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Abstract. A widely acknowledged drawback of many statistical modelling techniques, commonly used in ma-
chine learning, is that the resulting model is extremely difficult to interpret. A number of new concepts and
algorithms have been introduced by researchers to address this problem. They focus primarily on determining
which inputs are relevant in predicting the output. This work describes a transparent, advanced non-linear mod-
elling approach that enables the constructed predictive models to be visualised, allowing model validation and
assisting in interpretation. The technique combines the representational advantage of a sparse ANOVA decom-
position, with the good generalisation ability of a kernel machine. It achieves this by employing two forms of
regularisation: a 1-norm based structural regulariser to enforce transparency, and a 2-norm based regulariser to
control smoothness. The resulting model structure can be visualised showing the overall effects of different inputs,
their interactions, and the strength of the interactions. The robustness of the technique is illustrated using a range
of both artifical and “real world” datasets. The performance is compared to other modelling techniques, and it is
shown to exhibit competitive generalisation performance together with improved interpretability.
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1. Introduction

The problem of empirical data modelling is germane to many applications. In empirical data
modelling a process of induction is used to build up a model of a system from examples.
Ultimately the quantity and quality of the observations will govern the performance of this
model. However, the choice of modelling approach will also influence the performance
of the model. By its observational nature, data obtained is finite and sampled; typically
this sampling is non-uniform and due to the high dimensional nature of the problem, the
data will form only a sparse distribution in the input space. Consequently, the problem is
nearly always ill-posed (Poggio, Torre, & Koch, 1985) in the sense of Hadamard (1923).
To address the ill-posed nature of the problem it is necessary to convert the problem to
one that is well-posed. For a problem to be well-posed, a unique solution must exist that
varies continuously with the data. Conversion to a well-posed problem is typically achieved
with some form of capacity control, which aims to balance the fitting of the data with
constraints on the model flexibility, producing a robust model that generalises successfully.
Previous approaches to restoring the well posedness have included regularisation methods
(Tikhonov, & Arsenin, 1977). In this paper, the method chosen is based around kernel
methods due to their rigorous formulation and good generalisation ability for small sample
sizes. Girosi (1997) and Smola (1998) have shown that kernel methods can be placed in a
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regularisation framework, which guarantees their well posedness; Support Vector Machines
(SVMs) (Vapnik, 1995) and Gaussian Processes (GPs) (Rasmussen, 1996) are examples.
For tutorial introductions to SVMs see Burges (1998), Cristianini and Shawe-Taylor (2000)
or Gunn (1998). Given a dataset, D= {(x1, y1), . . . , (xl , yl) | xi ∈ R

d , yi ∈ R}, the model
is a weighted linear summation of kernels,

f (x) =
l∑

i=1

αi K (xi , x), (1)

where these kernels are ‘centred’ on the data points. Consequently, the solution is opaque
due to the large number of terms that will typically exist in this expansion. Furthermore,
the multivariate basis functions can be difficult to interpret. The number of terms in the
expansion can be reduced in some circumstances by enabling a proportion of the kernel
multipliers to become zero. This can be achieved using a loss function that has a ‘dead-zone’,
such as an ε-Insensitive loss function (Vapnik, 1995).

Whilst a predictive model may be the ultimate goal of modelling, it is often desirable and
sometimes even essential to be able to interpret the final model structure. This is especially
true in medical domains, where black-box models, such as traditional neural networks,
bagged descision trees as well as kernel methods, are viewed with great suspicion (Wyatt,
1995; Plate, 1999). In situations where model interpretation is important, many researchers
revert to using simpler, but more interpretable modelling methods, for example logistic
regression. As Plate observes (Plate, 1999) there is a danger in using such simple models,
since they typically suffer from the problem of model mismatch, and hence they may fail
to discover an important relationship in the data because they lack the flexibility to model
it. In this work we introduce interpretability, or transparency, by producing a parsimonious
model, which has a sparse structural representation, but is flexible enough to avoid problems
of model mismatch. The transparency is beneficial in that it enables the model to be validated
and interpreted. Features that aid transparency are input selection and ways of decomposing
the model into smaller more interpretable pieces that can be easily visualised. To address
this issue we introduce a modified kernel model of the form,

f (x) =
l∑

i=1

αi

∑
j

c j K j (xi , x), c j ≥ 0, (2)

where the kernel is replaced by a weighted, c j , linear sum of kernels, K j . Transparency
can then be introduced by a careful choice of the additive kernels, K j and by making their
weighting coefficients, c j , sparse. In this paper we focus on the integration of an ANOVA
(ANalysis Of Variance) representation to provide a transparent approach to modelling.
ANOVA kernels (Stitson et al, 1999) have previously been used with SVMs, with promising
performance. However, the difference here is to develop a technique that will select a sparse
ANOVA kernel producing strong transparency. The ANOVA representation is motivated by
the decomposition of a function into additive components, with the goal of representing the
function by a subset of the terms from this expansion. A function may be decomposed into

f (x) = f0 +
d∑
i

fi (xi ) +
d∑

i< j

fi⊗ j (xi , x j ) + · · · + f1⊗2⊗...⊗d(x), (3)
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where d is the number of inputs, f0 represents the bias and the other terms represent the uni-
variate, bivariate, etc., components. The notation xi denotes the scalar value of input i . The
basis functions are semi-local and are similar to the approaches used by Friedman (1991)
in the Multivariate Adaptive Regression Splines (MARS) technique and in the Adaptive
Spline Modelling of Observational Data (ASMOD) technique (Kavli & Weyer, 1995). The
additive representation is advantageous when the higher order terms can be ignored, so that
the resulting model is represented by a small subset of the ANOVA terms, which may be
easily visualised. This produces a transparent model, in contrast to the majority of neural
network models, providing the modeller with structural knowledge that can be used for both
validation and model interpretation. Due to the curse of dimensionality (Bellman, 1961),
an exhaustive search of the possible model structures is demanding. Even in the highly re-
strictive scenario, that the solution is a weighted linear combination of fixed basis functions,
the parameter space has size 2d . Extension to flexible basis functions, which is required
for typical modelling, will only compound this dimension. Accordingly, greedy methods
are typically used. ASMOD employs an evolutionary strategy to search the model space
using a forward selection/backward elimination algorithm to select suitable refinements to
a model. The MARS algorithm employs a recursive partitioning procedure to search the
model space for an appropriate model. The drawback with both approaches is that they can
become entrapped by local minima, due to the greedy nature of their search algorithms. A
problem with deploying additive models in advanced flexible non-linear modelling methods
is that they cannot provide a transparent model if the phenomenon being modelled contains
high dimensional interactions. One possibility is to enforce transparency by constraining
the order of possible interactions (e.g. restriction to univariate and bivariate terms only),
providing a coarse, but interpretable structure, at the expense of structural integrity.

The aim of this work is to produce transparent models that generalise well, using a global
approach to the modelling problem. This paper introduces a new SUpport vector Parsi-
monious ANOVA (SUPANOVA) technique to realise this goal. It will be shown that the
technique is attractive since it can employ a wide range of loss functions (Smola, Schölkopf,
& Müller, 1998), can produce interpretable models, and it is solved by breaking the problem
down into simple convex optimisation problems, which can be implemented using readily
available mathematical programming optimisers (Mészáros, 1998). The structure of the
paper is as follows. The next section provides an overview of transparent modelling tech-
niques: Section 4 introduces sparse additive kernel modelling, with a particular example,
the SUPANOVA technique developed in Section 4, Section 5 describes the datasets which
were used for evaluation, and the associated results. The paper ends with a discussion as to
the applicability of interpretable modelling methods.

2. Transparent modelling methods

The interpretation of complex models has started to receive some attention within the
machine learning community. Methods for enforcing or formulating additivity in various
families of flexible models have been investigated by a number of researchers. Girosi (1995)
shows that additive models can be formulated as regularisation networks, thereby allowing
additive regularisers to be constructed. Moody and Rögnvaldsson (1996) discuss various
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smoothing terms for feedforward neural networks that penalise higher order derivatives
with respect to the inputs; incorporation of a regularisation term pushes the model towards
an additive structure (Plate, 1999). Other notable additive models include the Smoothing-
Spline ANOVA (SS-ANOVA) model of Wahba (1994). This method is based on a Gaussian
process model with a particular covariance function, and an additive structure.

A common approach to prevent model over-fitting is to impose a penalty constraint on the
set of allowable functions which penalises the models parametric form (e.g. weight decay
in neural network training) or penalises global smoothness properties (e.g. minimising
curvature). A smoothness constraint essentially defines possible function behaviour in local
neighbourhoods of the input space. Hence, the regulariser can be seen as imposing an
ordering on the hypothesis space. However, when no prior knowledge is available about the
data generating function, a large function space needs to be chosen so as to ensure that the
approximation error will be small. As a consequence, imposing an order on this space is a
difficult task. In learning theory there is also a need for sparse models, in which the smallest
number of basis functions possible are used to approximate a function f (x). In addition to
a term that penalises the model parameters, an additional term to enforce sparseness of the
model solution is introduced to act as a regulariser on the model structure. Both of these
facets have been inspired by the well known principle of Ockham’s razor.

The goal of transparency is to produce a model that not only performs predictions, but
that can reveal the structure of the underlying data generating process. Additionally, since
expert knowledge is typically qualitative, the resulting model can be validated. The use of a
structural prior, in addition to a generic prior such as smoothness, can improve generalisation
performance by constraining the hypothesis space. We now introduce some conventional
techniques that encompass some form of transparency, and discuss their merits.

2.1. Multivariate linear regression

A Multivariate Linear Regression (MLR) model is given by

y = w0 + w1x1 + w2x2 + · · · + wd xd , (4)

where w1, . . . , wd are unknown parameters to be estimated, w0 is a bias term and y is the
predicted output. The unknown vector of parameters, w, can be estimated in the least squares
sense. The uncertainty in each of these parametric values can be estimated to indicate the first
order importance of these variables in contributing to the output. However, interpretation
of parameter values and their associated uncertainty provides only a crude form of input
selection and transparency, since the technique typically suffers from the problem of model
mismatch.

2.2. Graphical models

The principal role of a graphical model is to convey the conditional independence structure
in a dataset via a graphical representation. The notions of independence and conditional
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independence are a fundamental component of probability theory. Detailed studies of condi-
tional independence properties can be found in Dawid (1979a, 1979b) or Lauritzen (1995).
The graphical model can aid in the selection of input variables as part of a data-preprocessing
strategy, retaining only those variables which are conditionally dependent upon the output.
This provides a powerful tool for indicating variable influence as part of a model inter-
pretation strategy. Let X ′ be a d-dimensional vector of random variables. A conditional
independence graph, G = (V, E), describes the association structure of X ′ by means of
a graph, specified by the vertex set V and the edge set E (Whittaker, 1990). There is a
directed edge between vertices i and j if the set E contains the ordered pair (i, j); vertex
i is a parent of vertex j , and vertex j is a child of vertex i . An edge can be used to indi-
cate relevance or influence between data variables. A graphical model is then a family of
probability distributions, PG , that is a Markov distribution over G where X ′

a and X ′
b rep-

resent the variables for which conditional independence is being tested for, given the other
variables in the dataset X ′

c. A graphical Gaussian model is obtained when only continuous
random variables are considered. The conditional independence constraints are equivalent
to specifying zeros in the inverse variance parameter corresponding to the absence of an
edge in G (Whittaker, 1990). The critical part is the test employed to ascertain dependence.
For example, a deviance statistic given by,

dev(X ′
b ⊥⊥ X ′

c | X ′
a) = −N ln

(
1 − corr2

N (X ′
b, X ′

c | X ′
a)

)
(5)

has been used. This test statistic has an asymptotic χ2 distribution with one degree of
freedom. Elements in this deviance matrix, determine the significance of dependencies in
the graphical model. A hypothesis test at a 95% confidence interval of the χ2 distribution, is
used to extract the significant effects. A limitation of the graphical Gaussian model can be
attributed to the deviance statistic being inaccurate, since it depends on a linear correlation
term. Hence, the graphical Gaussian model will only detect linear trends between the data
variables. The Gaussian process network (Friedman & Nachman, 2000) has recently been
introduced as a new family of continuous variable probabilistic networks that are based on
Gaussian process priors to overcome the limitations of the graphical model. The priors that
are used are semi-parametric in nature allowing marginal likelihoods for structural learning
to be computed directly.

Recent work on Bayesian networks (also known as belief networks) has allowed the
modelling of joint probability distributions in a number of systems. A Bayesian network is
a graphical model that can be used to encode expert knowledge amongst a set of variables
(Heckerman, 1999). A Bayesian network consists of two components. The first is a directed
acyclic graph (DAG) in which each vertex corresponds to a random variable. In a manner
similar to the graphical Gaussian model, this graph describes conditional independence
properties of the represented distribution. The second component is a collection of con-
ditional probability distributions that describe the conditional probability of each variable
given its parents in the graph. Together, these two components can be shown to represent
a unique probability distribution (Pearl, 1988). Bayesian networks have the advantage that
they can be built from prior knowledge alone, although as Heckerman (1999) observes this is
only realistic for problems consisting of a few variables and where definite prior knowledge
exists. In recent years there has been a growing interest in learning Bayesian networks from
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data; see for example the work of Buntine (1991) and Heckerman (1995). The majority of
this research has focused on learning the global structure, which corresponds to the edges
of the DAG, of the network. Once a Bayesian network has been constructed to be able to
determine various probabilities of interest from the model requires probabilistic inference.
Although conditional independence is used in a Bayesian network to simplify probabilistic
inference, exact inference in an arbitrary Bayesian network for discrete variables is NP-
hard (Cooper, 1990). Even approximate inference (for example by the use of Monte Carlo
methods) is NP-hard (Dagum & Luby, 1993).

2.3. Automatic relevance determination

To overcome the black-box nature of the Bayesian neural network, Automatic Relevance
Determination (ARD) (MacKay, 1994; Neal, 1995) has been proposed as a method of input
selection, and capacity control. In an ARD model, each input variable has an associated
hyperparameter that controls the magnitudes of the weights on connections to that input.
If the hyperparameter associated with an input is large the weights associated with it are
likely to be small, and hence the input will have little effect on the output. Interpretation
of these hyperparameter values enables an inputs influence on the network to be assessed,
providing a method for knowledge extraction.

One of the main criticisms of the technique is the difficulty in determining the hyper-
parameter values. In a true Bayesian framework, parameters whose values are not known
should be integrated out by a process referred to as marginalisation. However, in the com-
monly employed evidence framework a maximum a posteriori (MAP) approach is adopted
(MacKay, 1994; Bishop, 1995). This approach finds values for the hyperparameters which
maximise the posterior probability and then perform the remaining calculations with the
hyperparameters set to these values. This is computationally equivalent to the type-II maxi-
mum likelihood method of Gull (1989). The hyperparameters are set to some initial values,
and are then re-estimated. Empirical results (Penny & Roberts, 1998) have shown that the
final solution obtained is sensitive to the initial values of the hyperparameters, causing
the network to converge to a local rather than global minimum. The alternative method
of integration by sampling, e.g., Markov Chain Monte Carlo (MCMC) methods have also
been considered in the machine learning community (Neal, 1995). The main criticism of
MCMC methods is that they are slow and it is usually difficult to monitor convergence.
Another notable disadvantage of the MCMC method is that the posterior distribution over
parameters, which captures all information inferred from the data about the parameters is
stored as a set of samples which can be inefficient.

2.4. ASMOD

The Additive Spline Modelling of Observational Data (ASMOD) algorithm has been em-
ployed for finding interesting trends in data (Kavli & Weyer, 1995). In the ASMOD approach
a set of piecewise polynomial basis functions are defined by a series of knots. The introduc-
tion of additional knots within the basis functions enables increasingly complex functions to
be approximated, whilst an increase in the order allows potentially smoother functions to be
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obtained. The resulting model is a multidimensional polynomial surface which can be de-
composed as a series of local, low order polynomials, which can be considered as a set of
local kth order Taylor series approximation to the system. The model is constructed using
a forward selection, backwards elimination algorithm that updates the model iteratively by
selecting the best refinement from a set of possible refinements. These refinements can in-
clude: knot insertion, knot deletion, subnetwork deletion, as well as decreasing or increasing
the order of the B-spline. At each stage in the model construction process an MSE based
statistical significance measure (Gunn, Brown, & Bossley, 1997) can be used to select the
optimal model refinement.

2.5. CART

The use of tree-based classification and regression has been widely used in the machine
learning community. Popular methods for decision-tree induction are ID3 (Quinlan, 1986),
C4.5 and CART (Classification And Regression Trees) (Breiman et al., 1984). To construct
an appropriate decision tree, CART first grows a descision tree by determining a succession
of splits (decision boundaries) that partition the training data into disjoint subsets. Starting
from the root node that contains all the training data, an exhaustive search is performed to
find the split that best reduces some minimum cost-complexity principle. The net result of
this continual process is a sequence of trees of various sizes; the final tree selected is the tree
that performs best when an independent test set is presented. Thus, the CART algorithm
can be considered to consist of two stages: tree growing and tree pruning. Transparency can
be introduced into this method simply by reading off which inputs are incorporated into the
final tree structure.

3. Sparse kernel methods

To address some of the difficulties associated with the preceding methods, such as model
mismatch and poor generalisation we propose a new additive sparse kernel method. An
additive sparse kernel model extends a standard kernel model by replacing the kernel with
a weighted linear sum of kernels,

f (x) =
l∑

i=1

αi

m∑
j=1

c j K j (xi , x), c j ≥ 0, (6)

where K j are positive definite functions and where the positivity constraints on the kernel
coefficients, c j , ensure that the complete kernel function is positive definite. Here, the term
sparse refers to sparseness in the kernel coefficients c j rather than the usual sparseness in
the multipliers, αi ; sparseness in these multipliers can still be obtained by employing an
appropriate loss function. A conventional kernel model regulariser will not enforce sparsity
in the kernel coefficients and hence a more complex regulariser is required. The goal in
selecting a sparse representation is to minimise the number of non-zero coefficients, ci .
This can be achieved with a p-norm on the kernel coefficients. As p increases the solution
becomes less sparse and the computational complexity of the resulting optimisation problem
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is relaxed. Ideally a value of p = 0, which counts the number of terms in the expansion is
attractive. This case is employed in the atomic decomposition of Chen (1995), but it results
in a computationally hard combinatorial optimisation problem. Alternatively choosing a
value of p = 2 produces a straightforward optimisation problem. This case is referred to as
the method of frames or ridge regression, but crucially the sparseness within the expansion
is now lost. A good compromise occurs when p = 1 producing a sparse solution, with
a practical implementation. This penalty function has successfully been used in basis-
pursuit de-noising (Chen, 1995). To enforce sparsity in the kernel expansion we consider a
regularised cost functional of the form

�(α, c) = L(y, K (c)α) + λα‖α‖2
K (c) + λc‖c‖1, ci ≥ 0, λα, λc > 0 (7)

where L is the loss function, and λα , λc are regularisation parameters controlling the smooth-
ness and sparsity of the kernel expansion respectively.

The direct solution of this problem is non-trivial, so an iterative method is introduced,
whereby we solve two separate sub-problems: minα � with c fixed; minc � with α fixed.
The solution for a quadratic loss, L(y, ŷ) = (y − ŷ)T (y − ŷ), is given by

�(α, c) =
∥∥∥∥y −

∑
i

ci Kiα

∥∥∥∥
2

2

+ λα

∑
i

ciα
T Kiα + λc

∑
i

ci , ∀pcp ≥ 0.

α∗ = arg min
α

αT

( ∑
i

∑
j

ci c j Ki K j + λα

∑
k

ck Kk

)
α −

(
2yT

∑
l

cl Kl

)
α

c∗ = arg min
c

∑
i

∑
j

ci c j (α
T Ki K jα)

+
∑

k

ck(λααT Kkα + λc − 2yT Kkα), ∀p cp ≥ 0,

where y and ŷ are vectors of target and predicted values respectively. The solution for an
ε-Insensitive Loss, L(y, ŷ) = ∑

i max(0, |yi − ŷi | − ε) by,

�(α, c) =
∥∥∥∥y −

∑
i

ci Kiα

∥∥∥∥
1,ε

+ λα

∑
i

ciα
T Kiα + λc

∑
i

ci , ∀pcp ≥ 0.

α∗ = arg min
α=α+−α−

(α+ − α−)T

(
λα

∑
k

ck Kk

)
(α+ − α−)

−
∑

i

(α+ − α−)yi +
∑

i

(α+ + α−)ε, ∀i 0 ≤ α+
i , α−

i ≤ 1

2λα

.

c∗ = arg min
c,ζ+,ζ−

∑
i

(ζ+
i + ζ−

i ) +
∑

j

c j (λααT K jα + λc),

∀i, j c j ≥ 0, ζ+
i , ζ−

i ≥ 0, −ζ− − ε ≤
∑

k

ck Kkα ≤ ζ+ + ε.
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where ζ+ and ζ− are slack variables. An attraction of this iterative technique is that it
decomposes the problem into two simple convex optimisation problems. In the quadratic
loss case the solution for α∗ is given by simple matrix inversion, and for c∗ by a bound
constrained quadratic program. In the ε-insensitive case the solution for α∗ is given by a
box constrained quadratic program, and for c∗ by a bound constrained linear program with
linear constraints. Consequently, they can all be solved readily using a standard quadratic
programming optimiser (Mészáros, 1998). A similarity can be drawn between this approach
and Bayesian methods (MacKay, 1995) that employ a two stage iterative procedure, a
parameter update and ’hyperparameter’ update. However, unlike most Bayesian methods,
the update stages consist of convex optimisation problems.

If λα and λc are known the solution can be obtained by,

Initialise : α∗
0 = arg min

α
�(α, c∗

0), c∗
0 = 1

Iteration :
(a) c∗

i+1 = arg minc �(α∗
i , c)

(b) α∗
i+1 = arg minα �(α, c∗

i+1).

In the quadratic case the second order partial derivatives with respect to α and c are always
positive ensuring that every slice is convex. This fact combined with the knowledge that the
solution is finite in α and c should ensure convergence to the global minimum. A similar
result should be obtainable for the ε-insensitive loss function. The convergence properties
of this algorithm will be studied in future work. In practice the situation is more complicated
since λα and λc will not be known but will need to be estimated. Intuitively, both λc and
λα should initially be set large and reduced gradually; reducing λα too quickly will over
smooth the space making the sparse selection harder; reducing λc too quickly will tend
to produce an over-sparse model. To provide a workable solution the method used in this
paper uses an initialisation step and one iteration. In the initilisation step and part (b) of the
iteration, λc does not enter the optimisation and as such does not need to be determined;
λα can be determined using cross-validation (8-fold is used in this paper). The difficult
part is determining the parameters in part (a) of the iteration. A possible method could fix
λα at the value used in the initialisation step and select λc to obtain a comparable loss to
that of the initialisation step. However, the method chosen, which was based on the best
empirical performance, was to set λα = 0 and to select λc such that the loss was equal to
that of the validation error in the initialisation step. Alternative methods for determining
these parameters will be investigated in future work. In the next section a particular class
of sparse additive kernel model is introduced with some attractive transparency properties.

4. SUPANOVA

The SUPANOVA technique is designed to select a parsimonious model representation by
selecting a small set of terms from the complete ANOVA representation (3). The technique
is an additive kernel model, (6) with a particular choice of ANOVA kernels can be expressed
as and hence we can employ the sparse kernel method described in the previous section to
obtain its solution. This section considers some possibilities for ANOVA kernel models. The
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following theory is based upon Reproducing Kernel Hilbert Spaces (RKHS) (Aronszajn,
1950; Wahba, 1990). If K is a symmetric positive definite function, which satisfies Mercer’s
Conditions, then the kernel represents a legitimate inner product in feature space and it may
be deployed within (6). The following two theorems (Aronszajn, 1950) are required in
proving that ANOVA kernels satisfy Mercer’s Conditions.

Theorem 1. If k1 and k2 are both positive definite functions then so is k1 + k2.

Theorem 2. If k1 and k2 are both positive definite functions then so is k1 ⊗ k2.

It follows from Theorem 2 that multidimensional kernels can be obtained by forming
tensor products of univariate kernels. A multivariate ANOVA kernel is given by the tensor
product of a univariate kernel plus a bias term,

KANOVA(u, v) =
d∏

i=1

(1 + k(ui , vi ))

= 1 +
d∑
i

k(ui , vi ) +
d∑

i< j

k(ui , vi )k(u j , v j )

+ · · · +
d∏

i=1

k(ui , vi ). (8)

It follows from Theorems 1 and 2 that if k is a valid kernel then so is KANOVA. Considering (8)
it is evident that the tensor product produces the ANOVA terms of (1), producing a flexible
model. Another consequence of Theorems 1 and 2 is that each of the additive terms in the
expansion (8) is also positive definite, and hence a valid kernel in its own right. This enables
partial forms of (8) to be used as valid kernels, and this is the method employed within the
SUPANOVA technique to produce parsimonious kernels. The choice of univariate kernel,
k, will control the form of the final model. For simplicity, we shall restrict ourselves to the
case where the same kernel is used for each dimension, although different univariate kernels
could be deployed.

An attractive property of the kernel-based approach is that many functions commonly
employed within modelling have kernels that satisfy Mercer’s Conditions. Gaussian Radial
Basis Function kernels have been successfully deployed in kernel methods. However, whilst
they have some attractive properties from a regularisation perspective they are poor at
modelling functions with different degrees of smoothness, and require the determination of
an additional smoothing parameter. Multi-Layer Perceptron (MLP) kernels, using a set of
sigmoidal functions, have also been used. However, the MLP kernel is only positive definite
for particular values of its two controlling parameters, making deployment more difficult.
Polynomial kernels have often been used and are cheap to compute. Their disadvantage is
that in an ANOVA framework a high order polynomial will be required to model arbitrary
functions. Splines are an attractive choice for modelling (Wahba, 1990) due to their ability
to approximate arbitrary functions. Many types of splines have kernel representations, such
as odd order B-splines and infinite splines. B-splines have been used in other modelling
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approaches and are favourable when a rule-base interpretation is desired (Brown & Harris,
1994). However, whilst they can have some computational advantages, the regularisation
operator corresponding to a B-spline kernel representation has some weaknesses (Smola,
1998). This has been observed experimentally by the production of models with a tendency
to oscillation (Gunn, 1998). An infinite spline incorporates the flexibility of a spline approach
without the oscillation problem associated with B-splines, and this motivates it use within
an ANOVA framework. Another advantage of the infinite spline kernel is that is has no scale,
and therefore no associated scale parameter to determine. This is of great advantage in the
SUPANOVA technique, since the ANOVA decomposition would introduce a multitude of
such parameters which would need to be determined. The first order infinite spline kernel,
which passes through the origin, is defined on the interval [0, ∞) by,

kspline(u, v) =
∫ ∞

0
(u − τ)+(v − τ)+dτ , (9)

where (x)+ is equal to the positive part of x . The solution has the form of a piece-wise cubic
polynomial,

kspline(u, v) = uv + 1

2
(u + v) min(u, v) − 1

6
(min(u, v))3, (10)

and therefore the form of the SVM solution is a piecewise cubic with knots located at a
subset of the data points. Multivariate spline kernels obtained from (10) will produce a
lattice of piecewise multi-cubic functions.

Using a complete ANOVA kernel (8) has drawbacks when it comes to interpretation of
the model, due to the large number of terms within the expansion. To introduce enhanced
transparency we employ a parsimonious ANOVA kernel. Considering the expansion of (8)
an additional set of positive coefficients, ci , are introduced,

KANOVA(u, v) = c0 +
d∑
i

ci k(ui , ui ) +
d∑

i< j

ci, j k(ui , ui )k(u j , u j )

+ · · · + c1,2,...,d

d∏
i=1

k(ui , ui ). (11)

Consequently the resulting kernel is a weighted linear sum of kernels, and a parsimonious
model solution can be obtained by using the method of the previous section.

Since the univariate ANOVA term is constrained to pass through the origin, bivariate
and higher order terms will be constrained to be zero along their axes. Consequently the
parsimonious model will not simply consist of the single highest order ANOVA term, but
will favour low order terms in preference to high order terms. The ANOVA terms in the
parsimonious model can be recovered from the final SVM expansion. For example, the
univariate terms are given by,

fg(x) = cg

l∑
i=1

αi k
(
xi

g, xg
)
, (12)
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and the bivariate terms are given by,

fg⊗h(x) = cg,h

l∑
i=1

αi k
(
xi

g, xg
)
k
(
xi

h, xh
)
, (13)

where αi are the Lagrange multipliers obtained from the complete ANOVA kernel solu-
tion. However, the computation required to solve the optimisation problem is extremely
demanding due to the combinatorial nature of the problem and the curse of dimensionality
(Bellman, 1961) associated with the full ANOVA expansion. To overcome this problem
the ANOVA expansion can be truncated to simplify the problem, since if transparency is
to be obtained the selected terms should be of low order. This technique contrasts with
other parsimonious techniques, such as MARS and ASMOD, in that it aims to find a full
model and sub-select the significant terms. The drawback with the MARS and ASMOD
approaches is that they are local, and can suffer from entrapment in local minima within the
construction process. Additionally, they may not be strictly well-posed. A further attraction
of the SUPANOVA technique is that it decomposes the problem into three simple convex
optimisation problems. An important issue is the form of solution produced when highly
correlated inputs exist. The combination of the regularisers, (7) will produce a model that is
distributed for two or more identical inputs; if a ‖c‖0 regulariser was used the model would
not be distributed. In the case when the inputs are only highly correlated, the technique
will produce a sparse model, and therefore a simple correlation test could be employed to
identify the limiting case.

5. Experiments

Four modelling problems were used to assess the performance of the SUPANOVA approach.
In each experiment, 90% of the data was used for training and validating the model and
10% of the data was used for estimating the generalisation performance. The SUPANOVA
algorithm was executed multiple times for each problem, using both an ε-Insensitive and
a quadratic loss function, with the whole data set “randomly” partitioned into the training
and test sets. The capacity control parameter λα was determined using 8-fold cross valida-
tion, combined with an automatic search procedure, which locates a local minimum of the
validation error.

5.1. Additive data modelling

To demonstrate the performance of the technique an artificial modelling problem proposed
by Friedman (1991) was used. This is appropriate in that it concerns the modelling of an
additive function, which has a sparse representation in an ANOVA framework. The model
is a ten input function, with five redundant inputs, given by

f (x) = 10 sin(πx1x2) + 20

(
x2 − 1

2

)2

+ 10x4 + 5x5 + N (0, 1.0), (14)
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where N is zero mean, unit variance, additive Gaussian noise, corresponding to approxi-
mately 20% noise, and the inputs were generated independently from a uniform distribution
in the interval [0, 1]10. The experiments were performed using 200 examples, 180 for train-
ing and 20 for estimating the generalisation performance. This was repeated 50 times for
each loss function producing a total of 100 models.

Figure 1 illustrates one of the 100 models, obtained from the SUPANOVA technique. It
can be seen that it has selected 7 interaction terms (bias, five univariates, and one bivariate)
from a possible 1024 terms. Each plot shows the overall effect that the ANOVA term which
was selected ( fi ) has on the output. The axes represent the contribution of the selected
term on the output given the data. Table 1 demonstrates that the difference in the mean of
the estimated generalisation error between a full ANOVA model is twice as high as the
error for the parsimonious ANOVA model. These results were corroborated by the results
using the ε-Insensitive function. Comparing the two different loss functions shows that,
for this particular data-set, there is very little performance difference. The ANOVA terms
selected by the 100 models are shown in Table 2. The difference column expresses the
fraction of models which produced inconsistant selection in this term. The results show a
high consistency, demonstrating the potential of the technique.

Table 1. SUPANOVA results for the additive data set (ε = 1.0).

Estimated generalisation error

Loss function Stage I Stage III Linear model

Training Testing Mean Variance Mean Variance Mean Variance

Quadratic Quadratic 4.84 1.20 2.22 2.54 6.53 3.60

ε-Insensitive ε-Insensitive 0.93 0.04 0.47 0.11 1.17 0.08

ε-Insensitive Quadratic 4.88 1.59 2.32 2.24 6.61 3.79

Table 2. SUPANOVA terms selected for the additive data set (ε = 1.0).

Terms Quadratic ε-Insensitive “Difference”

bias 50 50 0.00

x1 50 50 0.00

x2 50 50 0.00

x3 34 32 0.16

x4 50 50 0.00

x5 50 50 0.00

x1 ⊗ x2 49 50 0.02

x3 ⊗ x8 5 3 0.08

x3 ⊗ x9 4 5 0.10

x3 ⊗ x10 0 5 0.10

x4 ⊗ x5 1 0 0.02
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Figure 1. Visualisation of the selected ANOVA terms using a quadratic additive model (1 of 50) when applied
to the additive dataset.

Table 3 shows the consistency of the ARD input selection method using MacKay’s evi-
dence framework for the additive data. The input variables have been ranked in order of the
size of the hyperparameter controlling that input. It is evident that the relevant inputs are
not extracted as successfully as the SUPANOVA technique. However, employing a MCMC
method, Table 4, shows that the ARD method is much more consistent and comparable
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Table 3. Ranked importance of input variables when using evidence framework on Friedman’s additive problem.

Input variables

Dataset x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

1 2nd 1st 3rd – – 5th – – 4th –

2 2nd 1st 3rd 7th – 6th – 4th 5th 7th

3 1st 3rd 2nd 7th – – – 5th 4th 6th

4 2nd 1st 3rd 5th – – – 4th – –

5 2nd 1st 4th 5th 7th 6th – – 3rd –

6 1st 2nd 3rd 4th 6th – – – – 5th

7 1st 2nd 3rd 4th – – – – – –

8 1st 2nd 3rd 4th 7th – – 5th 6th –

9 2nd 1st 3rd 4th 6th – – 5th – –

10 1st 2nd 3rd 5th 6th 4th 7th – – –

Table 4. Ranked importance of input variables when using MCMC resampling on Friedman’s additive problem.

Input variables

Dataset x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

1 1st 2nd 3rd 4th 5th – – – – –

2 1st 2nd 3rd 4th 5th 6th – – – –

3 1st 2nd 3rd 4th 5th – – 6th

4 2nd 1st 3rd 4th 5th – – 6th – –

5 1st 2nd 3rd 4th 5th – – – –

6 1st 2nd 3rd 4th 6th – – – 5th

7 1st 3rd 2nd 5th 4th – – – – –

8 3rd 1st 2nd 4th 5th – – – –

9 1st 2nd 3rd 4th 5th – – 6th –

10 1st 2nd 3rd 4th 5th – – – – –

to the SUPANOVA technique. MCMC methods are advantageous since they make no as-
sumptions concerning the form of the underlying probability distribution such as whether
it can be approximated by a Gaussian distribution. Nonetheless the ARD technique as it
stands is incapable of determining higher order interactions and is restricted to simple input
selection.

One point of interest is brought out by the results. The spline kernel employed will
produce ANOVA terms which are zero at the origin, and hence bivariate terms will be
zero along both axes, which is illustrated by the x1 ⊗ x2 term in figure 1. Accordingly, the
additive model should not require the univariate terms x1, x2 to model the data generated
by (14).
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5.1.1. Simplified additive data modelling. To investigate the inclusion of the two univariate
terms x1, x2, further the generating function was simplified to a two input function,

f (x) = 10 sin(πx1x2). (15)

A 15 by 15 grid of points on [0, 1] × [0, 1] were used to induce a new model. In this
experiment the regularisation parameter λalpha, was controlled manually, and varied over a
wide range. The result for a larger value of regularisation is shown in figure 2. It is evident that
the technique has modelled the function using both the univariate and bivariate terms. This is
in contrast to a technique that uses a small amount of regularisation, in which the function is
entirely modelled by the bivariate term. This behaviour can be explained by considering the
way the regularisation term penalises the spline basis functions. The regularisation term is
penalising the square of the amplitude of the basis functions. Hence, as this term becomes
more significant the optimisation problem can attain a lower value by decomposing the
single bivariate term into a combination of bivariate and univariate ANOVA terms. In the

Figure 2. Visualisation of ANOVA terms when deploying regularisation effects (C = 10).
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initialisation stage where the ANOVA model space is large, it will be necessary to employ a
significant amount of regularisation to control the capacity of the flexible model. Therefore,
this behaviour will be common when a ridge regression type regulariser is employed. This
problem could be addressed by considering alternative regularisation operators/kernels. It
also explains the fact that the quadratic term was extracted less consistently than the other
terms, which is evident from Table 2. However, its consequence will be to introduce ANOVA
terms that are factors of a main effect and as such this is not an overriding problem, since
the main effect terms typically have a low dimension. In the case when the main effect term
has a high dimension, transparency has already been lost.

5.2. Automobile miles per gallon (AMPG) data modelling

The performance of the SUPANOVA approach to a real data-set is demonstrated by appli-
cation to the problem of modelling automobile miles per gallon data (Blake & Merz, 1998).
The AMPG data set contains the miles travelled, per gallon of fuel consumed, for various
different cars. The input variables measure six characteristics of a car; the number of cylin-
ders (discrete), displacement, horsepower, weight, acceleration and model year (discrete).
The goal is to discover a relationship between the AMPG and the cars’ characteristics.
After removing a small number of entries with missing values from the original data set,
the experiments were performed using 392 examples, 352 for training and validation and
40 for estimating the generalisation performance.

Figure 3 illustrates one of the 100 models, obtained from the SUPANOVA technique. It
can be seen that it has selected 8 interaction terms (bias, 3 univariate, 3 bivariate and one
trivariate) from a possible 64 terms. Table 5 demonstrates that the difference in the mean
of the estimated generalisation error between a full ANOVA model and a parsimonious
ANOVA model is negligible. However, it also demonstrates that the parsimonious kernel has
a lower variance and hence suggests that it is more robust. These results were corroborated
by the results using the quadratic loss function. Comparing the two different loss functions
shows that, for this particular data-set, there is very little performance difference. Inspection
of the ANOVA terms selected by the 100 models shows a high consistency, and confirms the
robustness of the technique. The transparency of the terms is evident from figure 3, although
the trivariate is harder to interpret. An example of model validation is demonstrated by the

Table 5. Mean and associated variance for the SUPANOVA results when applied to the additive data set (ε = 1.0).

Estimated generalisation error

Loss function Stage I Stage III Linear model

Training Testing Mean Variance Mean Variance Mean Variance

Quadratic Quadratic 6.97 7.39 7.08 6.19 11.4 11.0

ε-Insensitive ε-Insensitive 0.48 0.04 0.49 0.03 1.80 0.11

ε-Insensitive Quadratic 7.07 6.52 7.13 6.04 11.72 10.94



154 S.R. GUNN AND J.S. KANDOLA

Figure 3. Visualisation of the ANOVA terms from an ε-Insensitive AMPG model (1 of 50).
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ability to verify the trends in the interaction terms. All the trends are consistent with prior
knowledge about the problem and the univariate year term is of particular interest. It can
be seen that before 1973 this term has no effect on the MPG, but after 1973 there is a sharp
rise in MPG; this could be a consequence of the oil crisis.

5.3. Boston housing data

The Boston housing dataset originates from the work of Harrison and Rubinfield (1978)
who were interested in the effect of air pollution on housing prices. The data concerns the
median price in 1970 of owner-occupied houses in 506 census tracts within the Boston
metropolitan area. Twelve attributes pertaining to each census tract are available for use in
predicting the median price. The input variables are: Crime rate—per capita crime rate by
town, % Residential land—proportion of residential land zoned for lots over 25,000 sq.ft.,
% Non-retail Business—proportion of non-retail business acres per town, Nitric Oxides—
Nitric oxides concentration (parts per 10 million), Mean no. of rooms—Average number
of rooms per dwelling, % built pre 1940—Proportion of owner-occupied units built prior
to 1940, distance to job centre—weighted distance to five Boston employment centres,
Access to Highways—index of accessibility to radial highways, Property Tax—full value
property tax per $10,000, Pupil:Teacher Ratio—Pupil teacher ratio by town and % Blacks—
1000(Blks − 0.63)2 where Blks is the proportion of blacks by town.

As Neal (1995) observes the data is ‘messy’ in several regards. Some of the attributes are
not actually measured on a per-tract basis, but only for larger regions. The median prices
for the highest-priced tracts appear to be censored. Censoring is suggested by the fact the
highest median price of exactly $50,000 is reported for sixteen of the tracts. Considering
these potential problems, it appears unreasonable to expect that the distribution of the target
variable, given the input variables, is Gaussian.

Work carried out by Husmeier (1999) on using an ensemble of Bayesian neural networks
trained using an Expectation-Maximisation (EM) algorithm and incorporating automatic
relevance determination (ARD) was able to select “relevant” inputs. The input variables
rooms, distance to employment centres, access to radial highways, property tax, and the
percentage of lower status in the population were selected as being relevant inputs. Husmeier
observes, and this is confirmed in our approach, that the variable crime seems to be an irrela-
vant input. The remaining input variables show an ambiguous behaviour. Figure 4 illustrates
the model obtained from the SUPANOVA technique Table 6. Fourteen interaction terms
(bias, 4 univariate, 8 bivariate) were selected as being important by the SUPANOVA techn-
qiue. Inspection of the ANOVA terms selected by the 100 models shows a high consistency,
and confirms the robustness of the technique. An example of the terms chosen are shown in
figure 4. The trends depicted are broadly consistent with prior knowledge about the problem.

5.4. Materials data

To assess the behaviour of the SUPANOVA technique in high noise situations a “real world”
dataset was considered. A commercial processing-properties dataset for DC cast aluminium
plate is considered, concentrating on prediction of the mechanical property 0.2% proof
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stress. This dataset is illustrative of the problems and challenges that arise in real world
modelling; sparsely distributed data and highly correlated inputs. The raw dataset consists
of ten input variables and 290 data pairs covering alloy composition and thermomechanical
processing information. The ten input variables were; final gauge (FG), Cu, Fe, Mg, Mn,
Si (all in weight percent), cast slab length (SL), solution treatment time (STT), percentage
stretch (%st.) and reduction-ratio (RR).

5.4.1. Automatic relevance determination. The Bayesian neural network using ARD was
trained in the same manner as it was for Friedman’s artificial dataset. Figure 5 shows the
variation of training and test set errors for increasing numbers of hidden nodes. The optimal
network structure was determined to have seven hidden nodes since this corresponds to the
lowest error on the test set.

Table 7 shows the mean ARD hyperparameter values (and associated standard deviation
over the ten datasets) indicating the influence of each variable on the output for the optimal

Figure 4. Visualisation of some of the selected ANOVA terms from the Boston house price data.
(Continued on next page.)
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Figure 4. (Continued ).

model structure, and Table 9 shows the ranked selection of each input variable for each of
the ten models trained. From the values quoted final gauge (FG), silicon (Si), percentage
stretch (%st.) and slab length (SL) exhibit the largest values. Three of these four inputs are
consistent with those inputs selected by the graphical Gaussian model and the MLR. The
mean MSE obtained for the training data was 57.6, whilst that for the test data was 90.5
representing a difference of 9.5 MPa between training and test performance.
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Table 6. Summary of the SUPANOVA terms selected when using the AMPG data set.

Terms Quadratic ε-Insensitive “Difference”

Bias 50 50 0.00

C 3 1 0.08

D 35 8 0.66

H 2 20 0.44

W 50 50 0.00

Y 50 50 0.00

C ⊗ D 9 26 0.54

C ⊗ W 0 4 0.08

C ⊗ A 1 11 0.24

C ⊗ Y 2 18 0.40

D ⊗ W 35 44 0.38

C ⊗ A 42 43 0.16

H ⊗ Y 10 5 0.18

W ⊗ Y 2 1 0.06

A ⊗ Y 50 47 0.06

C ⊗ D ⊗ W 0 1 0.02

C ⊗ W ⊗ A 0 1 0.02

C ⊗ W ⊗ Y 0 1 0.02

C ⊗ A ⊗ Y 0 7 0.14

D ⊗ H ⊗ W 1 2 0.06

H ⊗ A ⊗ Y 50 49 0.02

W ⊗ A ⊗ Y 0 4 0.08

C ⊗ D ⊗ W ⊗ A 0 1 0.02

C ⊗ D ⊗ A ⊗ Y 4 0 0.08

(ε = 2.5), (C-No of cylinders, D-Displacement, H -Horse Power,
W -Weight, A-Acceleration, Y -Year) (All remaining terms were zero).

Table 7. Mean ARD hyperparameter values for seven hidden nodes using the evidence framework.

FG Cu Fe Mg Mn Si SL STT %st. RR

1/α 0.134 0.046 0.075 0.164 0.05 0.485 0.281 0.066 0.184 0.09

std 0.08 0.05 0.03 0.24 0.04 0.15 0.18 0.03 0.07 0.04

The SUPANOVA technique was applied to the ten input materials dataset, of the possible
1024 different terms in the full ANOVA expansion, only 12 terms were chosen as being
significant. The full selection of terms is given in Table 8. The univariate terms selected were
the bias, Mg, Si, STT, %st., the bivariate terms were FG⊗Mg, FG⊗RR, Cu⊗Si, Fe⊗Si,
Mn⊗SL, Si⊗RR, and the trivariates terms FG⊗Cu⊗Si and Fe⊗Si⊗%.st. Examples of
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Table 8. Summary of ANOVA terms selected when applied to the commerical materials dataset.

Dataset

Components 1 2 3 4 5 6 7 8 9 10

Cu − × × − − − − − − ×
Mg × − − × × × × × × −
Si × × × × × × × × × ×
STT × × × × × × × × × ×
%st. × × − × × − × × × ×
FG⊗Mg × × × × × × × × × ×
FG⊗%st. − × × × × − × × × ×
FG⊗RR × × × × × × × × × ×
Cu⊗Si × × × × × × × × × ×
Fe⊗Si × × × × × × × × × −
Mn⊗SL × × − × × − × × × −
Si⊗RR × × − × × − × × × −
FG⊗Cu⊗Si × × × × × × × × × ×
FG⊗Mg⊗%st. − − − − − − − − × −
Cu⊗Mg⊗%st. − − − − − − − − × −
Fe⊗Si⊗%st. × × − × × − × × × ×
Fe⊗Si⊗RR − − × − × × − − − ×
Fe⊗SL⊗RR − × − − − − − − × −
Fe⊗Si⊗SL⊗RR − − − − − − × − − −

Figure 5. Variation of mean training and test MSE for a Bayesian MLP trained with varying numbers of hidden
nodes.
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Figure 6. Examples of univariate, bivariate and trivariate interaction terms obtained from SUPANOVA applied
to the commerical materials dataset. (a) Univariate interaction term, (b) Bivariate interaction term, (c) Trivariate
interaction term.
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Table 9. Ranked importance of the input variables.

Input variables

Dataset FG Cu Fe Mg Mn Si SL STT %st. RR

1 4th – – – – 1st 2nd – 3rd –

2 2nd – – – – 1st 4th 5th 3rd 6th

3 5th – – 3rd 6th 1st 2nd – 4th –

4 – – – 1st 4th 2nd 3rd – 5th 6th

5 – – 3rd – – 1st – – 2nd 4th

6 – – – – – 1st 2nd – 3rd 4th

7 5th – – 4th – 2nd 1st – 3rd –

8 3rd – – – – 2nd 1st – – –

9 5th – – 4th – 1st 2nd – 3rd –

10 2nd 5th 7th – – 1st 4th – 3rd 6th

these are illustrated in figure 6. Table 9 shows the stability of these terms across the ten
different data partitions.

These regression surfaces represent interaction terms; to see the overall effect of an input
all the interaction terms associated with that input must be considered.

Figure 6 is an example of a univariate interaction term. This allows visualisation of the
global contribution of percentage stretch on proof stress, as an independent effect, as it
does not appear in any other terms. Interpretation of the bivariate (figure 6(b)) and trivariate
(figure 6(c)) can be less straightforward. By looking at all 12 terms of the type shown in
figure 6 the entire structure of the model is defined. The mean MSE for the training set
was 61.4 whilst the generalisation MSE was 80.8 (giving a difference in error values of
8.9 MPa).

6. Conclusion

An approach to modelling with an emphasis on good generalisation and model interpre-
tation has been described. Model interpretation is achieved through a interactive model
representation providing input selection and enhanced visualisation. To obtain a accurate
representation a large hypothesis space must be considered, and consequently a technique
is warranted that has excellent capacity control. In this respect, kernel methods have been
extended to allow the incorporation of a parsimonious kernels. An example if this, the
SUPANOVA technique, has been described that decomposes the problem into three simple
convex optimisation problems, which can be solved efficiently. With application to four
datasets we have shown the the additive structure of the parsimonious SUPANOVA tech-
nique can aid in the understanding of complex relationships that can exist in data generated
from physical systems.
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