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Abstract. Binning and truncation of data are common in data analysis and machine learning. This paper addresses
the problem of fitting mixture densities to multivariate binned and truncated data. The EM approach proposed by
McLachlan and Jones (Biometrics, 44: 2, 571-578, 1988) for the univariate case is generalized to multivariate
measurements. The multivariate solution requires the evaluation of multidimensional integrals over each bin at
each iteration of the EM procedure. Naive implementation of the procedure can lead to computationally inefficient
results. To reduce the computational cost a number of straightforward numerical techniques are proposed. Results
on simulated data indicate that the proposed methods can achieve significant computational gains with no loss
in the accuracy of the final parameter estimates. Furthermore, experimental results suggest that with a sufficient
number of bins and data points it is possible to estimate the true underlying density almost as well as if the data
were not binned. The paper concludes with a brief description of an application of this approach to diagnosis of
iron deficiency anemia, in the context of binned and truncated bivariate measurements of volume and hemoglobin
concentration from an individual’s red blood cells.
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1. Introduction

In this paper we address the problem of fitting mixture densities to multivariate binned
and truncated data. The problem is motivated by the problem of developing automated
techniques for detection and classification of anemia. Over one billion people in the world
are anemic and at risk for major liabilities. In the case of iron deficiency anemia, for example,
these liabilities include mental and motor developmental defects in infants and weakness,
weight loss, and impaired work performance in adults (Osaki, 1993; Basta et al., 1979;
Edgerton et al., 1979). For diagnostic evaluation of anemia and monitoring the response
to therapy, blood samples from patients are routinely analyzed to determine the volume
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of the red blood cells (RBCs) and the amount of hemoglobin, the oxygen-transporting
protein of the red cell. Many anemia-related diseases are known to manifest themselves via
fundamental changes in the univariate volume distribution and the univariate hemoglobin
concentration of RBCs (Williams et al., 1990; McLaren, 1996).

Automated techniques have been recently developed which can simultaneously measure
both volume and hemoglobin concentration of RBCs from a patient’s blood sample. Flow
cytometric blood cell counting instruments (Technicon H*1, H*2, H*3; Bayer Corporation,
White Plains, NY) make measurements using a laser light scattering system to produce as
output a bivariate histogram on a 100 x 100 grid (known as a cytogram) in RBC volume and
hemoglobin concentration space (e.g., figure 1). Typically measurements are made on about
40,000 different red blood cells from a blood sample. Each bin in the histogram contains
a count of the number of red blood cells whose volume and hemoglobin concentration are
in the range defined by the bin. The data can also be truncated, i.e., the range of machine
measurement is less than the actual possible range of volume and hemoglobin concentration
values.

Current methods to differentiate between disorders of anemia on the basis of RBC
measurements are largely based on visual inspection of printed output of an individ-
ual’s bivariate volume-hemoglobin histogram, as produced by the flow cytometric in-
strument. In this context it would be highly cost-effective to have the ability to perform
automated low-cost accurate diagnostic screening of blood-related disorders using RBC
measurements. In Cadez et al. (1999) we presented a classification model for iron defi-
ciency anemia diagnosis which achieved of the order of 98% cross-validated classifica-
tion accuracy for this problem. An important component of the proposed technique was
the fitting of a bivariate normal mixture model to the binned and truncated cytogram
data for each individual being classified. In this paper we present a general solution
to the problem of fitting a multivariate mixture density model to binned and truncated
data.
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Figure 1. Example of a bivariate histogram for red blood cell data.
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Data in the form of histograms also play an important role in a variety of other pattern
recognition and machine learning problems. For example, in computer vision Swain and
Ballard (1991) describe the use of color histograms for object recognition. More recent work
in image retrieval relies heavily on the use of color and feature histograms (e.g., Flickner
etal., 1995; Maybury, 1997). A number of techniques in approximate querying of databases
and in data mining of massive data sets also use histogram representations (e.g., Poosala,
1997; Matias, Vitter, & Wang, 1998; Lee, Kim, & Chung, 1999).

More generally, binned and truncated data arise frequently in a variety of application
settings since many measuring instruments produce quantized data. Binning occurs sys-
tematically when a measuring instrument has coarse resolution compared to the variance of
measured values, e.g., a digital camera with finite precision for pixel intensity. Binning also
may occur intentionally when real-valued variables are quantized to simplify data collec-
tion, e.g., binning of a person’s age into the ranges 0—10, 10-20, and so forth. Truncation
can also easily occur in a practical data collection context, whether due to fundamental
limitations on the range of the measurement process or intentionally for other reasons.

For both binning and truncation, one can think of the original “raw” measurements as
being masked by the binning and truncation processes, i.e., we do not know the exact
location of data points within the bins or how many data points fall outside the measuring
range. It is natural to think of this problem as one involving missing data, i.e., the true
values (either within the bin or outside the truncation range) of the points are missing. The
Expectation-Maximization (EM) procedure is an obvious candidate for probabilistic model
fitting in this context.

The theory of using EM for fitting maximum likelihood finite-mixture models to univari-
ate binned and truncated data was developed in McLachlan and Jones (1988). The problem
in somewhat simpler form was addressed earlier by Dempster, Laird, and Rubin (1977)
when the EM algorithm was originally introduced. The univariate theory of McLachlan
and Jones (1988) can be extended in a straightforward manner to cover multivariate data,
although we are unaware of any prior published work which addresses this. The multivariate
implementation is subject to exponential time complexity and numerical instability. This
requires careful consideration and is the focus of this present paper. In Section 2 we extend
the results of McLachlan and Jones on univariate mixture estimation to the multivariate
case. In Section 3 we present a detailed discussion of the computational and numerical
considerations necessary to make the algorithm work in practice. Section 4 discusses ex-
perimental results on both simulation data and the afore-mentioned anemia classification
problem.

2. Basic theory of EM with bins and truncation

We begin with a brief review of the EM procedure. In the most general form, the EM
algorithm is an efficient way to find maximum likelihood model parameters if some part of
the data is missing. For a finite mixture model the underlying assumption (the generative
model) is that each data point comes from one of g component distributions. However, this
information is hidden in that the identity of the component which generated each point is
unknown. If we knew this information, the estimation of maximum likelihood parameters
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would be direct; one could estimate the mean and covariance parameters for each component
separately using the data points identified as being from that component. Further, the relative
count of data points in each component would be the maximum likelihood estimate of the
weight of the components in the mixture model.

We can think of two types of data, the observed data and the missing data. Accordingly, we
have the observed likelihood (the one we want to maximize), and the full likelihood (the one
that includes missing data and is typically easier to maximize). The EM algorithm provides
a theoretical framework that enables us to iteratively maximize the observed likelihood by
maximizing the expected value of the full likelihood. For fitting Gaussian mixtures, the EM
iterations are quite straightforward and well-known (see Bishop, 1995 for a tutorial treatment
of EM for Gaussian mixtures and see Little & Rubin, 1987; McLachlan & Krishnan, 1997
for a discussion of EM in a more general context). With binning and truncation we have two
additional sources of hidden information in addition to the hidden component identities for
each data point.

McLachlan and Jones (1988) show how to efficiently use the EM algorithm for this type
of problem. The underlying finite mixture model can be written as:

g
fl®) = mifi(x:6),
i=1

where the 7;’s are weights for the individual components, the f;’s are the component density
functions of the mixture model parameterized by 6, and @ is the set of all mixture model
parameters, ® = {m, 6}. The overall sample space H is divided into v disjoint subspaces H ;
(i.e., v bins), of which only the counts on the first 7 bins are observed, while the counts on
the last v — r bins are missing (these are the truncated regions). The (observed) likelihood
associated with this model (up to irrelevant constant terms) is given by Jones and McLachlan
(1990):

InL = njlnP; —ninP, (1)

r

Jj=1

where n is the total observed count:
j=1
and the P’s represent integrals of the probability density function (PDF) over bins:
P; = P;j(®) :/ f(x; @)dx,
‘ ”
P = P(®) =/ fx; ®)dx = ZPj
H j=1

The form of the likelihood function above corresponds to a multinomial distributional
assumption on bin occupancy.
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To invoke the EM machinery we first define several quantities at the p-th iteration: ®(»
and 6P represent current estimates of model parameters and E(j” ) [-] represents the expected
value within bin j with respect to the (normalized) current PDF f(x; @)/ P;(dP).
Specifically, for any function g(x):

1
i 8] P @) by flx )g(x) dx 2
We also define:

» _ ) j=1,...,r;
" {”Pf(q>(”))/P(<1’("’)) j=r41,. 3)
) (g = i1 0) )
T (x) = £ o@) %)
ci(p) = Zmi_p)E;p)[Ti(p)(X)]’ )

j=1

where all the quantities on the left-hand side (with superscript (p)) depend on the current
parameter estimates ®”) and/or #”), Each term has an intuitive interpretation. For example,
the m;’s represent a generalization of the bin counts to unobserved data. They are either
equal to the actual count in the observed bins (i.e., for j < r) or they represent the expected
count for unobserved bins (i.e., j > r). The expected count formalizes the notion that if there
is (say) 1% of the PDF mass in the unobserved bins, then we should assign them 1% of the
total data points. 7; (x) is the relative weight (Zle 7;(x) = 1) of each mixture component i
at point x. Intuitively it is the probability of data point x “belonging” to component i; ¢; is a
measure of the overall relative weight of component 7, the current estimate of the expected
number in the ith mixture component. Note that in order to calculate ¢; the local relative
weight 7; (x) is averaged over each bin, weighted by the count in the bin and summed over
all bins. This way, each data point within each bin contributes to ¢; an average local weight
for that bin (i.e. E;[7;(x)]). Compare this to the non-binned data where each data point
contributes to ¢; the actual local weight evaluated at the data point (i.e., 7; (x;), where x; is
the value of the data point).

Next, we use the quantities defined in the last equation to define the E-step and express
the closed form solution for the M-step at iteration (p + 1):

(p1) C(P)
P i
ni = v (P)’ (6)
Zj:lmj
v P (p)
oy _ 2=y B )] -
! Ci(p)
v (PP (p+1\2_(p)
o T mPEP[(x ) )]
[Ul_(l’ )] — J J J ! ! . (8)

clgp)
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These equations specify how the component weights (i.e., 7 ’s), component means (i.e., it’s)
and component standard deviations (i.e., o’s) are updated at each EM step. Note that the
main difference here from the standard version of EM (for non-binned data) comes from
the fact that we are taking expected values over the bins (i.e., Eg»p ) [-]). Here, each data point
within each bin contributes the corresponding value averaged over the bin, whereas in the
non-binned case each point contributes the same value but evaluated at the data point.

To generalize to the multivariate case, in theory all we need do is generalize Egs. (6)—(8)
to the vector/covariance cases:

(o+1) Cfp)

7T,-p = ﬁ, )
2
v (PP (p)

pin _ 2= E; [x5" %] (10)

Hi - RO ’
i
(225102 (p+1D) (p+D\+_(p)

S+ _ 23=1mj E; [(X_/'l’i )(X_ 1 ) T (X)] an

; .

C;p)

While the multivariate theory is a straightforward extension of the univariate case, the
practical implementation of this theory is considerably more complex due to the fact that
the approximation of multi-dimensional integrals is considerably more complex than the
univariate case.

Note that the approach above is guaranteed to find at least a local maximum of the
likelihood as defined by Eq. (1), irrespective of the form of the selected conditional prob-
ability model for missing data given observed data. Different choices of this conditional
probability model only lead to different paths in parameter space, but the overall maxi-
mum likelihood parameters will be the same. This makes the approach quite general as no
additional assumptions about the distribution of the data are required.

3. Computational and numerical issues

In this section we discuss our approach to two separate problems that arise in the multivari-
ate case: 1) how to perform a single iteration of the EM algorithm; 2) how to set up a full
algorithm that will be both exact and time efficient. The main difficulty in handling binned
data (as opposed to having standard, non-binned data) is the evaluation of the different ex-
pected values (i.e., EE-p ) [-]) at each EM iteration. As defined by Eq. (2), each expected value
in Egs. (9)—(11) requires integration of some function over each of the v bins. These inte-
grals cannot be evaluated analytically for most mixture models (even for Gaussian mixture
models). Thus, they have to be evaluated numerically at each EM iteration, considerably
complicating the implementation of the EM procedure, especially for multivariate data. To
summarize we present some of the difficulties:

— If there are m bins in the univariate space, there are now O (m?) bins in the d-dimensional
space (consider each dimension as having O (m) bins), which represents exponential
growth in the number of bins.
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— If in the univariate space each numerical integration requires O (i) function evaluations,
in multivariate space it will require at least O (i) function evaluations for comparable
accuracy of the integral. Combined with the exponential growth in the number of bins,
this leads to an exponential growth in the number of function evaluations. While the
underlying exponential complexity cannot be avoided, the overall execution time can
greatly benefit from carefully optimized integration schemes.

— The geometry of multivariate space is more complex than the geometry of univariate
space. Univariate histograms have natural end-points where the truncation occurs and
the unobserved regions have a simple shape. Multivariate histograms typically represent
hypercubes and unobserved regions, while still “rectangular,” are not of a simple shape
any more. For example, for a 2-dimensional histogram there are four sides from which
the unobserved regions extend to infinity, but there are also four “wedges” in between
these regions.

— For fixed sample size, multivariate histograms are much sparser than their univariate
counterparts in terms of counts per bin (i.e., marginals). This sparseness can be leveraged
for the purposes of efficient numerical integration.

3.1. Numerical integration at each EM iteration

The E step of the EM algorithm consists of finding the expected value of the full likelihood
with respect to the distribution of missing data, while the M step consists of maximizing this
expected value with respect to the model parameters ®. Eqs. (9)—(11) summarize both steps
for a single iteration of the EM algorithm. If there were no expected values in the equations
(i.e.,no EE-‘" ) [-] terms), they would represent a closed form solution for parameter updates.
With binned and truncated data, they are almost a closed form solution, but additional
integration is still required. One could use any of a variety of Monte Carlo integration
techniques for this integration problem. However, the slow convergence of Monte Carlo
is undesirable for this problem. Since the functions we are integrating are typically quite
smooth across the bins, relatively straightforward numerical integration techniques can be
expected to efficiently give solutions with a high degree of accuracy.

Multidimensional numerical integration consists of repeated 1-dimensional integrations.
For the results in this paper we use Romberg integration (see Thisted, 1988; Press et al.,
1992 for details). An important aspect of Romberg integration is selection of the order k of
integration. Lower-order schemes use relatively few function evaluations in the initialization
phase, but may converge slowly. Higher-order schemes may take longer at the initialization
phase, but converge faster. Thus, order selection can substantially affect the computation
time of numerical integration (we will return to this point later). Note that the order only
affects the path to convergence of the integration; the final solution is the same for any order
given the same pre-specified degree of accuracy.

3.2. Handling truncated regions

The next problem that arises in practice concerns the truncated regions (i.e., regions outside
the measured grid). If we want to use a mixture model that is naturally defined on the whole
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space we must define bins to cover regions extending from grid boundaries to co. In the
1-dimensional case it suffices to define 2 additional bins: one extending from the last bin
to 0o, and the other extending from —oo to the first bin. In the multivariate case it is more
natural to define a single bin

He=H\ D H;
j=1

that covers everything but the data grid, than to explicitly describe the out-of-grid regions.
The reason is that we can calculate all the expected values over the whole space H without
actually doing any integration. With this in mind, we readily write for the integrals over the
truncated regions:

/ fx@)ydx=1-=Y P;j(®) (12)

Hra j=1

/ fi(x:0)xdx = p; — Z/ fi(x; 0)x dx (13)
Hr+l j:] H/

/ 10 0)(x — 1) (% — )" dx
H7'+1

=3 —z;/ﬂfi(x; 0)(x — ) (x — )t dx. (14)
j= J

Note that no extra work is required to obtain the integrals on the right-hand side of the
equations above. The basic EM Egs. (9)—(11) require the calculation of expected values
similar to those defined in Eq. (2) for each bin. Note, however, that the only difference
between those expected values and integrals on the right-hand side of Eqs. (12)—(14) is
the normalizing constant 1/P;(®). Because the normalizing constant does not affect the
integration, it suffices to separately record normalized and unnormalized values of integrals
for each bin. The normalized values are later used in Egs. (9)—(11), while the unnormalized
values are used in Eqs. (12)—(14).

For efficiency we take advantage of the sparseness of the bin counts. Assume that we
want to integrate some function (i.e., the PDF) over the whole grid. Further assume that we
require some prespecified accuracy of integration §. This means that if the relative change of
the value of the integral in two consecutive iterations falls below § we consider the integral
to have converged (8 is chosen to be a small number, typically of the order of 107> or less).
Assume further that we perform integration by integrating over each bin on the grid and
by adding up the results. Intuitively, the contribution from some bins will be large (i.e.,
from the bins with significant PDF mass in them), while the contribution from others will
be negligible (i.e., from the bins that contain near zero PDF mass). If the data are sparse,
there will be many bins with negligible contributions. The goal is to optimize computational
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resource usage by minimizing the time spent on integrating over numerous empty bins that
do not significantly contribute to the integral or the accuracy of the integration.

To see how this influences the overall accuracy, consider the following simplified analysis.
Let the size of the bins be proportional to H and let the mean height of the PDF be
approximately F. Let there be of the order p N bins with relevant PDF mass in them, where
p < land N is the total number of bins. A rough estimate of the integral over all bins is given
by I ~FHpN. Since the accuracy of integration is of order §, we are tolerating absolute
error in integration of order § /. On the other hand, assume that in the irrelevant bins the value
of the PDF has height on the order of € F', where € is some small number. The estimated
contribution of the irrelevant bins to the value of the integral is I’ ~eFH (1 — p)N which
is approximately I’ ~ €/ pl for sparse data (i.e., p is small compared to 1). The estimated
contribution of the irrelevant bins to the absolute error of integration is 8'/’ = &’¢/pI, where
8§’ is accuracy of integration within irrelevant bins. Since any integration is as accurate as
its least accurate part, in an optimal scheme the contribution to the error of integration from
the irrelevant and relevant bins are comparable. In other words, it is suboptimal to choose
8’ any smaller than required by 8’¢/p ~ §. This means that integration within any bin with
low probability mass (i.e. ~¢ F) need not be carried out more accurately than §' ~ §p/e.

Note that as € — 0 we can integrate less and less accurately within each bin without
hurting the overall integral over the full grid. Note also that as € — 0 and §’ becomes o(1),
we can start using a single iteration of the simplest possible integration scheme and still stay
within the allowed limit of §’. To summarize, given a value for €, the algorithm estimates the
average height F of the PDF and for all the bins with PDF values less than € F uses a single
iteration of a simple and fast integrator. The original behavior is recovered by setting € = 0
(i.e. no bins are integrated “quickly”). This general idea provides a large computational
gain with virtually no loss of accuracy (note that § controls overall accuracy, while € adds
only a small correction to §). For example, we have found that the variability in parameter
estimates from using different small values of € is much smaller than the bin size and/or
the variability in parameter estimates from different (random) initial conditions.

Figure 2 shows the time required to complete a single EM step for different values of &
(the Romberg integration order) and €. The time is minimized for different values of € by
using k = 3 or k = 4, and is greatest for £ = 2 (off-scale) and k = 6, i.e., choosing either
too low or too high of an integration order is quite inefficient.

3.3. The complete EM algorithm

After fine tuning each single EM iteration step above we are able to significantly cut down
on the execution time. However, since each step is still computationally intensive, it is
desirable to have EM converge as quickly as possible (i.e., to have as few iterations as
possible).

With this in mind we use the standard (computationally cheap) EM algorithm on a random
sample of the data to provide a good starting point for the more computationally complex
binned/truncated version of EM. We take a subset of points within each bin, randomize their
coordinates around the bin centers (we use the uniform distribution within each bin) and treat
the newly obtained data as non-binned and non-truncated. The standard EM algorithm is
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Figure 2. Execution time of a single EM step as a function of the threshold € for several different values k of the
Romberg integration order. For k = 2, the values were off-scale, e.g., 1 (1) = 23, 7(0.1) = 363, etc. Results based
on fitting a two-component mixture to 40,000 red blood cell measurements in two dimensions on 100 x 100 bins.

relatively fast, as a closed form solution exists for each EM step (without any integration).
Once the standard algorithm converges to a solution in parameter space, we use these
parameters as initial starting points for the full algorithm (for binned, truncated data) which
then refines these guesses to a final solution, typically taking just a few iterations. Note that
this initialization scheme cannot affect the accuracy of the results, as the full algorithm is
used as the final criterion for convergence.

Figure 3 illustrates the various computational gains. The y axis is the log-likelihood
(within a multiplicative constant) of the data and the x axis is computation time. Here
we are fitting a two-component mixture on a two-dimensional grid with 100 x 100 bins
of red blood cell counts; k is the order of Romberg integration and € is the threshold for
declaring a bin to be small enough for “fast integration” as described earlier. All parameter
choices (k, €) result in the same quality of final solution (i.e., all asymptote to the same log-
likelihood eventually). Using no approximation (¢ =0) is two orders of magnitude slower
than using non-zero € values. Increasing € from 0.001 to 0.1 results in no loss in likelihood
but results in faster convergence. Comparing the curves for k = 3, € = 0.1 to the randomized
initialization method described earlier, shows about a factor of two gain in convergence time
for the randomized initialization. The k-means clustering algorithm is used to initialize the
binned algorithm, a widely-used approach for initializing the EM algorithm for mixture
modeling.

Figure 3 includes the total time required to achieve the specified log likelihoods. The total
time consists of both the time required for initialization and the time required to perform
several iterations of the EM algorithm until convergence.
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Figure 3. Quality of solution (measured by log-likelihood) as a function of time for different variations on the
algorithm.

To summarize, the overall algorithm for fitting mixture models to multivariate binned,
truncated data consists of the following stages:

— Treat the multivariate histogram as a PDF and draw a small number of data points from
it (add some count to all the bins to prevent O probabilities in empty bins).

— Fit a standard mixture model using the standard EM algorithm (i.e., for non-binned,
non-truncated data).

— Use the parameter estimates from standard mixture modeling and refine them with the
full algorithm until convergence. This consists of iteratively applying Egs. (9)—(11) for
the bins within the grid and applying Eqs. (12)—(14) for the single bin outside the grid
until convergence as measured by Eq. (1).

4. Experimental results with simulated data

In this section we describe three sets of experiments designed to demonstrate various aspects
of the algorithm described in this paper. In each set of experiments we simulate data points
from a known PDF and then bin them. We vary the number of bins per dimension in steps
of 5 from B =5 to B =100 so that the original unbinned samples are quantized into B>
bins. Each experiment is repeated on 10 different samples and the results are averaged to
obtain smoother estimates.

On the original unbinned samples we ran the standard EM algorithm, and on the binned
data we ran the binned version of EM (using the general technique of Section 3.3 and the
parameters and settings described in the following section). The purpose of the simulations
was to observe the effect of binning and/or truncation on the quality of the solution. Note
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that the standard algorithm is typically being given much more information about the data
(i.e., the exact locations of the data points) and, thus, on average we expect it to perform
better than any algorithm which only has binned data to learn from. To measure solution
quality we calculated the Kullback-Leibler (KL) (or cross-entropy) distance between each
estimated density and the true known density. The KL distance is non-negative and is zero
if and only if two densities are identical. We calculated the average KL-distance over the
10 samples for each experiment, for both the binned and the standard EM algorithms.

1. The first set of experiments was designed to test the quality of the solution for different

numbers of data points drawn from the two—component mixture model shown in fig-
ure4 (m; =m,=0.5,0 =1, u; =(—1.5,0), uy = (1.5, 0)). Figure 4 also shows the grid
boundaries we used (—5, 5) x (=5, 5), i.e., there is almost no truncation except far out
in the tails. We varied the number of data points drawn from each of the components
in steps of 10 from N =100 to N = 1000. In total, each of the standard and binned
algorithms were run 20,000 different times (20 different numbers of bins, 100 different
numbers of data points, 10 random samples) to generate the reported results.

. The second set of experiments tests the performance of the algorithm when the compo-
nent densities are not so well separated. We started with two overlapping components
centered at (—1.5, 0) of equal weight (7r; = m, = 0.5) and with unit variance (¢ = 1), and
moved them in 20 steps until they were 3o apart (as in figure 4). The number of randomly
drawn data points was 500 per component. The grid was the same as in the first experi-
ment, i.e, (—5, 5) x (=5, 5). Figure 4 shows the setup: we started with a mixture PDF that
corresponds to the single Gaussian on the left (two completely overlapping component
densities), and end up with two separate components shown as component densities.

0.4 4
0.3 4
—— Component Densities
— — Total Mixture Density
a
0.2 4 — —
a /7N /7N
/ \ / \
/ NV \
/ \
0.1 1 / \
/ \
/ N\
= i ~ ~
0.0 T T T T T T
4 2 0 2 4
X Grid at Y=0

Figure4. Cross-section of the 2-dimensional grid showing two Gaussian components that are 3o apart. The total

mixture density has 7; = 7, = 0.5.
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Figure 5. Setup for truncation experiments. Cross-section of a 2-dimensional grid showing the initial and final
position of a single Gaussian for a set of experiments involving truncation. Note that all points sampled outside
the two dotted lines are truncated (i.e., omitted from the training data).

Again, there was very little truncation. Each of the standard and binned algorithms were
run 4,000 different times (20 different numbers of bins, 20 different separation of the
means, 10 random samples) to generate the reported results.

3. The third set of experiments was designed to test the performance of the algorithm
when significant truncation occurs. We decreased the grid size to (—2, 2) x (—2, 2) and
sampled 500 data points from a single Gaussian with unit variance (o = 1) which we
moved from the center of the grid (u = (0, 0)) to a point well outside the grid (u = (3, 0))
in 100 equally spaced steps. Figure 5 shows the initial and final Gaussians together with
the truncation boundaries. Each of the standard and binned algorithms were run 20,000
different times (20 different numbers of bins, 100 different positions of the mean, 10
random samples) to generate the reported results.

We also briefly report on the accuracy of PDFs estimated using a standard EM algorithm
on data which are randomly sampled from within the bins.

4.1. EM methodology

In each of the experiments we use the following methods and parameters in the implemen-
tation of EM.

1. n points are randomly drawn from the binned histogram, where »n is chosen to be 10%
of the number of total data points or 100 points, whichever is greater. Points are drawn
using a uniform sampling distribution within each bin.
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2. The standard EM algorithm is initialized by the k-means algorithm and run until con-
vergence on the n data points from step 1.

3. Step 2 is performed 5 times (5 starts of the standard EM algorithm) and parameters
yielding the highest log likelihood are used as the initial parameter guess for the binned
algorithm.

4. The binned EM algorithm is initialized by parameters found in step 3 and run until
convergence.

5. To avoid poor local maxima, steps 1—4 are repeated 10 times (10 starts of binned algo-
rithm) and the solution with the highest likelihood is reported.

6. Convergence of the standard and binned/truncated EM is judged by a change of less than
0.01% in the log-likelihood, or after a maximum of 20 EM iterations, whichever comes
first.

7. The order of the Romberg integration is set to 3 and € is set to 10~*. Figure 2 shows
execution times of a single EM iteration for several different orders and thresholds €. For
€ = 10* the optimal order of integration (in terms of the execution speed) corresponds
to k =3.

8. The default accuracy of the integration is set to § = 107>,

4.2. Estimation from random samples generated from the binned data

A simpler baseline approach than the EM approach proposed in this paper would be to
estimate the PDF from a random sample from the binned data. Here we briefly discuss the
performance of this baseline method relative to our full binned algorithm. Specifically, if
the binned data represent N counts in total, one can sample N’ < N data points, where the
number of points from each bin is in proportion to the count for that bin and the points
are uniformly distributed within each bin. Standard maximum likelihood estimation is then
performed, using EM if there is more than one component in the mixture density. We will
refer to this as the uniform sampling estimation method. Note that the uniform distribution is
likely to be an inappropriate assumption within each bin since the true PDF will typically be
non-uniform across a bin. However, the uniform sampling estimation method is nonetheless
simple enough that it is worthwhile to investigate as a simple baseline alternative for density
estimation on binned data, and indeed this is the method we use for initializing our full binned
algorithm, as described earlier.

We generated 500 data points in two dimensions drawn from a zero-mean Gaussian distri-
bution with an identity covariance matrix. Figure 6 shows the estimated PDF corresponding
to maximum likelihood parameter estimates on the unbinned original 500 data points (sam-
ple mean/covariance). Also shown is the estimated PDF which results from binning the
data, and then running the uniform sampling estimation method on 500 sampled points
from this binned data. This PDF is then used as initialization for the full binned algorithm
(Section 3), and the resulting PDF is also plotted in figure 6.

Figure 6 shows that for both 5 and 10 bins the estimated PDF from the full binned
algorithm is much closer to the PDF on unbinned data than is the PDF obtained from
the uniform sampling estimation method (in figure 6(b) the full algorithm almost exactly
matches the sample PDF). The PDFs estimated using the uniform sampling estimation
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Estimated PDF, Unbinned Data
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— — Estimated PDF, Binned and Sampled Data
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Figure6. Estimated PDFs obtained from original (unbinned) data and PDFs fitted by binned (full) and the uniform
random-sample algorithm for (a) 5 bins per dimension and (b) 10 bins per dimension. Plotted lines represent 3-o
covariance ellipses.

method had a KL-distance of 0.02 and 0.01 (for 5 and 10 bins respectively) from the PDFs
on the unbinned data. The PDFs estimated by the full binned algorithm had KL-distances
which were factors of 4 and 20 smaller (for 5 and 10 bins respectively) from the PDFs on
the unbinned data.

In both plots the PDF obtained from uniform sampling overestimates the variance. Vari-
ance overestimation in the case of a true underlying symmetric unimodal distribution can
be explained by the bias introduced by uniform random sampling, i.e., the points that are
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in the lower-density region of the bin are over-sampled and since they are further from the
mean than points in the higher-density region of the bin the overall effect is one of artificial
variance inflation relative to the original true PDF which generated the data points.

The results in figure 6 are typical of results obtained in general with the random sampling
approach, i.e., variance inflation in the resulting estimates. Of course, as the number of bins
increases per dimension the width of the bins decreases, the performance of the uniform
sampling estimation method can be expected to asymptotically approach that of the full
binned algorithm, and both should approach the performance of PDF estimation on the
original unbinned data. In this paper we are primarily interested in the performance of the
full binned algorithm, relative to both the PDF estimated from unbinned data and the true
underlying PDF. The uniform sampling estimation method typically performs worse than
the full binned algorithm: it will be used only for initialization in the experiments which
follow and not reported on in any further detail.

4.3. Experiments with different sample sizes

Figure 7 shows a plot of the average KL-distance for the binned EM algorithm (a) and the
corresponding standard deviation (b), as a function of the number of bins and the number of
data points. One can clearly see a “plateau” effect in that the KL-distance is relatively close
to zero when the number of bins is above 20 and the number of data points is above 500. As
a function of N, the number of data points, one sees the typical exponentially decreasing
“learning curve,”, i.e., the solution quality increases roughly in proportion to N ~* for some
constant . As a function of bin size B, there appears to be more of a threshold effect:
with more than 20 bins the KL-distance is again relatively flat as a function of the number
of bins. Below B =20 the solutions rapidly decrease in quality (e.g., for B =35 there is a
significant degradation).

In figure 8 we plot the KL-distance (log-scale) as a function of the bin size, for specific
values of N (N =100, 300, 1000), comparing both the standard and binned versions of
EM. For each of the 3 values of N, the curves have the same qualitative shape: a rapid
improvement in quality as we move from B =5 to B = 20, with relatively flat performance
(i.e., no sensitivity to B) above B =20. For each of the 3 values of N, the binned EM
“tracks” the performance of the standard EM quite closely: the difference between the two
becomes less as N increases. The variability in the curves is due to the variability in the 10
randomly sampled data sets for each particular value of B and N. Note that for B > 20 the
difference between the binned and standard versions of EM is smaller than the “natural”
variability due to random sampling effects.

Figure 9 plots the average KL-distance (log-scale) as a function of N, the number of
data points per dimension, for specific numbers of bins B. Again we compare the binned
algorithm (for various B values) with the standard unbinned algorithm. Overall we see the
characteristic exponential decay (linear on a log-log plot) for learning curves as a function
of sample size. Again, for B > 20 the binned EM tracks the standard EM quite closely.

The results suggest (on this particular problem at least) that the EM algorithm for binned
data is more sensitive to the number of bins than it is to the number of data points, in terms
of comparative performance to EM on unbinned data. Above a certain threshold number of
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Figure 8. Average KL-distance (log-scale) between the estimated densities and the true density as function of
the number of bins, for different sample sizes, and compared to standard EM on the unbinned data.
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Figure 9. Average KL-distance (log-scale) between the estimated densities and the true density as function of
sample size, for different numbers of bins, and compared to standard EM on the unbinned data.
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bins (here B =20), the binned version of EM appears to be able to recover the true shape
of the densities almost as well as the version of EM which sees the original unbinned data.

4.4. Experiments with different separations of mixture components

Figure 10 shows a plot of the average KL-distance for the binned EM algorithm as a function
of the number of bins and the separation of the component densities. It is interesting to note
that the quality of the solution is relatively insensitive to the separation of the components
and that we only see usual sensitivity on the number of bins per dimension (described in the
previous section). However, it is important to note that we measure the KL-distance between
the fitted model and the true model, and not the distance between individual components
in each of the models. In other words, the shape of the fitted model is very close to the true
model while the individual components need not necessarily be. We again see a “plateau”
effect in that the quality of the solution is relatively close to zero when the number of bins
is above 10.

Figure 11 plots the ratio of average KL-distances as a function of separation of means for
several specific numbers of bins B. We plot the ratio of KL-distances of the standard and
binned algorithm to make a comparison. From the plot we again conclude that for small

KT Distance

Figure 10. Average KL-distance between the estimated density (estimated using the procedure described in this
paper) and the true density, as a function of the number of bins and the separation of the means of individual
mixture components.
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Figure 11. Ratio of KL-distances achieved by the standard and binned (full) algorithm as a function of separation
of the means of individual mixture components. Regions above a ratio of 1 are the regions where the binned
algorithm performs better.

number of bins B the standard algorithm performs significantly better, but the advantage is
quickly lost as the number of bins per dimension is above 10. We also note that the binned
algorithm performs better when separation of means is small which we attribute to natural
smoothing that occurs with binning. The standard algorithm generates noisier estimates
when the means are close to each other since it has more information available then the
binned algorithm.

Figure 12 shows the ratio of the KL-distances for standard and binned algorithm as a
function of number of bins per dimension B for several typical values of the separation of
means of mixture components. We see the rapid improvement of binned algorithm as the
number of bins increases.

The results in this section suggest that the binned algorithm is sensitive to a very small
number of bins (e.g., B < 10) but then quickly reaches the quality of the standard algorithm
as the number of bins increases. The results suggest that inference of mixture components
using binned data is typically no more or less sensitive to component overlap than inference
using unbinned data.

4.5. Experiments with truncation

In this section we investigate the effects of truncation on the inferred PDF. To isolate
the effect, we consider only a single Gaussian PDF. The average KL-distance between
the true model and the inferred models (binned and standard algorithms) is linearly in-
creasing as the ratio of truncated points increases (which is we would expect). Since this
plot is not particularly informative we omit it (i.e., we do not show the counterpart of
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Figure 12. Ratio of KL-distances achieved by the standard and binned (full) algorithm as a function of number

of bins for several separations of individual components. Regions above a ratio of 1 are the regions where the
binned algorithm performs better.
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Figure 13. Ratio of KL-distances achieved by the standard and binned (full) algorithm as a function of the fraction
of truncated data points sampled from a single Gaussian density. Note that the truncation ratio is a function of the
position of the mean. Regions above a ratio of 1 are the regions where the binned algorithm performs better.

figures 7 and 10). Instead, we directly compare the performance of the standard and full
algorithms.

Figure 13 plots the ratio of the average KL-distances as a function of ratio of truncated
points. Note that the standard algorithm we compare our results to cannot handle truncation
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(i.e., it is non-binned and non-truncated algorithm and ignores the fact that the data are in
fact truncated). On the x axis in figure 13 we show the percent of truncated points which is
a function of the position of the single Gaussian PDF. The scale on the x axis is linear in the
position of the mean (ranging from O to 3) and therefore is not linear in the truncation ratio
(hence, we show many tick labels). The plot shows the relative insensitivity of the binned
algorithm to the number of bins per dimension, or equivalently, it shows that the effect of
truncation is more severe than the effect of binning (compare this to the results in previous
sections). Figure 13 also shows that when truncation is small (i.e., less than 5%), the full
algorithm can infer the underlying true density much better than the standard algorithm
(which typically infers too narrow a PDF). However, as the amount of truncation increases,
both algorithms tend to infer poor densities and the difference in quality decreases. The
full algorithm still infers a significantly better PDF, especially as the number of bins per
component increases.

Figure 14 summarizes the results as a function of bins per component B for several typical
truncation ratios. It again shows that the binning effect is significantly smaller than the
truncation effect. It also shows that for small truncation effects the full algorithm performs
roughly 5 times better than the standard algorithm (as measured by the KL-distance), and
that the advantage of being able to account for truncation decreases as the truncation ratio
increases (not surprisingly).

The results in this section suggest that the effect of truncation is more significant than the
effect of binning (i.e., it has a greater effect on the EM algorithm’s ability to infer a PDF).

Truncation = 4.6% (i = 0)

Truncation = 84% (L = 3)

//%

20 40 60 80 100

Ratio of K-L Distance (Standard/Binned)

Bins per Dimension

Figure 14. Ratio of KL-distances achieved by the standard and binned (full) algorithm as a function of number
of bins for several different truncation fractions (positions of the single Gaussian density). Regions above a ratio
of 1 are the regions where the binned algorithm performs better.
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For small truncation ratios (i.e., less than 5%) it appears to be particularly worthwhile to
have an algorithm that can handle truncation properly.

5. An application to medical diagnosis

As mentioned at the beginning of the paper this work was motivated by a real-world applica-
tion in medical diagnosis based on two-dimensional histograms (cytograms) characterizing
red blood cell volume and hemoglobin measurements (see figure 1). The equipment used
to measure red blood cell characteristics produces two-dimensional measurements which
are automatically binned and truncated. In this section we discuss how the density esti-
mation methods described earlier in this paper were applied to this data in the context of
discriminating healthy individuals from individuals with iron deficiency anemia (Cadez
et al., 1999).

The first step in modeling the data is to characterize the two-dimensional volume-
hemoglobin distribution. It can be shown that the marginal volume distribution of a single
population of RBC is theoretically lognormal. The lognormality comes from the biologi-
cal mechanism governing the manner by which cells are produced (McLaren, Brittenham,
& Hasselblad, 1986). At each “production step” cells divide and have normal variations
in their respective volumes. Since the process is repetitive and the effect is multiplicative
(i.e., cells divide), the resulting distribution is lognormal. For iron-deficient subjects, the
argument follows that the RBC density can be well-approximated as a two-component
log-normal mixture (McLaren et al., 1991; McLaren, 1996). Specifically, there are two
biological processes that are constantly occurring in a body: 1) red blood cells are pro-
duced in the bone marrow; 2) these cells are extruded into the bloodstream and die after
about 120 days. For a healthy individual a single population of red blood cells is pro-
duced with a mean cell volume and mean hemoglobin concentration within the normal
range. In iron deficiency anemia the red blood cells that are produced have decreased
volume and decreased hemoglobin, below normal for that of a healthy individual. Thus,
with development of the disease, gradually, a second subpopulation of red blood cells be-
gins to emerge and over a period of time, the relative ratio of subpopulations of red cells
changes.

Data collection for this study was completed during 1995. A reference sample group
of healthy individuals was recruited from staff physicians and hospital employees at the
Western Infirmary, Glasgow, Scotland. Patients included in the study were seen on the wards
and in the outpatient clinics and referred to the hospital laboratories for a complete blood
count. The results described here are based on the 90 Control and 82 Iron Deficient subjects
in the study.

Figure 15 shows contour probability plots of fitted mixture densities for 3 control and
3 iron deficient subjects, where we plot only the lower 10% of the probability density
function (since the differences between the two populations are more obvious in the tails).
One can clearly see systematic variability within the control and the iron deficient groups,
as well as between the two groups. Note, however, that the first control plot and the first iron
deficient plot are visually very similar to each other, underlying the fact that classification of
individuals based on their densities is non-trivial. Since the number of bins is relatively large



30 1.V. CADEZ ET AL.

Control #1 Control #2 Control #3

£ 40 A 8 40 8 40 1
g g g
£ 35 35 £ 35 7
8 8 g
5 4 5 i 5 |
3 30 3 30 3 30
£ = e
£ 25 B 25 1 3 25
® B ®
£ 20 £ 20 1 £ 20
O o <
= z 2

15 T T T 15 T T T 15 T T T

20 60 100 140 20 60 100 140 20 60 100 140
Volume Volume Volume
Iron Deficient #1 Iron Deficient #2 Iron Deficient #3

s
S
L
N
>
L

w
G
L
©
<
L

I
G
L
I~
G
L

[N
=]
L
I3
S
L

Hemoglobin Concentration
w
<3
Hemoglobin Concentration
w
=3
Hemoglobin Concentration
w
&

W
[
@

20 60 100 140 20 140 20 60 100 140

Volume Volume Volume

Figure 15. Contour plots from estimated density estimates for three control patients and three iron deficient
anemia patients. The two plots in the first column show two borderline patients, the two plots in the second column
show two typical patients and the two plots in the third column show two patients far from the borderline. The
patients are selected such as to show inter and intra group variability. The lowest 10% of the probability contours
are plotted to emphasize the systematic difference between the two groups.

(B =100 in each dimension), as is the number of data points (40,000), the simulation results
from the previous section suggest that these density estimates are likely to be relatively
accurate (compared to the results which could have been obtained if the data had not been
binned).

We experimented with three different sets of feature representations for the data and two
different classification methods (discriminative and probabilistic). The feature representa-
tions used were:

1. Baseline features: no density estimation at all was performed on each individual’s cy-
togram. Instead a 4-dimensional feature-vector consisting of the mean and variance along
each of the volume and hemoglobin dimensions was constructed and individuals were
classified in this 4-dimensional space.

2. 11-dimensional parameters: The EM algorithm described earlier in the paper was used
to estimate two-component lognormal mixture model parameters for each of the 172 in-
dividuals in the study. The resulting 11-dimensional parameter vector for each individual
was then used directly for classification.

3. 9-dimensional parameters: We reparameterized some of the parameters in the 11-dimen-
sional feature set to reflect a more natural scale for modeling. We used the log-odds of
the component weights (rather than the weights directly) and the log of the eigenvalues
of the covariance matrices.
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Figure 3 demonstrated the decrease in computational resources which can be achieved
during the parameter estimation component of classification, using the methods described
earlier in this paper. The data in figure 3 are for a two-component mixture model fit to a
control subject with a two-dimensional cytogram (histogram) of 40,000 red blood cells.

For classification the discriminative classifiers used were tree-based (C5.0 and CART).
The probabilistic classifiers used a hierarchical mixture model; a “low-level” mixture model
for each individual’s two-dimensional cytogram, and a “high level” population model char-
acterizing the location and variability of individuals in parameter space for each of the two
classes. At the individual level, two-component lognormal mixture densities with uncon-
strained covariance matrices were fit to each individual’s cytogram using the EM algorithm
for binned data described earlier in this paper. At the population level (modeling a class
of individuals in parameter space), we modeled each of the two classes as either a single
Normal density or a mixture of two Normals (model selection performed by internal cross-
validation). For the 11-dimensional parameter set we used block covariance matrices for the
Normal densities, which modeled the mixture weight parameter as independent, allowed
full covariance between all 4 means, and full covariance between both sets of the 3 inde-
pendent covariance parameters for each RBC component. For the 9-dimensional parameter
set we again used a block diagonal covariance matrix structure for the Normal densities,
allowing full covariance among all 4 means, full covariance between the 2 log-eigenvalues
for each RBC component, and allowing the log-odds of the weight to be independent of the
other parameters. Classification was subsequently performed using Bayes rule.

For each of the experiments reported below we performed 100 cross-validation runs,
where in each run the data were divided into a randomly chosen training set of 80% of the
data and a test set consisting of the remaining 20%. Overall performance for each method
is reported as the mean and standard deviation of classification accuracy on the test sets
over the 100 runs. Note that the parameter estimation (the running of EM to determine the
6,’s) is completely independent of any other data or class labels; it is a purely unsupervised
procedure performed on each individual’s RBC measurements. Thus, the parameters 6;
were estimated once only, before any cross-validation takes place.

Table 1 summarizes the mean cross-validated error rates and standard errors across the
different methods. The discriminative algorithms (C5.0 and CART) were run on the 11
original parameters, the 9 reparameterized parameters, and the 4 “Baseline” features. The
hierarchical mixture model (with either 9 or 11 features) had lower error rates than any of the
discriminative tree methods (usually on the order of a factor of 2 lower). The 11-parameter
hierarchical error rate of 1.65% corresponds to about a 65% decrease in error rate from the
error rate of 4.65% of CART on the same features and about a 54% decrease in error rate
from the 3.62% error rate of C5.0 on the same 11 features. Thus, for this particular problem,
the hierarchical model appears superior in terms of classification accuracy.

For routine clinical classification of RBC data, the decision tree approaches are attractive
since classification rules can be clearly described. However, for clinical ranking of subjects
based on likelihood of iron deficiency (for example), the hierarchical model approach
may be the most useful given its probabilistic basis. In addition, the hierarchical model is
intrinsically interesting from a medical research viewpoint. It provides a basis for a complete
characterization of blood disorders in hemoglobin-volume space both in terms of typicality
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Table 1. Means and standard deviations of the cross-validated classification error for each of the different
classification methods and feature representations, across 100 runs.

Method Features Mean error rate (%) Standard deviation

C5.0 Baseline 3.32 2.92
9-Parameters 3.53 2.87
11-Parameters 3.62 2.92

CART Baseline 3.47 3.17
9-Parameters 4.09 3.34
11-Parameters 4.65 343

Hierarchical 9-Parameters 1.90 1.94
11-Parameters 1.65 2.06

and variability of individuals within each group, as well as full characterization of group
differences.

6. Conclusions

The problem of fitting mixture densities to multivariate binned and truncated data was
addressed based on the EM procedure for the one-dimensional problem. The theoretical
foundations of the multivariate approach follow straightforwardly from the original univari-
ate formulation of McLachlan and Jones (1988). The numerical issues are not so straight-
forward, however, since the multivariate EM algorithm requires multivariate numerical
integration at each EM iteration. We described a variety of computational and numerical
implementation issues which need careful consideration in this context.

We note that there is an inescapable “curse-of-dimensionality” at work as the number of
dimensions d increases, including (1) an exponential increase in the total number of bins, (2)
a corresponding decrease in the data per bin for a fixed sample size, (3) numerical evaluation
of d-dimensional multivariate integrals at each iteration of EM, and (4) an exponential
increase in the number of different “tail regions” which must be handled at the corners of
the d-dimensional histogram for truncated data. Thus, although the theory and algorithms
are described here for the general d-dimensional case, the methods proposed here are likely
to be practical only for low-dimensional problems (this is of course true for any truly
unrestricted multivariate density estimation technique).

Simulation results on two-dimensional histograms indicate that relatively high quality
solutions can be obtained compared to running EM on the “raw” unbinned data, unless
the number of bins is relatively small. These results are interesting since they suggest
that the loss of information due to quantization (from a density estimation viewpoint) is
minimal once the number of bins being used exceeds 10 or so. Thus, while it is well-known
that quantization necessarily incurs a loss of information, the loss was often found to be
minimal in the density estimation problems evaluated in this paper. This in turn may provide
further justification for the use of histograms in computer vision, information retrieval, and
other problems in learning and pattern recognition. In similar experiments with simulated
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two-dimensional histograms, truncation produced a systematic deterioration in the quality
of the estimated PDFs and was found to typically produce a more severe effect than binning.

The proposed EM algorithm was applied to a real application involving discrimination of
individuals with and without anemia based on two-dimensional cytograms characterizing
RBC volume and hemoglobin. The ability to fit mixture densities to binned and truncated
two-dimensional data in an efficient manner, as described in this paper, is an important part
of the overall hierarchical mixture modeling approach for this application.
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