Skip to main content
Log in

An Evaluation of Shared Multicast Trees with Multiple Cores

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

Native multicast routing protocols have been built and deployed using two basic types of trees: single-source, shortest-path trees and shared, core-based trees. Core-based multicast trees use less routing state compared to shortest-path trees, but generally have higher end-to-end delay and poor fault tolerance. In this paper we consider a new type of shared multicast structure that uses multiple, independent, simultaneously-active cores. Our design provides for low end-to-end delay, improved fault tolerance, and low source discovery delay, while balancing bandwidth cost and routing state. These results indicate that shared trees with multiple active cores are a viable alternative to shortest-path trees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. K. Almeroth, The evolution of multicast: From the MBone to interdomain multicast to Internet2 deployment, IEEE Network (January 2000).

  2. A.J. Ballardie, P.F. Francis and J. Crowcroft, Core-based trees, in: ACM SIGCOMM, August 1993.

  3. S. Bhattacharjee, M. Ammar, E. Zegura, V. Shah and Z. Fei, Application-layer anycasting, in: IEEE INFOCOM, 1997.

  4. K. Calvert and E. Zegura, Georgia tech Internetwork topology models, Software at http://www.cc.gatech.edu.

  5. K.L. Calvert, E.W. Zegura and M.J. Donahoo, Core selection methods for multicast routing, in: Internat.Conf. on Computer Communications Networks, September 1995.

  6. R.L. Carter and M.E. Crovella, Dynamic server selection using bandwidth probing in wide area networks, in: IEEE INFOCOM, April 1997.

  7. S. Casner and S. Deering, First IETF Internet audiocast, ACM SIGCOMM 22(3) (July 1992).

  8. D.R. Cheriton and H.W. Holbrook, EXPRESS Multicast: Making multicast economically viable, in: ACM SIGCOMM, August 1999.

  9. S. Deering, Multicast Routing in Internetworks and Extended LANs, in: ACM SIGCOMM, August 1988.

  10. S. Deering, D. Estrin, D. Farinacci, V. Jacobson, C.-G. Liu and L. Wei, An architecture for wide-area multicast routing, in: ACM SIGCOMM, August 1994.

  11. M.J. Donahoo and E.W. Zegura, Core migration for dynamic multicast routing, in: Internat. Conf. on Computer Communication Networks, 1996.

  12. S.G. Dykes, C.L. Jeffery and K.A. Robbins, An empirical evaluation of client-side server selection algorithms, in: IEEE INFOCOM, 2000.

  13. D. Estrin, D. Farinacci, A. Helmy, D. Thaler, S. Deering, M. Handley, V. Jacobson, C. Liu, P. Sharma and L. Wei, Protocol independent multicast - sparse mode (PIM-SM): Protocol specification, RFC 2117 (June 1997).

  14. D. Estrin, M. Handley, A. Helmy and P. Huang, A dynamic bootstrap mechanism for rendezvous-based multicast routing, in: IEEE INFOCOM, 1999.

  15. D. Farinacci, Y. Rekhter, D. Meyer, P. Lothberg, H. Kilmer and J. Hall, Multicast source discovery protocol (MSDP), Internet draft, work in progress (July 2000).

  16. M.R. Garey and D.S. Johnson, Computers and Intractability (Freeman, New York, 1999).

    Google Scholar 

  17. A.J.D. Guyton and M.F. Schwartz, Locating nearby copies of replicated Internet servers, in: ACM SIGCOMM, 1995.

  18. G.Y. Handler and P.B. Mirchandani, Location on Networks: Theory and Algorithms (MIT Press, Cambridge, MA, 1979).

    Google Scholar 

  19. L. Kou, G. Markowsky and L. Berman, A fast algorithm for Steiner trees, Acta Informatica 15 (1981) 141-145.

    Google Scholar 

  20. S. Kumar, P. Radoslavov, D. Thaler, C. Alaettinoglu, D. Estrin and M. Handley, The MASC/BGMP architecture for inter-domain multicast routing, in: ACM SIGCOMM, August 1998.

  21. J. Moy, Multicast extensions to OSPF, RFC 1584 (March 1994).

  22. C. Patridge, T. Mendez and W. Milliken, Host anycasting service, RFC 1546 (November 1993).

  23. C. Shields and J.J. Garcia-Luna-Aceves, The ordered core based tree protocol, in: IEEE INFOCOM, 1997.

  24. D.G. Thaler and C.V. Ravishankar, Distributed center-location algorithms: Proposals and comparisons, in: IEEE INFOCOM, 1996; also published in IEEE Journal on Selected Areas in Communications (April 1997).

  25. V. Vazirani, Approximation Methods (Springer, Berlin, 2000).

    Google Scholar 

  26. D. Waitzman, C. Partridge and S. Deering, Distance vector multicast routing protocol, RFC 1075 (November 1988).

  27. D.W. Wall, Mechanisms for broadcast and selective broadcast, Ph.D. thesis, Department of Electrical Engineering, Stanford University (1980).

  28. B.M. Waxman, Routing of multipoint connections, IEEE Journal on Selected Areas in Communications 6(9) (December 1988).

  29. L. Wei and D. Estrin, The trade-offs of multicast trees and algorithms, in: 1994 Internat. Conf. on Computer Communications Networks, September 1994.

  30. P. Winter, Steiner problem in networks: A survey, IEEE Networks 17(2) (1987) 129-167.

    Google Scholar 

  31. D. Zappala and A. Fabbri, Using SSM proxies to provide efficient multiple-source multicast delivery, in: Sixth Global Internet Symposium, Globecom 2001, November 2001.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zappala, D., Fabbri, A. & Lo, V. An Evaluation of Shared Multicast Trees with Multiple Cores. Telecommunication Systems 19, 461–479 (2002). https://doi.org/10.1023/A:1013854808626

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013854808626

Navigation