last counterexample is positive, then the newly added term satisfies the first condition
by the correctness of the procedure FINDMINTERM. All the proper implicants of the new
term are deleted from h, and this implies the validity of the other two conditions. ✷

Theorem 3. There is a revision algorithm for monotone DNF formulas in the deletions-
only model, using O(ke log n) queries for monotone k-DNF formulas on n variables, where
e is the revision distance between the initial and the target formulas.

Proof: This theorem follows from first Lemma 2 and then to get the query complexity
multiply e calls to REVISEkDNF by the O(k log n) queries per call from Lemma 1. ✷

THEORY REVISION WITH QUERIES 267

4. Revising monotone DNF

In this section, we present an algorithm to revise a monotone m-term DNF formula in the
general revision model. This extends the algorithm for revising monotone two-term DNF
formulas in Goldsmith and Sloan (2000).

4.1. Description of algorithm

The heart of the construction is the procedure MONOREVISEUPTOE, Algorithm 2. It takes
as parameters an m-term monotone DNF formula ϕ over a universe of n variables, and
e, the assumed revision distance from ϕ to the target. If e is in fact too small,
MONOREVISEUPTOE(ϕ, e) fails (formally, it returns the value “Failure”), and e is dou-
bled. The claim, discussed in the next subsection, is that whenever the revision distance is
at most e, MONOREVISEUPTOE(ϕ, e) succeeds, and uses only a bounded number of each
type of query.

At a very high level, MONOREVISEUPTOE works as follows. It initializes its hypothesis h
to FALSE (the empty disjunction), and repeatedly asks for a counterexample to its current
hypothesis. The algorithm is designed so that each such counterexample is always a positive
counterexample. Each such counterexample is used either to create a new hypothesis term
or to delete variables from existing hypothesis terms. When a new hypothesis term is created
(which is how the first counterexample will be used assuming that the target formula is not
FALSE), it is always a superset of a term in the target formula. In other words, all necessary
additions of variables are made when the hypothesis is created.

Once a hypothesis term is created, we never delete it, and we never add any additional
variables to it. Our general strategy is to use counterexamples to delete variables from
hypothesis terms whenever possible; we create a new term only when that is not possible.
In the pseudocode, the if at Line 3 determines which of those two cases we are in; Lines 4–7
handle deletions from current terms; Lines 8–35 handle creation of new terms.

It may be instructive to compare the strategy of MONOREVISEUPTOE with the strat-
egy of Angluin’s original query learning algorithm for monotone DNF (Angluin, 1988).
Angluin’s algorithm uses positive counterexamples from equivalence queries to initialize
each hypothesis term to a term covering a target term, and uses membership queries to delete
extra variables from hypothesis terms. MONOREVISEUPTOE also uses uses positive coun-
terexamples from equivalence queries to initialize each hypothesis term. However, in order
to obtain a query complexity that is only logarithmic in n, MONOREVISEUPTOE must also
take advantage of the fact that the target term(s) satisfied by this positive counterexample
must be “close” to one of the initial theory terms. To make deletions from hypothesis terms,
MONOREVISEUPTOE uses a positive counterexample from an equivalence query followed
by membership queries to see which terms, if any, deletions should be made from.

When MONOREVISEUPTOE uses a positive counterexample z to add a new term “close”
to an initial theory term, it adds the variables of the initial theory that are 1 in both z and
the initial theory term, plus any other necessary variables corresponding to 1’s in z. A sort
of binary search is used to find those necessary variables.

268 J. GOLDSMITH, R. H. SLOAN AND G. TURÁN

Algorithm 2 MONOREVISEUPTOE(ϕ, e). Revises m-term ϕ

1: h = ∅ {the initial hypothesis}
2: while (x = EQ(h)) �= “Yes!” and h ≤ m terms and e > 0 do
3: if MQ(x ∩ t) == 1 for some t ∈ h then {delete vars from hyp.}
4: for all t ∈ h for which MQ(x ∩ t) = 1 do
5: e = e − |t − (t ∩ x)|
6: t = t ∩ x
7: end for
8: else {find a new term to add to the hypothesis}
9: min = e

10: FoundATerm = false
11: for all t ∈ ϕ do
12: new = t ∩ x
13: numAddedLits = 0
14: while MQ(new) == 0 and numAddedLits < e do
15: l = BINARYSEARCH(new, x)

16: new = new ∪ {l}
17: numAddedLits = numAddedLits + 1
18: if MQ(x − {l}) == 1 then
19: x = x − {l} {still a positive counterexample}
20: restart the for all t loop with this x by backing up to

line 9 to reset other parameters
21: end if
22: end while
23: if MQ(new) == 1 then
24: x = new
25: FoundATerm = true
26: min = min(numAddedLits, min)

27: end if
28: end for
29: if not FoundATerm then
30: return “Failure”
31: else
32: h = h ∨ x {now treating x as monotone term}
33: e = e − min
34: end if
35: end if
36: end while
37: if x == “Yes!” then
38: return h
39: end if
40: return “Failure”

THEORY REVISION WITH QUERIES 269

4.1.1. Binary search. For any positive instance pos and negative instance neg it is always
true that pos satisfies a target term not satisfied by neg. When neg ≤ pos, and the target
is a monotone DNF, it is fairly intuitive that we can use binary search to find one variable
in pos\neg that is part of a target term. The algorithm BINARYSEARCH(neg, pos) does this.
In fact, it is written more generally, in terms of literals, because we will reuse it for unate
DNFs in Section 5.

To be precise, we can find a set A of variables and a variable l ∈ pos\(neg ∪ A) such that
MQ(neg ∪ A) = 0 but MQ(neg ∪ A ∪ {l}) = 1. More generally, in the unate case, we can
find a set of literals A on which pos and neg disagree, and an additional literal l �∈ A where
pos and neg disagree, with the property that if x agrees with neg on (A ∪ {l}) and x agrees
with pos on all other positions, then MQ(x) = 0, but MQ(x with position l flipped to agree
with pos) = 1.

This is done by the procedure BINARYSEARCH, Algorithm 3. We summarize the behavior
of BINARYSEARCH in the following proposition.

Proposition 4. Let ϕ∗ be a unate DNF and let pos and neg be two instances such that
ϕ∗(pos) = 1 and ϕ∗(neg) = 0. Binary search uses at most �log n� membership queries and
returns a literal that is in ϕ∗ and that is set to on in pos and set to off in neg.

Notice that in the complete algorithm MONOREVISEUPTOE, we actually wish to repeat
the binary search until the term in question covers a target term. This occurs in lines 14–22
of MONOREVISEUPTOE. A similar idea was used by Angluin, Hellerstein, and Karpinski
(1993) and is explicitly discussed by Uehara, Tsuchida, and Wegener (1997).

4.1.2. Pivots. A complication can arise when we call BINARYSEARCH repeatedly to find
all the missing variables in a term. We would like to consider l a necessary addition to neg,
but, if pos satisfies several target terms, it may be necessary to add l to neg to satisfy one of
those terms but not another. This could lead to our building up neg to cover more than one
target term in an inefficient manner. We call such an l a pivot, because the choice of which
target term will be covered pivots on whether l is added to neg. We can recognize a pivot

Algorithm 3 BINARYSEARCH(neg, pos).

Require: MQ(neg) == 0 and MQ(pos) == 1
1: while neg and pos differ in more than 1 position do
2: Divide neg ⊗ pos into approximately equal-size sets d1 and d2.
3: Put mid = neg with positions in d1 replaced by pos’s values
4: if MQ(mid) == 0 then
5: neg = mid
6: else
7: pos = mid
8: end if
9: end while

10: return l, the literal of pos in unique position where pos �= neg

270 J. GOLDSMITH, R. H. SLOAN AND G. TURÁN

because without it, pos still covers a target term, so MQ(pos\{l}) = 1. If a pivot is found in
the course of the binary search, we throw it out and restart the search. Notice that pos\ {l}
satisfies fewer target terms than pos.

4.1.3. More detailed description of algorithm. As we show in Lemmas 5 and 6, given
ϕ, MONOREVISEUPTOE(ϕ, e) constructs a hypothesis monotone DNF formula h so that, at
each stage of the construction each term of h covers a (distinct) term of the target formula.
Thus, at each stage of the construction, we get a positive counterexample, x , to h.

If x satisfies a target term already covered by a term of h, then x is used to delete
variables from all hypothesis terms that cover a term satisfied by x . This is decided by
asking MQ(x ∩ t) in Line 4. Since x is a positive counterexample, for any t ∈ h, it must be
that t ∩ x ⊂ t , so this yields at least one deletion.

Otherwise, x is used to add a new term to the hypothesis. For each term t of the initial
formula, if binary search finds an unambiguous extension of t ∩ x in x that covers a target
term (has positive membership query) with no more than e additions, then we consider
that extension a candidate new term. (Note that in the if branch of the main while loop
we consider terms in the current hypothesis, but in the else branch we consider terms of
the initial theory.) That extension is then treated as the positive counterexample for each
subsequent initial term.

Why do we alter the positive counterexample x for every initial theory term t where we
find an unambiguous extension of t ∩ x with no more than e additions? Intuitively, we need
to do this only for an initial theory term t that is closest to a target term satisfied by x .
Of course, we do not know which initial theory term that is. So, as we go along, we give
each initial theory term the opportunity to make deletions from x . There is no harm in the
deletions contributed by the “wrong” initial theory terms, since x still remains a positive
instance and therefore still covers a target term. A more precise understanding of what is
going on is given in the proof of Lemma 7.

4.2. Monotone DNF correctness and query complexity

For all of the lemmas below, we assume that the initial formula ϕ is an m-term monotone
DNF formula, and the target ϕ∗ is an m ′-term monotone DNF formula (m ′ ≤ m) with revision
distance at most e from ϕ. Recall that m ′ ≤ m because we are not allowed to create entirely
new terms.

In this section, we will generally use lower-case t for a term of the initial hypothesis, and
upper-case T ∗ for a term of the target formula.

The following lemma shows that any counterexample must be positive.

Lemma 5. Algorithm MONOREVISEUPTOE maintains the invariant that each of its hy-
pothesis terms covers some term of the target.

Proof: The initial hypothesis is the empty disjunction FALSE, so the first counterexample
is positive, and the statement about hypothesis terms is vacuously true.

Each positive counterexample x satisfies at least one target term T ∗. If T ∗ is already
covered by a term t ∈ h, then the if in Line 3 of MONOREVISEUPTOE must be true, and t

THEORY REVISION WITH QUERIES 271

is replaced by t ∩ x , which still covers T ∗. (Note that x cannot satisfy any t ∈ h, since x is
a positive counterexample to h. This forces (t ∩ x) ⊂ t .)

If x does not satisfy any term covered by h, then, either MONOREVISEUPTOE returns
“Failure”, or a new term is added to h. The new term is the x from the final execution of
Line 24, and in Line 23 it was determined that that value of x is a positive instance, so the
new hypothesis term covers some target term covered by x . ✷

Our next lemma shows that no two terms in h cover the same target term.

Lemma 6. If x is used to add a new term to h, then the new term does not cover any target
term already covered by h.

Proof: Suppose t ′ is added to h because of counterexample x . In order for the algorithm
to reach Line 8 of MONOREVISEUPTOE, it must be the case that for any t already in h,
MQ(x ∩ t) = 0. Note that t ′ ⊆ x , by construction. Therefore, t ∩ t ′ ⊆ t ∩ x , so (by
monotonicity) MQ(t ∩ t ′) = 0.

If both t and t ′ did cover some target term T ∗, then T ∗ ⊆ t ∩ t ′, implying that
MQ(t ∩ t ′) = 1. ✷

Thus, there are at most m terms in h at any time.
Next, we argue that we are building the hypothesis efficiently when we add a new term.

That is, the new term will, over the course of its initial construction and later deletions to
it, be charged for at most the minimum number of edits necessary.

Lemma 7. Let x be a counterexample that is not used to make deletions from an existing
term of h, such that every target term that x satisfies is within revision distance e from some
initial theory term. Then the iteration of the outer loop of MONOREVISEUPTOE for this x
does not fail, so it will add a new hypothesis term tx to h.

Furthermore, let T ∗ be a target term covered by tx , let t0 ∈ ϕ be a term of the initial
formula that minimizes the revision distance from t0 to T ∗, and let d be that revision
distance. In the iteration of the outer loop of MONOREVISEUPTOE, the sum of the number
of additions charged to initializing the hypothesis term tx from x (i.e., the value of min in
Line 33 of MONOREVISEUPTOE) plus the number of deletions later made to this hypothesis
term is at most d.

Proof: First we must argue that the algorithm does not fail. In the beginning, pivots may be
found some number of times, causing the algorithm to back up to Line 9 without changing
h, and restart the for all t ∈ ϕ loop that begins at Line 11. The algorithm cannot fail until
it has completed that loop, so there is no possibility of failing until we start an iteration of
the for all t ∈ ϕ loop in which no pivots are found.

In such an iteration, we eventually must set t to be an initial theory term within revision
distance e of a target term satisfied by x . The repeated calls to BINARYSEARCH to find
additions to t ∩ x will find precisely the (at most e) variables in U ∗\(t ∩ x) for some target
term U ∗. (Otherwise, if BINARYSEARCH finds a variable not in U ∗, then it would be a pivot.)

272 J. GOLDSMITH, R. H. SLOAN AND G. TURÁN

At that point, the algorithm finds a value of new with at most e additions to t ∩ x , so it will
not fail.

Now we discuss the number of revisions imputed to the term tx . First we point out that
it is slightly sloppy to speak of x , because x is a variable whose value changes during the
execution of the algorithm’s outer loop. The value of variable x is altered only by changing
1’s to 0’s. That is what happens when we restart after finding a pivot. Other than pivots, we
update x only in those iterations of the for all t ∈ ϕ loop that succeed in finding additions
to t ∩ x . In this case, intersecting x with t at Line 12 may have turned off some 1’s, but any
variables added back in Line 16 must correspond to some of the 1’s turned to 0’s by the
intersection at Line 12.

By the assumptions of the lemma, the final value of x (which is tx) satisfies T ∗, so all
earlier values of x must also satisfy T ∗.

We will in fact prove something slightly stronger than the statement of the lemma. Let
t1 be an initial theory term needing a minimum number of additions in order to cover T ∗;
that is, t1 is an initial theory term minimizing the quantity |T ∗\t |. We will show that the
number of additions charged to x , that is, the value of min at Line 33, will be |T ∗\t1|. On
the other hand, we will also show that the number of deletions later made to this term, will
be at most |t0\T ∗|. These two claims together imply the lemma.

After starting with the initial value of x , some number of pivots may be found. However,
at some point we start Line 9 for the final time in this iteration of the main while loop of
MONOREVISEUPTOE. We consider only the part of the execution of MONOREVISEUPTOE
from this point (after any pivots have been found using x) onward.4

Consider the iteration of the for all t ∈ ϕ loop in which the algorithm uses the initial
theory term t0. By the assumptions of the lemma, e is large enough that at the end of this
iteration, we will set x to be x ∩ t0 plus those variables found by the repeated calls to
BINARYSEARCH. The repeated calls to BINARYSEARCH will find precisely the variables in
T ∗\t0, because any variable we found that was not in T ∗ would be a pivot. So from this
point on, the only necessary deletions from a hypothesis term created from x are variables
in t0\T ∗.

Consider now the iteration of the for all t ∈ ϕ loop in which the algorithm uses the initial
theory term t1. (Incidentally, we do not know whether this t = t1 iteration will be before
or after the iteration where t = t0; we are making no assumptions about the order in which
initial theory terms are considered.) Again, the repeated calls to BINARYSEARCH will find
precisely the variables in T ∗\t1. Hence the value of numAddLits from this iteration of the
for all t ∈ ϕ loop will be |T ∗\t1|. From this point on, the value of min must be ≤ |T ∗\t1|. In
fact, from this point on, min = |T ∗\t1|, although the equality is not needed for this proof.

Now, by definition,

d = |t0\T ∗| + |T ∗\t0|
≥ |t0\T ∗| + |T ∗\t1|. ✷

Remark. In fact, the actual quantity may be even less than |t0\T ∗| + |T ∗\t1|, because the
number of deletions needed after the term is created could be strictly less than |t0\T ∗|, if
some other initial theory term besides t0 happened to effectively delete some of t0’s extra
variables.

THEORY REVISION WITH QUERIES 273

Lemma 8. A single addition of a term to the hypothesis requires O(m2e log n) membership
queries and one equivalence query.

Proof: Note that there can be at most e additions to any x ∩ t for any t ∈ ϕ; if more
additions are needed, the attempt to edit that term fails. Each search for an addition requires
� log2 n� membership queries. However, even if the counterexample x covers a unique target
term, the algorithm may try each of the m terms of ϕ to find one that works. This means
O(me log n) membership queries.

If x is ambiguous, then every time a pivot is found, the entire additions procedure is
restarted. Since x can cover at most m target terms, this can happen m − 1 times, so the
entire search for one unambiguous addition may require O(m2e log n) membership queries.

The only equivalence query is the one made in Line 2 of MONOREVISEUPTOE to obtain
the positive counterexample x . ✷

Next, we show a bound on the query complexity of any run of MONOREVISEUPTOE—
whether it terminates by finding the target or by failing.

Lemma 9. For any target monotone DNF, and any m-term ϕ and e, MONOREVISE-
UPTOE (ϕ, e) makes at most O(m3e log n) membership queries and at most max(e + m, 1)

equivalence queries.

Proof: By Lemma 8 each creation of a hypothesis term requires at most O(m2e log n)

membership queries and one equivalence query. At most m hypothesis terms are created,
so over the whole run of the algorithm, this consumes at most O(m3e log n) membership
queries and at most m equivalence queries.

The other place where queries are consumed is in making deletions in the if branch of the
main loop, Lines 3–7 of MONOREVISEUPTOE. Each execution of that branch decrements
the number-of-edits-remaining parameter by at least one, so we execute that branch at
most e times. Each such execution requires one equivalence query to obtain the positive
counterexample x (at Line 2), and m membership queries; thus this section of the algorithm
consumes at most e equivalence and me membership queries. ✷

Lemma 10. MONOREVISEUPTOE(ϕ, e) succeeds in finding the target monotone DNF if
ϕ has revision distance at most e from the target.

Proof: The algorithm terminates only by failing or by finding the target. So, we need to
show that “Failure” cannot be returned.

Let us assume that the target formula has its terms numbered to line up with an actual
revision from the initial formula. That is, we assume that the target is

ϕ∗ = T ∗
1 ∨ · · · ∨ T ∗

m ′ ,

for some m ′ ≤ m, where T ∗
i can be obtained from initial formula term ti with ei revisions,

and the total revision distance is e1 +· · ·+em ′ +(m −m ′). The quantity (m −m ′) represents
the one edit needed to fix to 0 one variable of each of the initial terms tm ′+1, . . . , tm—that
is, to delete those terms altogether.

274 J. GOLDSMITH, R. H. SLOAN AND G. TURÁN

We argue by induction on the number of iterations of the outer while loop of MONORE-
VISEUPTOE. Assume that after a certain number of iterations we have hypothesis h =
s1 ∨ s2 ∨ · · · ∨ s
, where, for simplicity of notation, we assume the terms are ordered such
that hypothesis term si covers target term T ∗

i . Let the current value of variable e be e0 (i.e.,
there are still e0 edits remaining), and let di = |si\T ∗

i |. We claim that MONOREVISEUPTOE
does not fail and that

e0 −

∑

i=1

di ≥
m ′∑

i=
+1

ei . (1)

The proof is by induction on the number of iterations. The induction step follows directly
from the algorithm for deletion edits, and from Lemma 7 for edits that create terms. ✷

Theorem 11. There is a revision algorithm for monotone DNF formulas in the general
model of revisions, using O(m3e log n) queries for monotone m-term DNF formulas in a
universe of n variables, where e is the revision distance between the initial and the target
formulas.

Proof: Let ϕ be the initial formula. Note that it is possible to get an initial theory that
is, in fact, correct. Because of this possibility, we begin by asking MQ(ϕ). If the answer is
not “Yes!” we apply MONOREVISEUPTOE(ϕ, e) for repeatedly doubled values of e until it
produces a “Yes!”

Now the result follows from Lemmas 9 and 10. ✷

Algorithm 4 MONODELETIONS(ϕ). Revises ϕ, a set of monotone terms using only deletion
edits.
1: h = ∅ {the initial hypothesis}
2: while (x = EQ(h)) �= “Yes!” do
3: if MQ(x ∩ t) = 1 for some t ∈ h then {delete vars from hyp.

terms}
4: for all t ∈ h for which MQ(x ∩ t) == 1 do
5: t = t ∩ x
6: end for
7: else [find a new term to add to the hypothesis]
8: for all t ∈ ϕ do
9: new = t ∩ x

10: if MQ(new) == 1 then
11: x = new
12: end if
13: end for
14: h = h ∨ x
15: end if
16: end while

THEORY REVISION WITH QUERIES 275

4.3. Deletions-only case

In this subsection we briefly sketch out the special case of the previous algorithm for the
deletions-only model of revisions. Note that BINARYSEARCH is not needed in this model.
Furthermore, we do not need to keep track of the number of edits assumed to be needed.

The pseudocode given for MONODELETIONS is a strict subset of the code for MONORE-
VISEUPTOE. The proof of correctness for this algorithm is similar to that for MONOREVISE-
UPTOE and thus is not included here.

Making one deletion from an existing hypothesis term requires membership queries
related to each hypothesis term; each new term requires membership queries related to each
hypothesis term and then to each initial theory term. Each deletion (or set of deletions) and
each addition of a new hypothesis term requires one equivalence query.

Theorem 12. There is a revision algorithm for monotone DNF formulas in the deletions-
only model, using O(em + m2) membership queries and at most (m + e) equivalence
queries for monotone m-term DNF formulas over n variables, where e is the revision
distance between the initial and target formulas.

5. Revising unate DNF

In this section, we present an algorithm that can revise a two-term unate DNF in the general
model of revisions. The only restriction we make is that we assume that no variable in the
initial theory has the wrong orientation. That is, if xi occurs in the initial theory, then xi

could be deleted, or added to the other term if it occurs in only one term, or both, but we
cannot delete xi and add x̄i .

5.1. Description of algorithm

As was the case for our monotone DNF algorithm in Section 4, the main routine for revising
unate two-term DNF takes a maximum revision distance e as a parameter, and finds the
target if it is within revision distance e of the initial formula. This main algorithm, UNATERE-
VISEUPTOE, should be repeatedly called with e = 1, 2, 4, 8, 16, . . . until it finds the target.

In Algorithm UNATEREVISEUPTOE (Algorithm 5), we begin the revisions with one pos-
itive example x0, which must satisfy (at least) one of the two target terms, but we do not
know which one. Therefore we consider the possibility of revising each initial theory term
sequentially. We begin by using x0 to edit the first term of the initial theory. If that beginning
does not lead to a correct revision within e edits, then we restart the revision process, this
time using x0 to edit the second term of the initial theory.

In most cases, when we construct our initial one-term hypothesis using x0, we immediately
try to find all literals that must be added to the initial term to obtain the target term. Instance
x0 allows us to determine the orientation (positive or negative) of any literals that need to be
added, given the assumption that x0 satisfies the corresponding target term. Nevertheless,
we can sometimes find only some of the literals that need to be added, and sometimes we
simply cannot tell whether any variables need to be added. In such cases, the algorithm uses
later negative counterexamples to find additional literals.

276 J. GOLDSMITH, R. H. SLOAN AND G. TURÁN

Algorithm 5 UNATEREVISEUPTOE(t1, t2, e). Note that an iteration of the main for loop
immediately terminates if FILLTERM or ADDLITERAL returns “Failure” except when return
value is explicitly tested at Line 24.

1: Let x0 be positive instance (from EQ(FALSE))
2: for k = 1, 2
3: if MQ(x0 ∩ tk) == 0 then
4: h = FILLTERM(tk ∩ x0, x0 ∩ tk, x0, e)
5: if h == PivotException(l) then
6: x0 = x0 with l turned off
7: Restart at Line 2 with this x0

8: end if
9: else if MQ(x0 ∩ tk) == 0 then

10: x0 = x0 ∩ tk
11: h = FILLTERM(tk̄ ∩ x0, x0 ∩ tk̄, x0, e)
12: if h == PivotException(l) then
13: x0 = x0 with l turned off
14: Restart at Line 2 with this x0

15: end if
16: Note: Line 11’s h is term derived from tk̄ ; so swap tk , tk̄ at Lines 24 and 30
17: else
18: h = tk ∩ x0

19: end if
20: {We now have a one term hypothesis}
21: while (y = EQ(h)) �= “Yes!” and e > 0 do
22: if h(y) == 0 then {y is a positive counterexample}
23: esave = e
24: if FILLTERM(tk̄ ∩ y, y ∩ tk̄, y, e) returns a term t and then

EQ(REVISE2TERMS(h, tk, t, tk̄, x0, e)) ==“Yes!” then
25: return correct theory found by REVISE2TERMS

26: end if
27: e = esave − |h\(h ∩ y)| {Use y to make deletions}
28: h = h ∩ y
29: else [y is negative counterexample]
30: h = h ∧ ADDLITERAL(x0, y, tk)
31: e = e − 1
32: end if
33: end while
34: end for

While we have a one-term hypothesis, any negative counterexample must be used to add
a literal to that hypothesis term. A positive counterexample y might indicate either that we
need to delete literals from the first hypothesis term or that we need to initialize a second
hypothesis term. When presented with such a choice, we first try to initialize a second term.
If this leads to too many edits, we backtrack and use y to delete literals from the first term.

THEORY REVISION WITH QUERIES 277

When we do initialize the second term, again we immediately look for all necessary
additions of literals to the initial term to cover the corresponding target term. It turns out
that for the second term we can always tell whether additional variables are needed, and if
so find all of them.

Algorithm UNATEREVISEUPTOE uses several subroutines. The subroutine BINARY-
SEARCH is the same as in the monotone case, although now there may be negative lit-
erals. We also break out the process of repeatedly using BINARYSEARCH to add all the
necessary literals to a hypothesis term. This subroutine is called FILLTERM.

The handling of a two-term hypothesis is passed on to the subroutine REVISE2TERMS.
When the input is a hypothesis that requires at most e edits, including deletions to either term
and additions to the first term, then REVISE2TERMS successfully completes the revisions. It
uses negative counterexamples to add literals to the first term, and positive counterexamples
to delete literals as needed.

The first half of the pseudocode for UNATEREVISEUPTOE (Lines 3–19) covers the con-
struction of the initial one-term hypothesis. The next chunk of code is concerned with
preparing the hypothesis for a call to REVISE2TERMS. If that call fails, then the assumption
that a positive counterexample y should have created a second term was incorrect. The
algorithm therefore returns to that checkpoint and uses that counterexample y to delete
literals from the one-term hypothesis.

If the entire algorithm UNATEREVISEUPTOE(t1, t2, e) fails, then the edit distance between
initial theory t1 ∨ t2 and the target was greater than e. The higher level routine then doubles
e and calls UNATEREVISEUPTOE(t1, t2, e) again until it succeeds.

In the remainder of this subsection, we discuss each of the subroutines and also the
main algorithm. We first recall the algorithm BINARYSEARCH from the monotone case, and
describe the subroutine FILLTERM that is used to repeatedly call BINARYSEARCH to find
missing literals, as these are utility subroutines that are frequently used. We next discuss the
main algorithm, since most of its code is concerned with initializing a one-term hypothesis
and refining that one-term hypothesis. Finally, we discuss two subroutines used closer to
the end of a run of UNATEREVISEUPTOE: ADDLITERAL and REVISE2TERMS.

The next subsection, Section 5.2, contains a detailed example. It may be helpful to skip
back and forth between that example and the overview of the algorithm that precedes it.
Finally, we prove the correctness and query complexity bound in Section 5.3.

We conclude this introductory material with some definitions we will use throughout the
remainder of this section.

Definition. A term t of a hypothesis DNF is full with respect to target term T ∗ if t’s literals
are a superset of T ∗’s literals.

Generally it will be clear which target term we are referring to, so we will simply refer to
t as full. Intuitively, if t is full, then any necessary additions have been found, and t requires
only deletion edits.

Definition. The variables that do not occur in the initial theory are the outside variables,
and those that do occur in the initial theory are the inside variables.

278 J. GOLDSMITH, R. H. SLOAN AND G. TURÁN

5.1.1. BinarySearch and FillTerm. The subroutine BINARYSEARCH, Algorithm 3, de-
scribed in Section 4 on revising monotone DNF, actually works for unate as well as for
monotone DNFs. The precise formal guarantee about its behavior is given in Proposition 4.

Here is the general idea of how to use BINARYSEARCH to find outside literals of a new
term in the unate case. Assume x0 satisfies target term T ∗ that should be derived from editing
initial theory term t , and that MQ(x0 ∩ t) = 0. Clearly there must be some literal(s) not in
t that are in x0 ⊗ (x0 ∩ t) and that should be added to t . In the monotone case, repeated
calls to BINARYSEARCH normally find all such literals.

In the unate case, we may find only some but not all of the literals that need to be added,
because we no longer know how to ask a membership query on an instance with “literals in
t set as in x0 ∩ t , the necessary added literals we found set to on, and all other literals set
to off.” It will turn out that the first hypothesis term we construct will sometimes not be full,
but that when UNATEREVISEUPTOE initializes the second term of the hypothesis, it will be
full.

Another complication arises because BINARYSEARCH might return a literal that does not
belong to T ∗ but only to the other target term. We can detect this situation: it occurs when
BINARYSEARCH returns a literal l such that MQ(x0 with l set to off) = 1. We call such an l
a pivot, and we restart the algorithm UNATEREVISEUPTOE with x0 modified to have l set to
off and with the orientation of l now known. Our test for a pivot will also say we have found
a pivot whenever the initial instance x0 satisfies both target terms and BINARYSEARCH finds
an outside literal in only one target term; we also consider that to be a pivot.

In the unate case, the action of repeatedly calling BINARYSEARCH to find as many literals
as possible, and checking each new literal that is found to see if it is a pivot, is broken out
into the subroutine FILLTERM. (The analogous pseudocode for the monotone case consists
of Lines 14–22 of MONOREVISEUPTOE.) In the pseudocode, FILLTERM returns the special
value PivotException if a pivot is found. Also, FILLTERM keeps track of the number of
additions of literals it is proposing; if that number gets too large, then FILLTERM returns the
value “Failure”.

We will show in Section 5.3 that in one run of UNATEREVISEUPTOE FILLTERM can
return the value PivotException at most one time in calls made to initialize the first term
(Lemma 14).

5.1.2. Details of main algorithm. The procedure UNATEREVISEUPTOE, specified in Algo-
rithm 5, takes e and the initial formula ϕ = t1 ∨ t2 as inputs, and begins with an equivalence
query to FALSE. If that is not the target formula, then we get a positive counterexample,
x0, which is used to create a one-term hypothesis.

We begin with the assumption that x0 satisfies a target term that “should” be derived by
editing initial theory term t1. That is, the revision distance is minimized by editing t1 rather
than t2 to get this target term, or more precisely, the revision distance

e = |t1 ⊗ T ∗
1 | + |t2 ⊗ T ∗

2 | ≤ |t1 ⊗ T ∗
2 | + |t2 ⊗ T ∗

1 |. (2)

If this leads to a failure to revise the initial theory within e revisions, then the algorithm
restarts using the same x0 with the assumption that x0 satisfies a target term that should

THEORY REVISION WITH QUERIES 279

Algorithm 6 FILLTERM(t, v, w, e). Finds necessary additions to hypothesis term t from
v ⊗ w to cover a target term, if this can be done with at most e additions. Returns either
PivotException, “Failure”, or a term. (Note that e is passed by reference; the caller does see
changes made to e.)

Require: t (v) = t (w) = 1 and MQ(w) = 1
1: e0 = e
2: while MQ(v) == 0 and e > 0 do
3: l = BINARYSEARCH(v, w)

4: if MQ(w with position l flipped) == 1 then
5: e = e0

6: Add l to the set of known literal orientations
7: return PivotException(l)
8: end if
9: v = v with l flipped to agree with w

10: t = t ∧ l
11: e = e − 1
12: end while
13: if MQ(v) == 1 then {v covers term}
14: return t
15: else {e ≤ 0, so all edits already used}
16: e = e0

17: return “Failure”
18: end if

be derived by editing initial theory term t2. This is the purpose of the for k = 1, 2 control
structure in the pseudocode at Line 2.

In the entire remainder of Subsection 5.1, our discussion will assume that x0 satisfies
T ∗

1 , where the target formula is T ∗
1 ∨ T ∗

2 , with the terms labeled to minimize the revision
distance, as per (2).

The algorithm starts by asking two membership queries, MQ(x0 ∩ t1) and MQ(x0 ∩ t1),
to try to get some idea of whether the target term T ∗

1 contains any literals not in t1. Given
that x0 satisfies target term T ∗

1 , we know that T ∗
1 can contain only those literals of t1 that

are set to on in x0 and/or literals not in t1.
There are three main cases depending on the answers to the two membership queries.

We cover them here in (what seems to us to be) increasing order of complexity, not in the
order of the pseudocode.

One case is that both membership queries return 1, in which case Line 18 is executed.
(This corresponds to Case I in the proof of Lemma 23.) Our initial one-term hypothesis is
h = t1 ∩ x0. In the proof of correctness (Lemma 23) there are two subcases. In the first case,
h is full; in the second case, h is not full. We do not at this point know which case we are in.

If, instead, MQ(x0 ∩ t1) = 0, then we use the subroutine FILLTERM to repeatedly perform
a binary search from x0 ∩ t1 to x0, and our initial one-term hypothesis is h = t1 ∩ x0 plus
those additional variables found by FILLTERM

280 J. GOLDSMITH, R. H. SLOAN AND G. TURÁN

We point out here two unusual ways that the call to FILLTERM might end: by returning
“Failure” or PivotException. FILLTERM will return “Failure” if it needs to find more than e
literals to be added. This indicates that either our assumption that x0 satisfies T ∗

1 is wrong,
or that our assumption that the revision distance between the initial and target formulas is
at most e is wrong. If FILLTERM fails, then the for k = 1 iteration is terminated.

PivotException(l), where l must be some literal that is set to on in x0, indicates one of
two things. One possibility is that x0 satisfied both target terms, and l is contained in exactly
one of those two terms. The other possibility is that l is contained in T ∗

2 and not in T ∗
1 .

Furthermore, at some intermediate point in the binary search from x0 ∩ t1 to x0, an instance
was considered that satisfied T ∗

2 .
In either case, the whole UNATEREVISEUPTOE algorithm is restarted with x0 modified

by setting l to off. Since l’s orientation is now known, a PivotException cannot recur, as x0,
x0 ∩ t1, and x0 ∩ t2 will all have l set to off.

The third and final starting case is that MQ(x0 ∩ t1) = 0 and MQ(x0 ∩ t1) = 1. By assump-
tion x0 satisfies T ∗

1 . The only difference between instances x0 and x0 ∩ t1 is on the variables
in t1\t2. It must be that T ∗

1 contains some variables from t2\t1, since MQ(x0 ∩ t1) = 0. Thus,
we can be certain that x ′ = x0 ∩ t1 satisfies the other target term, T ∗

2 .
We start our hypothesis term with t2 ∩ x ′, and use FILLTERM to find additional variables

outside of t2 that we may need to add, starting at (x ′ ∩ t2) and going up to the known
positive instance x ′. We must remember that our hypothesis term has actually been derived
from t2.

This completes the discussion of Lines 3–19 of UNATEREVISEUPTOE. In summary, if we
are in the proper iteration of the for loop, say k , then we now have a one-term hypothesis
that includes all literals of T ∗

k that are in the corresponding initial theory term tk . Any literals
in the hypothesis term that are not in tk are in T ∗

k and will never need to be deleted. We may
still need to delete from the hypothesis some literals of tk and/or add some more literals not
in tk .

We next describe how to handle positive counterexamples. Unlike the monotone case,
once we have a one-term hypothesis, we often do not know whether subsequent positive
counterexamples should be used to generate a new hypothesis term, or to delete variables
from the existing hypothesis term. So, for each new positive counterexample y, we first
assume that y cannot be used to edit the existing term, and therefore that y should start a
new term. If subsequent editing does not produce a correct hypothesis within e edits, then
our assumption must have been wrong, and we use y to make deletions from the first term.
Our complexity analysis will show that this is not dreadful; in fact this will add at most
O(e log n) queries for making one deletion from the first hypothesis term.

We first try initializing a second hypothesis term to t2 ∩ y plus any literals found by
FILLTERM. We will show in Lemma 23 that if y cannot be used to make deletion edits to the
existing first hypothesis term, then this second hypothesis term is full when it is initialized.

If y can, in fact, be used to edit the first hypothesis term h, then after at most e edits
after using y to create a second term, (either we have succeeded in finding the target,
or) REVISE2TERMS will fail. If it fails, UNATEREVISEUPTOE uses y to edit the existing
hypothesis term h to h ∩ y. This deleting literals from the single term h will in this case be
the only result of this iteration of the while loop, Lines 21–33.

THEORY REVISION WITH QUERIES 281

We have now described how the algorithm UNATEREVISEUPTOE creates a two-term
hypothesis, except for describing how negative counterexamples to a one-term hypothesis
are processed. Negative counterexamples are handled by ADDLITERAL; we describe it next.

Once a two-term hypothesis has been created, any negative counterexamples are used to
add variables to the first term, and positive counterexamples are used to delete variables
from terms in a manner similar to the deletions-only case. Formally, that work is handled
by subroutine REVISE2TERMS, which we will describe after describing ADDLITERAL.

5.1.3. Negative counterexamples and algorithm AddLiteral. Now we describe what to
do with a negative counterexample to a one-term hypothesis. Negative counterexamples to
a one-term hypothesis can occur either because FILLTERM found only some but not all of
the literals in T ∗

1 \t1, or because we are in the case where MQ(x0 ∩ t1) = MQ(x0 ∩ t1) = 1.
Given x0 and such a negative counterexample y, we do a binary search on the variables of

(y⊗x0)\t1. Note that this may find only one necessary addition, not all of them; one variable
set to off is sufficient to make y a negative instance. There may be other necessary additions to
the hypothesis term that are set to on in both y and x0, and these will not be found at this point.
In fact, for simplicity of exposition and analysis, we will find only one necessary addition us-
ing y and then stop. As this work of finding one variable may also need to be done inside sub-
routine REVISE2TERMS, we break it out into its own subroutine, ADDLITERAL, Algorithm 7.

Notice that ADDLITERAL’s search for a literal to add is restricted to literals outside of
initial theory term t1. By assumption, the one-term hypothesis was initialized containing all
literals in t1 ∩ T ∗

1 , and no literals in T ∗
1 are ever deleted, so no literals in t1 ever need to be

added.
In general ADDLITERAL might find a literal from the “wrong” target term or a pivot.

This issue does not arise in our algorithm, because of the special nature of the inputs we
give ADDLITERAL. (The necessary conditions are given in Lemma 18, and in the proof of
Lemma 23 we argue that the inputs to ADDLITERAL meet the necessary conditions.)

5.1.4. Algorithm Revise2Terms. As its name suggests, the procedure REVISE2TERMS

takes a two-term hypothesis T1 ∨ T2 as input. It is loosely related to a procedure called
REFINEDOWN that was was introduced in our earlier work (Sloan & Turán, 1999). Like the

Algorithm 7 ADDLITERAL(y, x0, t). Inputs: negative instance y, positive instance x0, and
initial theory term t . Finds a literal l not in t that agrees with x0 and disagrees with y or
returns “Failure.” (Inputs to this routine use call-by-value; the caller does not see changes
to the input.)

1: for all variables v such that either v, v̄ ∈ t and y[v] �= x0[v] do
2: Turn off y[v] and x0[v] {Make y, x0 agree on vars of t}
3: end for
4: if MQ(x0) == 0 then
5: return “Failure”
6: end if
7: return BINARYSEARCH(y, x0)

282 J. GOLDSMITH, R. H. SLOAN AND G. TURÁN

Algorithm 8 REVISE2TERMS(T1, t1, T2, t2, x0, e). Edits the two-term hypothesis T1 ∨ T2,
but never makes more than e edits. The positive instance x0 was used to create T1 from
t1. Returns “Failure” if any call to ADDLITERAL returns “Failure.” Terminates either by
returning “Failure”, or with correct target formula. (Uses call-by-value)

1: h = T1 ∨ T2.
2: while (x = EQ(h)) �= “Yes!” do
3: if e ≤ 0 then {Used up all allowable edits}
4: return “Failure”
5: end if
6: if h(x) == 0 then {x is positive counterexample}
7: if MQ(x ∩ T2) == 1 then
8: e = e − |T2\(T2 ∩ x)|
9: T2 = T2 ∩ x

10: else
11: e = e − |T1\(T1 ∩ x)|
12: T1 = T1 ∩ x
13: end if
14: else {x is a negative counterexample}
15: if x satisfies T2 then
16: return “Failure”
17: end if
18: T1 = T1 ∧ ADDLITERAL(x, x0)

19: e = e − 1
20: end if
21: end while

procedure from our earlier work, REVISE2TERMS is used to delete unnecessary variables
from hypothesis terms, but unlike our earlier work, REVISE2TERMS may also add literals to
its first hypothesis term.

As we will discuss in Section 5.3, the second hypothesis term T2 should be full. (By
“should” we mean that if T2 is not full, then either the first term T1 of the hypothesis was
derived from the wrong branch of the main for loop of UNATEREVISEUPTOE or the second
term T2 was derived from a counterexample that could have been used to make deletion
edits to term T1 instead of starting a second term.) If T2 is full, then any instance satisfying
T2 must be positive. Therefore, REVISE2TERMS returns “Failure” if it receives a negative
counterexample satisfying T2.

Furthermore, the reason that the second term “should” be created full (the nature of the
counterexample used to create it) also guarantees that there is a literal l that is in the first but
not the second target term such that l is in hypothesis term T1 but not in hypothesis term T2.
It turns out that this allows REVISE2TERMS to handle positive counterexamples. For each
positive counterexample, REVISE2TERMS may safely first check whether it can be used to
make a deletion from T2; if not, it is used to make deletions from T1. This is explained in
detail in the proof of Lemma 20.

THEORY REVISION WITH QUERIES 283

5.2. An example run

We provide here an example of Algorithm 5, UNATEREVISEUPTOE. Suppose that the initial
theory is

ϕ = t1 ∨ t2 = (x1x4x6) ∨ (x2x3x6),

and the correct target formula is

ϕ∗ = (x2x4 x̄5) ∨ (x1x2x3).

Consider a call of UNATEREVISEUPTOE(t1, t2, estart), for any estart ≥ 6, which is the revision
distance from ϕ to ϕ∗.

Let x0 = 111100 be the initial positive counterexample. Consider the k = 1 iteration of
the main for loop, which starts at Line 2. Since MQ(x0 ∩ t1) = MQ(111100 ∩ x1x4x6) =
MQ(100110) = 0, the if at Line 3 directs the algorithm into Lines 4–8, and we call FILLTERM

to see what additional literals must be added to the literals x1x4 that are in t1 and set to
on in x0. That is, we call FILLTERM(t1 ∩ x0, x0 ∩ t1, x0, estart), or, evaluating the parameters,
FILLTERM(x1x4, 100110, 111100, estart).

Now FILLTERM calls BINARYSEARCH(100110, 111100) to find a literal from 100110 ⊗
111100 that is in the target formula. Say BINARYSEARCH returns x3. This could happen as
follows. In the first iteration of the while loop that starts at Line 3 of BINARYSEARCH, mid
could be set to 111110 (i.e., the choice of d1 is {x2, x3}), and when MQ(mid) = 1, pos is
replaced by that value of mid, and the second iteration of the while loop sets mid to 110110.
Now MQ(mid) = 0, so in this iteration neg is replaced by mid. Now neg ⊗ pos = x3, and
so BINARYSEARCH returns x3.

Now FILLTERM determines that MQ(111100 with position x3 flipped) = 1 (at Line 4),
and FILLTERM returns PivotException(x3). This causes UNATEREVISEUPTOE to restart at
Line 2, with x0 being modified by turning off x3, so in the restarted algorithm, x0 = 110100.
Incidentally, turning off the pivot x3 has given us an x0 that satisfies only one term of
the target formula. Now the k = 1 iteration of the for loop beginning at Line 2 finds
MQ(x0 ∩ t1) = MQ(110100 ∩ x1x4x6) = MQ(100110) = 0, as before, so we again go to call
FILLTERM from Line 4 of UNATEREVISEUPTOE. This time the x0 parameter is different;
the call is to FILLTERM(x1x4, 100110, 110100, estart). In the first iteration of its main while
loop, Algorithm FILLTERM calls BINARYSEARCH(100110, 110100). Say BINARYSEARCH

returns x̄5. Now FILLTERM makes the query MQ(100100) = 0, so FILLTERM calls BINA-
RYSEARCH again, which this time would return x2. Now MQ(110100) = 1, so FILLTERM

returns x1x2x4 x̄5. Note that FILLTERM also decremented the “number of edits” parameter
e, so back in UNATEREVISEUPTOE, e = estart − 2.

UNATEREVISEUPTOE’s hypothesis now is h = x1x2x4 x̄5, and execution moves to the
while loop at Line 22. Say the counterexample returned from the equivalence query is
y = 011101. We first try to use y to initialize a second hypothesis term derived from t2
by calling FILLTERM(t2 ∩ y, y ∩ t2, y, estart − 2) = FILLTERM(x2x3x6 ∩ 011101, 011101 ∩
x2x3x6, 011101, estart − 2) = FILLTERM(x2x3x6, 011011, 011101, estart − 2). Now, inside
FILLTERM, we first find that MQ(011011) = 0, so we begin making calls to BINARYSEARCH

looking for literals from 011011 ⊗ 011101 = {x4, x̄5} to add to x2x3x6. In fact, it will turn

284 J. GOLDSMITH, R. H. SLOAN AND G. TURÁN

out that both x4 and x̄5 need to be added and neither is a pivot, so FILLTERM will return the
hypothesis terms x2x3x4 x̄5x6, and will also decrement the number-of-edits-remaining pa-
rameter by another 2, so now back in UNATEREVISEUPTOE the number-of-edits-remaining
parameter will have the value estart − 4, and the hypothesis will contain the two (ordered)
terms x1x2x4 x̄5 and x2x3x4 x̄5x6. Notice that intuitively our attempt to start a second term
using y is not working out—we have two hypothesis terms that both cover the same one
target term. As we will see as we continue to trace through the algorithm, we will eventually
realize that y should be used to edit the first term, not to start a second term.

Right now, however, UNATEREVISEUPTOE is at Line 24 and FILLTERM returned a term.
So we call REVISE2TERMS with parameters T1 = x1x2x4 x̄5 and T2 = x2x3x4 x̄5x6; t1 and t2
coming from the initial formula, x0, and e = estart − 4. REVISE2TERMS begins by obtaining
a counterexample x to EQ(T1 ∨ T2). Say x = 111010. Now MQ(x ∩ T2) = MQ(111010 ∩
x2x3x4 x̄5x6) = MQ(011010) = 0. Therefore, we set T1 = T1 ∩ x = x1x2x4 x̄5 ∩ 111010 =
x1x2, and decrement e by 2, so now e = estart − 6. Now REVISE2TERMS again asks an
equivalence query; this time the query x = EQ(x1x2 ∨ x2x3x4 x̄5x6). Say x = 110010.

Now if the initial value of estart = 6, the test for e ≤ 0 at Line 3 of REVISE2TERMS causes
it to return “Failure” immediately. Intuitively, REVISE2TERMS has found that there is no
revision of the initial hypothesis passed to it that required only 2 revisions (beyond the ones
made before REVISE2TERMS was called).

Suppose instead that the initial value of estart was 8, so that at Line 3 we find e = 8 − 6
= 2 �= 0. In this case, we find that x is a negative counterexample that satisfies the first term
of the current hypothesis, so we look for an additional literal to add to the first hypothesis
term. We call ADDLITERAL(x, x0, t1) = ADDLITERAL(110010, 111100, x1x4x6).

ADDLITERAL will try to find some literal not in t1 on which x0 and the negative coun-
terexample 110010 disagree. Intuitively, this literal is on in x0 and is (at least one of) the
missing literal(s) in the hypothesis term satisfied by the negative counterexample. To ensure
that a binary search does not find a literal in t1, ADDLITERAL turns to off any such disagree-
ing literals before calling BINARYSEARCH. In this case it thus modifies x0 to be 110000,
and since MQ(110000) = 0, ADDLITERAL returns “Failure.” Then REVISE2TERMS returns
“Failure” when ADDLITERAL RETURNS “Failure”.

Once REVISE2TERMS returns “Failure”, Algorithm UNATEREVISEUPTOE uses its posi-
tive counterexample to perform deletions from the single term hypothesis h. In this case,
the update h = h ∩ y is h = x1x2x4 x̄5 ∩ 011101 = x2x4 x̄5. The number-of-edits-remaining
parameter e is updated to be estart − 3; this value is the previously saved value of estart − 2,
less the the number of literals deleted from h when h is set to h ∩ y, which in this case is 1.

We begin the while loop at Line 21 again by obtaining a counterexample y from the
query EQ(h) = EQ(x2x4 x̄5). Suppose that y = 111111. Now FILLTERM(t2 ∩ y, y ∩ t2, y, e)
is called at Line 24 to try to initialize a second hypothesis term. The parameters evaluate
to FILLTERM(x2x3x6 ∩ 111111, 111111 ∩ x2x3x6, 111111, estart − 3) = FILLTERM(x2x3x6,

011011, 111111, estart − 3). In this case, FILLTERM will make one call to BINARYSEARCH

and find the literal x1 to add, and thus return the term x1x2x3x6; also, FILLTERM decrements
the number-of-edits-remaining parameter e by 1, so now e = estart − 4.

Now at Line 24 REVISE2TERMS(x2x4 x̄5, t1, x1x2x3x6, t2, x0, e) is called, where t1 and
t2 are the two initial theory terms. This time, since x2x4 x̄5 is one term of the target, and

THEORY REVISION WITH QUERIES 285

the second term of the target is a subset of the literals x1x2x3x6, REVISE2TERMS must get
counterexamples that allow the second hypothesis term to be edited to the correct target term.
For instance, the counterexample x to the equivalence query EQ(x2x4 x̄5 ∨ x1x2x3x6) made
in Line 2 of REVISE2TERMS might be x = 111000. Then at Line 7 MQ(x ∩ x1x2x3x6) =
MQ(111010) = 1, so the second hypothesis term is updated to x1x2x3x6 ∩ 111000 = x1x2x3,
and the number-of-edits-remaining parameter is decremented by 1, the number of deletions
just made, so it now is estart − 6.

Next, finally, the equivalence query EQ(x2x4 x̄5 ∨ x1x2x3) returns “Yes!”, because we
have found the target formula.

5.3. Correctness and query complexity

We will prove the correctness and query complexity with a series of technical lemmas.
The lemmas are presented in roughly the same order as subroutines were presented in
Section 5.1.

Our overall strategy is to show that if e is at least as large as the revision distance between
t1 ∨ t2 and the target formula, then UNATEREVISEUPTOE(t1, t2, e) succeeds in finding the
target formula in time polynomial in e and log n. In particular, we will show that when
constructing the first term, the subroutine FILLTERM can return the value PivotException at
most once, and that if PivotException is not returned by FILLTERM then at least one of the
two iterations of the main for k loop of UNATEREVISEUPTOE succeeds. This will lead to
a worst-case query complexity of 3 · (the query complexity of the main for loop) plus the
query complexity of FILLTERM, since in the worst case we have an unsuccessful iteration
of the main for loop followed by an iteration that consists only of FILLTERM returning
PivotException, followed by two more iterations of the main for loop, the first failing to
find the target and the second succeeding.

We begin with a series of propositions and lemmas related to FILLTERM. First we analyze
the query complexity of FILLTERM (Proposition 13), and next we show why PivotException
can be returned only once in creating the initial term (Lemma 14).

Proposition 13. A call to FILLTERM(·, ·, ·, e) uses O(e log n) membership queries and no
equivalence queries.

Proof: FILLTERM makes at most e calls to BINARYSEARCH, which uses O(log n) mem-
bership queries per call. Additionally FILLTERM may make up to 2e + 1 other membership
queries. ✷

Lemma 14. In a run of UNATEREVISEUPTOE the value PivotException is returned at
most once from calls to FILLTERM from lines 4 and 11 of UNATEREVISEUPTOE.

Proof: Consider the value of the variable x0 immediately before the call to FILLTERM that
returns the value PivotException(l). Let the target formula be T ∗

1 ∨ T ∗
2 . It must be that x0

satisfies (at least) one target term, say T ∗
1 , but l is in only the other target term, T ∗

2 . This
is so because we know by Proposition 4 that BINARYSEARCH, which returned l, finds only
literals in the target, and we also know that MQ(x0 with l set to off) = 1.

286 J. GOLDSMITH, R. H. SLOAN AND G. TURÁN

After PivotException(l) is returned, x0 will always have l set to off, and thus x0 will satisfy
only T ∗

1 . For any t ′, instance x0 ∩ t ′ must also have l set to off, since the orientation of l is now
known. Now for all subsequent calls to BINARYSEARCH by FILLTERM(t ′ ∩ x0, x0 ∩ t ′, x0, e),
literal l will always be turned off, because for all variables on which FILLTERM’s two input
instances agree, all instances for which BINARYSEARCH asks membership queries also have
that same agreed upon value.

Therefore, no call to BINARYSEARCH by FILLTERM(t ′, x0 ∩ t ′, x0, e) can return any literal
not in T ∗

1 , and thus no further pivots will be found. ✷

Next, Lemma 15 says that FILLTERM does not add extraneous literals to t . Immediately
after Lemma 15, we give a lemma concerning the specific case of using FILLTERM to
initialize the second term of the hypothesis at Line 24 of UNATEREVISEUPTOE.

Lemma 15. Let y be a positive instance that satisfies term T ∗ of the target formula.
Consider a call to FILLTERM(t, x, y, e) such that instances x and y both satisfy term t,
and |T ∗\t | ≤ e. If FILLTERM does not return PivotException, then it returns the term
(t∧some or all literals of T ∗\t). This uses O(log n) · (number of literals it added) member-
ship queries.

Proof: First of all, if T ∗ ⊆ t , then since x satisfies t , we will have MQ(x) = 1 in Line 1,
and correctly return the unmodified term t .

If y satisfies T ∗ and PivotException is not returned, then each call to BINARYSEARCH

finds a necessary addition to the term t using at most O(log n) membership queries. ✷

We will show in the main technical lemma, Lemma 23, that the conditions of Lemma 16
will hold when FILLTERM is used to initialize a second hypothesis term, when the first
hypothesis was not derived from initial theory term t .

Lemma 16. Let y be a positive instance of the unate two-term target DNF T ∗
a ∨ T ∗

b . If
there is a literal l of known orientation that is in T ∗

a but is set to off in y, then, for any
nonempty term t, if e > |T ∗

b − (t ∩ y)|, then FILLTERM(t ∩ y, y ∩ t, y, e) returns the term
(t ∩ y) ∧ (T ∗

b \(t ∩ y)), which is full with respect to T ∗
b , and does not contain l.

The total number of queries used to initialize the term is at most O(log n) times the
number of literals in the new hypothesis term that are not in t . If the new hypothesis term
is a subset of t, then the total number of queries is O(1).

Proof: Notice that y must satisfy T ∗
b and must not satisfy T ∗

a . Since l’s orientation is
known, l will be off in both y ∩ t and y, and therefore in all intermediate instances for which
BINARYSEARCH asks membership queries. Therefore, a PivotException cannot occur, and
FILLTERM cannot terminate before it has found all literals in T ∗

b .
Since l is off in y, it cannot be in the returned hypothesis.
The query complexity follows from Lemma 15. ✷

The next two lemmas discuss the complexity and correctness of ADDLITERAL.

THEORY REVISION WITH QUERIES 287

Proposition 17. ADDLITERAL uses no equivalence queries and at most O(log n) mem-
bership queries.

Proof: ADDLITERAL makes one membership query before calling BINARYSEARCH, and
BINARYSEARCH makes no equivalence queries and O(log n) membership queries. ✷

We will later show in the main lemma, Lemma 23, that the x0 argument to ADDLITERAL

does satisfy the technical condition stated at the end of Lemma 18. This condition is what
allows us to prove that ADDLITERAL always finds a literal from the “correct” one of the two
target terms.

Lemma 18. Let T ∗
1 be a term of the target formula that is satisfied by positive instance

x0. Let h be a (hypothesis) term that contains all literals of T ∗
1 ∩ t, for initial theory term

t. Let y be a negative instance of the target that satisfies h.
If x0 satisfies h, and if either the target formula consists of the single term T ∗

1 , or the
target formula has a second term T ∗

2 and x0 has the property that for every literal l in
T ∗

2 \(t ∪ h), instance x0 has l set to off, then Algorithm ADDLITERAL(y, x0, t) finds a literal
in T ∗

1 \(t ∪ h) on which x0 and y disagree.

Proof: If the conditions of the lemma are met, then both y and x0 must have all literals in
T ∗

1 ∩ t set to on, since y and x0 both satisfy h. Thus, x0 and y should still have all the literals
of T ∗

1 ∩ t set to on after x0 and y are altered in Line 2. Therefore, x0 should still satisfy T ∗
1 ,

so if the membership query in Line 4 returns 0, then the conditions of the lemma must be
violated.

The altered y must still be a negative instance, since it was changed only by changing
variables of known orientation from “on” to “off.” Since y is a negative instance and x0 is
a positive instance, BINARYSEARCH will return a literal that is in the target formula with
the orientation of x0. Since the altered x0 and y agree on t ∪ h, by the condition on x0, this
returned literal must be in T ∗

1 \(t ∪ h). ✷

Next we consider the procedure REVISE2TERMS.

Proposition 19. REVISE2TERMS uses O(e log n) membership queries, and O(e) equiva-
lence queries, and always returns either the target formula or “Failure.”

Proof: The only way the algorithm can terminate is either by having an equivalence query
return “Yes!” or by returning “Failure.”

For each positive counterexample x , we will have made one equivalence query (to obtain
x) and we make one membership query, then we decrement the parameter e by at least 1.
For each negative counterexample x , we will have made one equivalence query (to obtain
x) and we make one call to ADDLITERAL, which uses O(log n) membership queries, and
we decrement the parameter e by 1. ✷

Lemma 20. Let the target formula be T ∗
1 ∨ T ∗

2 and the initial formula be t1 ∨ t2. Consider
a call to REVISE2TERMS(T1, t1, T2, t2, x0, e) with a two term hypothesis T1 ∨ T2 such that

288 J. GOLDSMITH, R. H. SLOAN AND G. TURÁN

hypothesis term T2 covers target term T ∗
2 and there is a literal l that is in both T1 and T ∗

1
that is not in T2. Let d = |T1 � T ∗

1 | + |T2 � T ∗
2 |.

1. If T1 covers T ∗
1 and e ≥ d, then REVISE2TERMS finds the target using O(d) queries.

2. Assume x0 is such that x0 satisfies T ∗
1 , and furthermore, that for each literal (if any) in

T ∗
2 \(t1 ∪ T1), that literal is set to off in x0. If T1 contains every variable in T ∗

1 ∩ t1 (but
does not necessarily cover T ∗

1) and if every variable in T1\t1 is in T ∗
1 , and if e ≥ d, then

REVISE2TERMS finds the target using O(d log n) queries.

Proof: Notice that T2 cannot cover T ∗
1 , because of l. We will maintain the invariant that

T2 always covers T ∗
2 , and if T1 covers T ∗

1 at the start, then that will also be maintained as
an invariant.

For any positive counterexample x , the instance x ′ = x ∩ T2 cannot satisfy T ∗
1 , because

it has l set to off. Thus, if MQ(x ′) = 1, then x ′ and x must both satisfy T ∗
2 , so we can set

T2 = T2 ∩ x , and we have used one query to make at least one deletion edit to T2, and we
have maintained the invariant that T2 covers T ∗

2 .
If MQ(x ′) = 0, then x cannot satisfy T ∗

2 . Thus x must satisfy T ∗
1 , so we can set T1 = T1 ∩ x ,

and we have used one query to make at least one deletion edit to T1. Furthermore, if T1

covered T ∗
1 before this edit, then it still does after this edit.

In the case where T1 covers T ∗
1 , then all counterexamples must be positive counterexam-

ples, and we are done. If not, then the previous argument still applies to positive counterex-
amples.

Consider now a negative counterexample x . If T2 is full, then x cannot be negative and
satisfy T2, so x must satisfy T1. Lemma 18 guarantees that ADDLITERAL(x, x0, t1) will find
one necessary addition using at most O(log n) queries.

Thus the query complexity for Condition 2 of the lemma is O(|T2\T ∗
2 | + |T1\T ∗

1 |) +
O(|T ∗

1 \T1| · log n) = O(d log n), since d = O(|T2\T ∗
2 | + |T1\T ∗

1 |) + O(|T ∗
1 \T1|). ✷

Remark. It can happen after some number of deletions to T2 that T2 ⊂ T1. In this case,
for any positive counterexample x , MQ(x ∩ T2) = 0, and at some point setting T1 = T1 ∩ x
will shrink T1 so that it no longer contains T2.

We next make an observation about REVISE2TERMS that follows immediately from an
examination of its code.

Observation 21. When REVISE2TERMS is called with its maximum number of edits pa-
rameter e set to d , then it makes O(d log n) queries.

The next pair of lemmas are the heart of the correctness argument. The first, Lemma 22,
gives a limit on the number of queries consumed by UNATEREVISEUPTOE when e is too
small, and also during “wrong” choices of the branch of the main for loop. The second,
Lemma 23, argues that when UNATEREVISEUPTOE makes the “correct” choices, it finds the
target.

Lemma 22. Algorithm UNATEREVISEUPTOE(t1, t2, e) makes at most O(e2 log n) queries.

THEORY REVISION WITH QUERIES 289

Proof: The algorithm can be restarted at most once at Line 7 or 14 because of a Pivot-
Exception (by Lemma 14). Therefore, it suffices to bound the number of queries in one
iteration of the main for k = 1, 2 loop.

By Proposition 13, creating the initial one-term hypothesis in Lines 3–19 uses at most
O(e log n) queries. In each iteration of the while loop, Lines 21–33, the parameter e de-
creases by at least 1, so that loop is executed at most e times. Inside that while loop, all
queries are made inside subroutines. By Propositions 13, 19, and 17, at most O(e log n)

queries are made in the combined subroutine calls of any one iteration of the while loop.
As claimed, this gives a worst-case query complexity of O(e2 log n). ✷

Lemma 23. Let ϕ0 = t1 ∨ t2 be an initial theory, and let ∗ = T ∗
1 ∨ T ∗

2 be a target theory,
with the T ∗

i labeled so that e ≥ |t1 ⊗ T ∗
1 | + |t2 ⊗ T ∗

2 | ≤ |t1 ⊗ T ∗
2 | + |t2 ⊗ T ∗

1 |. Algorithm
UNATEREVISEUPTOE(t1, t2, e) finds the target theory using at most O(e2 log n) queries.

Proof: Assume that the target concept is not FALSE, and let x0 be the positive counterex-
ample from the initial equivalence query.

By Lemma 14, the value PivotException is returned at most once by a call to FILLTERM

from either Line 4 or 11, and by Lemma 22, at most O(e2 log n) queries will be used through
the time the algorithm restarts after such a PivotException. So, from now on, we assume that
PivotException will not be returned from calls to FILLTERM at either Line 4 or 11 (either
because that never happens for this particular x0, or because it has already happened once
and the algorithm has restarted with a modified x0).

We will argue that if x0 satisfies T ∗
1 , then the first iteration of the main for loop must find

the target formula in the specified number of queries. Now, if x0 does not satisfy T ∗
1 , it must

satisfy T ∗
2 . If x0 satisfies T ∗

2 but not T ∗
1 , then the first iteration of the main for loop may

fail after O(e2 log n) queries, but in that case, the for k = 2 iteration will find the target in
O(e2 log n) queries, and the argument is exactly analogous to the case where x0 satisfies only
T ∗

1 . Thus it suffices to prove that if x0 satisfies T ∗
1 , the k = 1 iteration of the for loop succeeds.

From here forward, we assume x0 satisfies T ∗
1 . We proceed by cases to discuss the cre-

ation of the first term of the hypothesis. The goal of this discussion is for each case to get
to a point where we can finish the proof by using Lemmas 16 and 20.

Case I: Both MQ(x0 ∩ t1) = 1 and MQ(x0 ∩ t1) = 1.
The initial one-term hypothesis h created in Line 18 of UNATEREVISEUPTOE is t1 ∩ x0.
I.i. T ∗

1 ⊆ t1.
Since T ∗

1 (x0) = 1, it must be that h = t1 ∩ x0 covers T ∗
1 . Creating the term h used only a

constant number of queries. In Case I.i, we will maintain the hypothesis term h’s covering
T ∗

1 as an invariant. Thus, any counterexample to EQ(h), where h is one term, must be a
positive counterexample.

For each positive counterexample y to h, if y satisfies T ∗
1 , then, as we discuss below, we

will ultimately use y to make deletions to h, by setting h = h ∩ y. If positive counterexample
y does not satisfy T ∗

1 , then since h covers T ∗
1 , it holds that

at least 1 literal l of T ∗
1 is both in h and set to off in y. (3)

I.ii. T ∗
1 �⊆ t1.

290 J. GOLDSMITH, R. H. SLOAN AND G. TURÁN

That is, T ∗
1 contains variables not in t1. Since the operation x0 ∩ t1 flips the setting of all

variables of x0 not in t1, instance x0 ∩ t1 cannot satisfy T ∗
1 , so

x0 ∩ t1 must satisfy T ∗
2 . (4)

Since x0 ∩ t1 has all variables in t2\t1 set to off,

T ∗
2 has no literals from t2\t1. (5)

In order to apply Lemma 18 for adding literals when we receive negative counterexamples,
we wish to show that h contains all literals of T ∗

1 ∩ t1 and that x0 has all literals of T ∗
2 \(t1 ∪ h)

set to off.
Since h is initialized to t1 ∩ x0 and x0 satisfies T ∗

1 , it must be that h does contain all literals
of T ∗

1 ∩ t1.
We can split the literals of T ∗

2 into three groups: outside literals, literals in t2\t1, and
literals in t1. By Fact (4), x0 must have all T ∗

2 ’s outside literals off, since x0 and x0 ∩ t1
disagree on all those literals. Fact (5) says that T ∗

2 contains no variables in t2\t1. Therefore,
x0 has all literals in T ∗

2 \t1 set to off.
Thus, Lemma 18 applies when we use a negative counterexample y to add a literal to h

using subroutine ADDLITERAL(y, x0, t1). Lemma 18 says that we add a necessary literal to
h at the cost of O(log n) queries.

Now consider a positive counterexample y to EQ(h). If y covers all the inside variables
of T ∗

1 , then we will ultimately edit h to become h ∩ y. If not, then Fact (3) once again holds.

Case II: MQ(x0 ∩ t1) = 0.
This implies that T ∗

1 �⊆ t1, since x0 satisfies T ∗
1 . In this case, we call FILLTERM(t1 ∩ x0, x0

∩ t1, x0, e).
If PivotException is not returned, then Lemma 15 says that FILLTERM will find some

necessary additions to t1 ∩ x0 using O(a log n) queries, where a = |T ∗
1 \(t1 ∩ x0)| is the

number of additions found.
If FILLTERM found all the outside literals, then there will never be any negative coun-

terexamples. If it did not, then we need to show that Lemma 18 can be applied. In particular,
we will need to show that all the literals of T ∗

2 not in t1 ∪ h are set to off in x0.
If the a outside literals that FILLTERM found were not all the outside literals of T ∗

1 , then let
x ′ = (x0 ∩ t1) with those a literals flipped to on. When FILLTERM halted, it must have been
because MQ(x ′) = 1. Furthermore, x ′ does not satisfy T ∗

1 , by the assumption that FILLTERM

did not find all the outside variables of T ∗
1 . Therefore, x ′ satisfies T ∗

2 .
Now x ′ agrees with x0 ∩ t1 on all variables outside t1 ∪ h, where h is the hypothesis

immediately after FILLTERM is returned. Thus, for all outside literals of T ∗
2 not in t1 ∪ h,

x0 has them off (since x0 ∩ t1 has them on). Any inside literal of T ∗
2 in t2\t1 must be in h,

because all those literals were off in x0 ∩ t1, but x ′ satisfies T ∗
2 , and h contains all literals

on which x0 ∩ t1 and x ′ differ.
For positive counterexamples, we have the same argument as in Case I.

Case III: MQ(x0 ∩ t1) = 1, and MQ(x0 ∩ t1) = 0.

THEORY REVISION WITH QUERIES 291

Notice that in this case T ∗
1 must contain variables not in t1, specifically some variables

from t2\t1. (If the necessary additions to t1 ∩ x0 were all outside of t2 then MQ(x0 ∩ t1)
would be 1.) Furthermore, since those variables are off in x0 ∩ t1, it must be that x0 ∩ t1
satisfies T ∗

2 .
So x0 ∩ t1 is a positive example that definitely satisfies term T ∗

2 (and not term T ∗
1).

Furthermore, T ∗
2 contains no literals in t2\t1, but T ∗

2 must contain at least one outside
literal. Therefore, it must be that MQ((x0 ∩ t1) ∩ t2) = 0, since that instance has the outside
literals satisfied by x0 ∩ t1 set to off.

Thus Case II applies, with the roles of t1, T ∗
1 and t2, T ∗

2 switched and x0 ∩ t1 replacing
x0.

This concludes the discussion of initializing the first term. Now we know we have a
one-term hypothesis, and that we can handle negative counterexamples.

If we receive a positive counterexample y such that Fact (3) holds, then Lemma 16 applies,
so we are guaranteed that FILLTERM(t2 ∩ y, y ∩ t2, y, ·) returns a term that covers T ∗

2 . By
Lemma 15, the number of queries consumed by that call to FILLTERM will be O(log n)

times |T ∗
2 − (t2 ∩ y)|, and since y satisfies T ∗

2 , we have that T ∗
2 − (t2 ∩ y) = T ∗

2 − t2. In other
words, the number of queries consumed is O(log n) times the number of outside variables
added to the second hypothesis term.

If instead Fact (3) does not hold for positive counterexample y, then y agrees with every
literal that is in both h and T ∗

1 , then setting h = h ∩ y performs necessary deletions from h.
In the worst case, we may have used O(e log n) queries inside FILLTERM before FILLTERM

failed and returned, and y was then instead used to make one necessary deletion from the
one term h.

Once we do have a call to FILLTERM that satisfies (3), we are in the subroutine RE-
VISE2TERMS. FILLTERM cannot have added the literal l to the second term, so the conditions
of Lemma 20 are met. Thus REVISE2TERMS performs only deletions to our two-term hy-
pothesis, using only a constant number of queries per deletion.

Note that in the cases where the first hypothesis term is not yet full, the conditions we
proved on x0 that guaranteed via Lemma 18 that ADDLITERAL could successfully process
negative counterexamples to a one-term hypothesis still hold. That is why REVISE2TERMS

can successfully use ADDLITERAL to process negative counterexamples to the first hypoth-
esis term.

The dominant factor in the query complexity is the O(e log n) queries we might use per
deletion from the first term before the second term is initialized, giving an overall query
bound of O(e2 log n). ✷

Theorem 24. There is a revision algorithm for two-term unate DNF in the general model
of revisions, using O(e2 log n) queries, where n is the number of variables in the universe
and e is the revision distance between the initial and target formulas.

Proof: We make repeated calls to UNATEREVISEUPTOE with the error parameter set to
1, 2, 4, 8, . . . until UNATEREVISEUPTOE returns success. By Lemma 23, this happens by
the time the number-of-edits-remaining parameter reaches or first surpasses e when the
target contains two terms. A similar, but simpler argument shows that the same is true if the
target contains only one term.

292 J. GOLDSMITH, R. H. SLOAN AND G. TURÁN

The only thing left to argue is that the calls to UNATEREVISEUPTOE with too-small values
of e cumulatively used only the allowed number of membership queries. A careful analysis
of the proof of Lemma 23 shows that all these failing calls to UNATEREVISEUPTOE also
consume only O(e2 log n) queries. ✷

6. A hard monotone DNF

The results of Sections 3 and 4.3 show that for deletion-type revisions, monotone DNF can
be efficiently revised if either the terms are small or there are only a few terms. A third type of
restriction is to assume that the terms have small overlap. In the extreme case this means that
the terms are disjoint, that is, we are dealing with read-once DNF. We showed (Goldsmith
et al., 2000; Sloan & Turán, 1999; Szörényi, 2000) that efficient revision is possible in this
case as well. In this section, we show that at least one of these restrictions is necessary,
as there are monotone DNF expressions with many large terms having large overlap that
cannot be revised efficiently. A more precise understanding of the relationship between the
revision complexity of monotone DNF and the different combinatorial parameters appears
to be an interesting open problem.

Consider the variables x1, . . . , xn, y1, . . . , yn and let ϕn = t1 ∨ · · · ∨ tn , where, for
i = 1, . . . , n,

ti = x1 ∧ · · · ∧ xi−1 ∧ xi+1 ∧ · · · ∧ xn ∧ yi .

Theorem 25. The formula ϕn requires at least n −1 membership and equivalence queries
to be revised, even if it is known that exactly one literal yi is deleted.

Proof: We describe an adversary strategy for answering the queries of any learning algo-
rithm. Let ψi be the formula obtained from ϕn by deleting the single occurrence of yi . Thus,
initially the set of possible target concepts is � = {ψ1, . . . , ψn}. Using the adversary strat-
egy described below, each query eliminates at most one concept from �, and this implies
the claimed lower bound.

Consider a truth assignment (a, b), where a is a truth assignment to the xi ’s and b is a
truth assignment to the yi ’s. Then the membership query MQ(a, b) is answered as follows.
If a has at most n − 2 bits that are 1, then MQ(a, b) = 0. This does not eliminate any
concepts from �. If a has n − 1 bits that are 1 and ai = 0, then MQ(a, b) = bi . If bi = 1
then this does not eliminate any concept from �. If bi = 0 then ψi is eliminated from �. If
a = 1 then MQ(a, b) = 1. This does not eliminate any concept from �.

Now consider an equivalence query EQ(θ), where θ is a revised version of ϕn . Thus θ

may be obtained from ϕn by deleting any number of literals or terms. If θ contains a term t
with at most n − 2 of the xi ’s, then return the negative counterexample (t, 1). This does not
eliminate any concept from �. If θ contains a term t such that t contains all the x variables
except xi and it does not contain yi , then return the negative counterexample (t, fi), where
fi has all 1’s except in the i th position. This eliminates only ψi from �. Finally, if θ is ϕn

itself, then return the positive counterexample (1, 0). This does not eliminate any concept
from �. ✷

THEORY REVISION WITH QUERIES 293

7. Further results and open problems

Besides the classes considered in this paper, efficient theory revision algorithms for read-
once formulas and propositional Horn formulas are given in Goldsmith and Sloan (2000),
Goldsmith et al. (2000, 2001), Sloan and Turán (1999), Szörényi (2000). There remain
many open problems. It would be interesting to extend the revision algorithm for unate
two-term DNF to the case of several terms, and to eliminate the restriction on changing
the orientation of a literal. Although the last section contains a negative result for revising
general DNF, there are no lower bounds known for the subclasses discussed in this paper.
Revising propositional Horn sentences is an important problem from the point of view of
practical revision algorithms in machine learning. Some open problems in this direction are
discussed in Goldsmith et al. (2001).

From a broader perspective, theory revision models learning situations where the learn-
ing process starts with a roughly correct theory. It can be argued that for many complex
learning tasks having such an initial theory is indispensable for successful learning. Un-
derstanding the possibilities and limitations of efficient revision algorithms in this general
context appears to be an important task for computational learning theory.

Acknowledgments

Various parts of this paper are based on preliminary results that appeared in three conference
papers in COLT 99 (Sloan & Turán, 1999), STOC 2000 (Goldsmith & Sloan, 2000), and
COLT 2000 (Goldsmith et al., 2000).

Judy Goldsmith and Robert Sloan are grateful to Martin Mundhenk for helpful discussions
on the algorithm for revising monotone DNF in Section 4. All authors thank both Balázs
Szörényi and one of the anonymous referees for very detailed, helpful feedback that has
hopefully made this article much more readable.

Notes

1. This theory seems to work well for the second author’s five-year old.
2. The AI notion of a theory encompasses both the notion of a single concept as well as richer constructs, such as

multiple concepts being learned at the same time. Certainly the revision of propositional logic concepts falls
within the AI notion of theory revision, and in this paper we will use the terms theory revision and concept
revision interchangeably.

3. In the literature, the restriction that h come from the concept class is called proper equivalence queries.
4. Incidentally, at this point x may still satisfy more than one target term, but our argument applies to any one of

those.

References

Alexin, Z., Gyimóthy, T., & Boström, H. (1997). IMPUT: An interactive learning tool based on program special-
ization. Intelligent Data Analysis, 1:4. 〈http://www-east.elsevier.com/ida/〉.

Angluin, D. (1988). Queries and concept learning. Machine Learning, 2:4, 319–342.

294 J. GOLDSMITH, R. H. SLOAN AND G. TURÁN

Angluin, D., Hellerstein, L., & Karpinski, M. (1993). Learning read-once formulas with queries. J. ACM, 40,
185–210.

Argamon-Engelson, S., & Koppel, M. (1998). Tractability of theory patching. Journal of Artificial Intelligence
Research, 8, 39–65.

Blum, A., Hellerstein, L., & Littlestone, N. (1995). Learning in the presence of finitely or infinitely many irrelevant
attributes. J. of Comput. Syst. Sci., 50:1, 32–40. Earlier version in 4th COLT, 1991.

Bshouty, N., Hancock, T., Hellerstein, L., & Karpinski, M. (1994). An algorithm to learn read-once threshold
formulas, and transformations between learning models. Computational Complexity, 4, 37–61.

Bshouty, N., & Hellerstein, L. (1998). Attribute-efficient learning in query and mistake-bound models. J. Comput.
Syst. Sci., 56, 310–319.

Case, J., Kaufmann, S., Kinber, E., & Kummer, M. (1997). Learning recursive functions from approximations. J.
Comput. Syst. Sci., 55, 183–196.

Davis, R., & Hamscher, W. (1988). Model-based reasoning: Troubleshooting. In H. E. Shrobe, & the
American Association for Artificial Intelligence (Eds.), Exploring artificial intelligence: Survey talks
from the national conferences on artificial intelligence (Ch. 8, pp. 297–346). San Mateo, CA: Morgan
Kaufmann.

de Kleer, J., Mackworth, A. K., & Reiter, R. (1992). Characterizing diagnoses and systems. Artificial Intelligence,
56, 197–222.

Goldsmith, J., & Sloan, R. H. (2000). More theory revision with queries. In Proc. 32nd Annu. ACM Sympos.
Theory Comput. (pp. 441–448).

Goldsmith, J., Sloan, R. H., Szörényi, B., & Turán, G. (2000). Improved algorithms for theory revision with
queries. In Proc. 13th Annu. Conference on Comput. Learning Theory (pp. 236–247). San Francisco: Morgan
Kaufmann.

Goldsmith, J., Sloan, R. H., Szörényi, B., & Turán, G. (2001). Theory revision with queries: Horn and related
formulas. In preparation.

Helmbold, D. P., & Long, P. M. (1994). Tracking drifting concepts by minimizing disagreements. Machine
Learning, 14:1, 27–45.

Jain, S., & Sharma, A. (1991). Learning in the presence of partial explanations. Inform. Comput., 95:2,
162–191.

Kohavi, Z. (1978). Switching and finite automata theory. 2nd edn. New York, NY: McGraw-Hill.
Koppel, M., Feldman, R., & Segre, A. M. (1994). Bias-driven revision of logical domain theories. Journal of

Artificial Intelligence Research, 1, 159–208.
Laird, J. E., Newell, A., & Rosenbloom, P. S. (1987). SOAR: An architecture for general intelligence. Artificial

Intelligence, 33:1, 1–64.
Marcotte, R. A., Neiberg, M. J., Piazza, R. L., & Holtzblatt, L. J. (1992). Model-based diagnostic reasoning using

VHDL. In J. M. Schoen (Ed.), Performance and fault modeling with VHDL (Ch. 6, pp. 304–399). Englewood
Cliffs, NJ: Prentice Hall.

Mooney, R. J. (1995). A preliminary PAC analysis of theory revision. In Computational learning theory and
natural learning systems, Vol. III: Selecting Good Models (Ch. 3, pp. 43–53). MIT Press.

Ourston, D., & Mooney, R. J. (1994). Theory refinement combining analytical and empirical methods. Artificial
Intelligence, 66, 273–309.

Reiter, R. (1987). A theory of diagnosis from first principles. Artificial Intelligence, 32, 57–95.
Richards, B. L., & Mooney, R. J. (1995) Automated refinement of first-order Horn-clause domain theories. Machine

Learning, 19, 95–131.
Rivest, R. L., & Sloan, R. (1994). A formal model of hierarchical concept learning. Inform. Comput., 114,

88–114.
Shapiro, E. Y. (1983). Algorithmic program debugging. Cambridge, MA: MIT Press.
Sloan, R. H., & Turán, G. (1999). On theory revision with queries. In Proc. 12th Annu. Conf. on Comput. Learning

Theory (pp. 41–52). New York, NY: ACM Press.
Szörényi, B. (2000). Revision algorithms in computational learning theory. Master’s thesis, Dept. of Computer

Science, University of Szeged. (In Hungarian.).
Towell, G. G., & Shavlik, J. W. (1993). Extracting refined rules from knowledge-based neural networks. Machine

Learning, 13, 71–101.

THEORY REVISION WITH QUERIES 295

Towell, G. G., & Shavlik, J. W. (1994). Knowledge-based artificial neural networks. Artificial Intelligence, 70:1/2,
119–165.

Uehara, R., Tsuchida, K., & Wegener, I. (1997). Optimal attribute-efficient learning of disjunction, parity, and
threshold functions. In Computational learning theory: EuroColt ’97, Berlin: Springer-Verlag (pp. 171–184).

Wrobel, S. (1995). First order theory refinement. In L. De Raedt (Ed.), Advances in ILP (pp. 14–33). Amsterdam:
IOS Press.

Received December 4, 2000
Revised June 14, 2001
Accepted June 20, 2001
Final manuscript July 2, 2001

