;:‘ Machine Learning, 48, 189-218, 2002
' © 2002 Kluwer Academic Publishers. Manufactured in The Netherlands.

Sparse Regression Ensembles in Infinite
and Finite Hypothesis Spaces

GUNNAR RATSCH* raetsch@first.gmd.de (http://mlg.anu.edu.au/~raetsch)
GMD FIRST, Kekulestr. 7, 12489 Berlin, Germany

AYHAN DEMIRIZ demira@rpi.edu (http://www.rpi.edu/~demira)
Department of Decision Sciences and Eng. Systems, Rensselaer Polytechnic Institute, Troy, NY 12180, USA

KRISTIN P. BENNETT bennek@rpi.edu (http://www.rpi.edu/~bennek)
Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA

Editors: Yoshua Bengio and Dale Schuurmans

Abstract. We examine methods for constructing regression ensembles based on a linear program (LP). The
ensemble regression function consists of linear combinations of base hypotheses generated by some boosting-
type base learning algorithm. Unlike the classification case, for regression the set of possible hypotheses producible
by the base learning algorithm may be infinite. We explicitly tackle the issue of how to define and solve ensemble
regression when the hypothesis space is infinite. Our approach is based on a semi-infinite linear program that has
an infinite number of constraints and a finite number of variables. We show that the regression problem is well
posed for infinite hypothesis spaces in both the primal and dual spaces. Most importantly, we prove there exists an
optimal solution to the infinite hypothesis space problem consisting of a finite number of hypothesis. We propose
two algorithms for solving the infinite and finite hypothesis problems. One uses a column generation simplex-type
algorithm and the other adopts an exponential barrier approach. Furthermore, we give sufficient conditions for the
base learning algorithm and the hypothesis set to be used for infinite regression ensembles. Computational results
show that these methods are extremely promising.

Keywords: ensemble learning, boosting, regression, sparseness, semi-infinite programming

1. Introduction

The past years have seen strong interest in boosting and other ensemble learning algorithms
due to their success in practical classification applications (e.g. Drucker, Schapire, & Simard
1993; LeCunetal., 1995; Maclin & Opitz, 1997; Schwenk & Bengio, 1997; Bauer & Kohavi,
1999; Dietterich, 1999). The basic idea of boosting (and ensemble learning in general) is to
iteratively generate a sequence {/;, }thl of functions (hypotheses) that are usually com-
bined as

T
foa®) = arhy(x),
t=1

*Currently at the Australian National University, RSISE, Canberra ACT 0200, Australia.

190 G. RATSCH, A. DEMIRIZ, AND K.P. BENNETT

where o = [«y,...,ar] are the hypothesis coefficients used. The hypotheses #, are
elements of a hypothesis class H = {h; : j € P}, where P is the index set of hypotheses
producible by a base learning algorithm L. Typically one assumes that the set of hypotheses
'H is finite, but we will also consider extensions to infinite hypothesis sets. For classification,
the ensemble generates the label by sign (f, (X)), which is the weighted majority of the
votes. For regression, the predicted value is f (X).

Recent research in this field has focused on the better understanding of these methods and
on extensions that are concerned with robustness issues (Mason, Bartlett, & Baxter, 1998;
Bennett, Demiriz, & Shawe-Taylor, 2000; Rétsch et al., 2000b; Rétsch & Warmuth, 2001).
It has been shown that most classification ensemble methods can be viewed as minimizing
some function of the classification margin. Typically this is performed algorithmically using
a gradient descent approach in function space. Recently, it has been shown that the soft
margin maximization techniques utilized in support vector machines can be readily adapted
to produce ensembles for classification (Bennett, Demiriz, & Shawe-Taylor, 2000; Rétsch
et al., 2000b). These algorithms optimize the soft margin and error measures originally
proposed for support vector machines. For certain choices of error and margin norms, the
problem can be formulated as a linear program (LP). At first glance, the LP may seem
intractable since the number of variables in the linear program is proportional to the size of
the hypothesis space which can be exponentially large. But in fact, two practical algorithms
exist for optimizing soft margin ensembles. The first uses column generation in a simplex
algorithm (Bennett, Demiriz, & Shawe-Taylor, 2000). The second uses barrier functions in
an interior-point method (Ritsch et al., 2000). The advantage of these linear programming
approaches is that they produce sparse ensembles using fast finite algorithms. The purpose
of this work is to tackle regression ensembles using the analogous support vector linear
programming methodology for regression.

To date, relatively few papers have addressed ensembles for regression (Friedman, 1999;
Duffy & Helmbold, 2000; Bertoni, Campadelli, & Parodi, 1997; Zemel & Pitassi, 2001).
One major difficulty is rigorously defining the regression problem in an infinite hypothesis
space. For classification assuming each hypothesis has a finite set of possible outputs, the
hypothesis space is always finite since there are only a finite number of ways to label any
finite training set. For regression, even relatively simple hypothesis spaces, such as linear
functions constructed using weighted least squares, consist of an uncountable infinite set of
hypotheses. It is not a priori clear how to even express a regression problem in an infinite
hypothesis space. Clearly we can only practically consider ensemble functions that are a
linear combination of some finite subset of the set of possible hypotheses.

In this work, we study directly the issue of infinite hypothesis spaces. We begin in Section 2
with a review of boosting type algorithms for classification and regression and examine the
relationship between ensemble methods and linear programming. In Section 3, we review
a linear program approach to sparse regression and show how it is easily extendible to
ensemble regression for the finite hypothesis case. In Section 3.2 we investigate the dual
of this linear program for ensemble regression. In Section 3.3, we propose a semi-infinite
linear program formulation for “boosting” of infinite hypothesis sets, first in the dual and
then in the primal space. The dual problem is called semi-infinite because it has an infinite
number of constraints and a finite number of variables. An important sparseness property

SPARSE REGRESSION ENSEMBLES 191

Table 1. Notational conventions.

n, N counter and number of patterns

i J counter and number of hypotheses if finite

t, T counter and number of iterations

p,P index and index-set for hypotheses

X, s input space, dimensionality of X

X, Y, Z training data: input, targets, both

X,y a training pattern and the label

H, hj set of base hypotheses and an element of H

F, fa set of linear combinations of H and element of F
a hypothesis weight vector

d weighting on the training set

w a weight vector for linear models

1() the indicator function: I(true) = 1 and I(false) = 0
e the tube size

v the tube parameter (determines &)

C the regularization (complexity) parameter

€ weighted classification error

-l the £,-norm, p = [1, o0]

(-), k(-y) scalar product and scalar product in feature space

of the semi-infinite regression problem is that it has a solution consisting of a finite number
of hypotheses. In Section 4, we propose two different algorithms for efficiently computing
optimal ensembles. The exact implementation of these algorithms is dependent on the
choice of base learning algorithms. In Section 4.3 we investigate three possible base learning
algorithms that result in both infinite and finite hypothesis sets. Computational results are
presented in Section 5.

The notational conventions used in this paper can be found in Table 1.

2. Boosting-type algorithms

We briefly review and discuss existing boosting-type algorithms. In Section 2.1 we start
with the classification case and describe AdaBoost (Freund & Schapire, 1996) and, closely
related, Arc-GV (Breiman, 1999). Then we discuss properties of the solutions generated
by boosting and show connections to a linear program (LP) for maximizing the margins. In
Section 2.2 we briefly review some recent regression approaches that are mainly motivated
from a gradient-descent understanding of Boosting.

2.1. Classification Boosting and LP

For the classification case, it is generally assumed the hypotheses class is H = {h; :x >
{£1},j = 1,...,J}, defined by a base learning algorithm L. In each iteration the base

192 G. RATSCH, A. DEMIRIZ, AND K.P. BENNETT

learner is used to select the next hypothesis using certain criteria. The ensemble generates
the label which is the weighted majority of the votes by sign(f, (x)). Note that the hypothesis
class is always finite because there at most 2V distinct labelings of the training data.

Consider the AdaBoost algorithm. For more details see e.g. (Freund & Schapire, 1994;
Breiman, 1999). The main idea of AdaBoost is to introduce weights d, (n = 1, ..., N) on
the training patterns Z := {(xy, y1), - . ., (Xy, yn)}. They are used to control the importance
of each single pattern for learning a new hypothesis (i.e., while repeatedly running the base
algorithm). Training patterns that are difficult to learn (which are misclassified repeatedly)
become more important by increasing their weight.

It has been shown that AdaBoost minimizes an error function (Breiman, 1999; Frean &
Downs, 1998; Friedman, Hastie, & Tibshirani, 1998; Ritsch & Warmuth, 2001) that can be
expressed in terms of margins, namely it iteratively solves the problem

N
moin G(ow) := Zexp(_ynfa(xn))

n=1
with a >0

The optimization strategy of AdaBoost has also been called “gradient descent” in func-
tion space (Mason et al., 1999; Friedman, Hastie, & Tibshirani, 1998), as one effectively
optimizes along restricted gradient directions in the space of linearly combined functions
f. This can also be understood as a coordinate descent method (e.g. Luenberger, 1984) to
minimize G (cx) over all possible weightings of hypotheses from H (Ritsch et al., 2000).
One hypothesis is added at a time and its weight is never changed unless the same hypothesis
is added again.

It is widely believed (Breiman, 1999; Freund & Schapire, 1996; Schapire et al., 1997,
Ritsch et al., 2001) that AdaBoost approximately maximizes the smallest margin,

. . YnJa(Xp)
o) ;= min —/———
I=n=N |l

on the training set.! This problem can be solved exactly by the following linear programming
problem over the complete hypothesis set H (cf. Grove & Schuurmans (1998), assuming a
finite number of basis hypotheses):

max o
o

with y,f,(x,) >0 foralll <n <N
aj,0=>0 foralll <j<J

D
ol =1

Breiman (1999) proposed a modification of AdaBoost—Arc-GV—making it possible to
show the asymptotic convergence of g(a') (t — 00) to a global solution o' of (1). In
Grove and Schuurmans (1998) the LP (1) was solved using an iterative linear programming
based approach that retrospectively can be considered as a column generation algorithm.
Unfortunately, neither approach performed well in practice.

SPARSE REGRESSION ENSEMBLES 193

Soft margin versions of this linear program based on ideas from support vector machines
perform very well both in practice and theoretically in terms of generalization bounds
(Ritsch et al., 2000b; Bennett, Demiriz, & Shawe-Taylor, 2000). For example, a soft margin
version could be

N
max o—C ZE”

0,0
n=1
with y, fa(X,) +& >0 forall 1 <n<N
a,§0>0 Jal; =1

In Bennett, Demiriz, & Shawe-Taylor (2000) the column generation algorithm for classifi-
cation was proposed to efficiently solve these LPs. This algorithm and those closely related
in Ritsch et al. (2000b), Kivinen and Warmuth (1999) differ from the gradient-boosting
idea used to motivate boosting-type algorithms (Mason et al., 1999; Friedman, Hastie, &
Tibshirani, 1998). At each iteration, all generated hypothesis weights are optimized with
respect to a maximum margin error function. The gradient approach fixes hypothesis weights
as the hypotheses are generated. The purpose of this paper is to examine the extensions of
these approaches to the regression case.

2.2. Previous regression approaches

Several regression boosting methods have been proposed. We provide a brief description
of three of them. Note that the first two described here and also those of Fisher (1997),
Ridgeway (1999) reduce the problem to a series of classification tasks, thus eliminating
any consideration of infinite hypothesis spaces. The last approach (Friedman, 1999) has
been applied to infinite hypothesis spaces, but does not define what it means to boost in an
infinite hypothesis space.

2.2.1. AdaBoost-R. The first boosting-type algorithm for regression—AdaBoost.R—was
proposed in Freund and Schapire (1994). It is based on a reduction to the classification
case. The algorithm aims to find a regression function f :x + [0, 1]. A problem with this
algorithm is that it uses a piece-wise linear function on [0, 1] whose number of branch-
points increases exponentially with the number of iterations. Therefore, the algorithm is
computationally intractable.

2.2.2. AdaBoost-RA. Another reduction for finding f :x +— [0, 1] to the classification
case was proposed in Bertoni, Campadelli, and Parodi (1997). Here, a pattern that is pre-
dicted with error less than some A > 01is counted as correctly classified and as misclassified
otherwise. The combined regression function is given by

T
f(x) = argmax > " I(|h(x) — y| < A).
yelo, 11 5=

194 G. RATSCH, A. DEMIRIZ, AND K.P. BENNETT

Again, a probability weighting d on the training patterns is used. Under the assumption that
the weighted “classification error” € = Z,[,V:l d,I1(|h:(X,) — y,| = A) in each iteration is
smaller than % — v (y > 0), the number of training patterns for which | £ (x,) — y,| > 2A
converges quickly to zero. From our experience it turned out that (i) the choice of A is rather
difficult and (ii) the selection of the next hypothesis by the base learner is a demanding
problem, as the weighted error € usually converges quickly to % and the algorithm has to

stop.

2.2.3. Gradient boosting for regression (Friedman, 1999). Based on the understanding of
boosting as a gradient descent method, other regression algorithms have been proposed—
e.g. in the very interesting paper of Friedman (1999). Here, the derivative % of a cost
function G (e.g. squared loss: G = Z,’,V:l (f(x,) — y»)?) is taken with respect to the output
f(x,) of the regression function. Then the projected gradient direction (a basis function

h € 'H) that is most in the direction of the true gradient is found by

N 2
(h, o) = argmax Z(e ah(x») : 6)

heH,aeR “— aof (x,)

This idea has been worked out for squared loss, linear absolute loss, and Huber’s loss.
However, the gradient direction found in (2) is optimal for the squared loss only. For the
linear absolute loss, this has been specialized to the Tree-Boost algorithm (Friedman, 1999).
Here, the task of finding the next hypothesis is posed as a classification problem, where
the sign of the gradient determines the class membership. In this algorithm, the aim is to
maximize the correlation between the gradient and the output of the base hypothesis. This
approach is similar to the algorithm proposed in Section 4.3.3.

This approach works well in practice. It does not explicitly deal with the infinite hypoth-
esis case. Like all gradient descent algorithms it offers convergence only in the limit—even
for finite hypothesis spaces. Since regularization is not used, it can potentially overfit so
development of good stopping criteria is essential. In the next section, we will develop an
alternative approach based on linear programming. The advantages of the LP approach in-
clude extensibility to the infinite hypothesis case, sparse solution, guarantee of the existence
of sparse finite solutions, and practical fast finite algorithms.

3. Linear programs for regression
In this section, we develop finite and semi-infinite LP formulations for the sparse ensemble

regression. We begin with the primal LP for the finite case, then investigate the dual finite
LP. Then we extend this to the dual and primal infinite hypothesis cases.

3.1. Finite sparse linear regression

Let (x1, y1), ..., Xy, yn) € X x R be some i.i.d. (training) data. The regression problem
is often stated as finding a function f* € F = {f : X — R} that minimizes the regularized

SPARSE REGRESSION ENSEMBLES 195

risk functional (Vapnik, 1995; Smola, 1998)

c & .
R[f]:=P[f]+ N Zl(yn — f(Xy)), with f* = argmin R[f], 3)
n=1

feF

where /(-) is a loss function, P[-] a regularization operator, and C the regularization pa-
rameter, determining the trade-off between loss and complexity (i.e., size of the function
class).

In this paper we consider the well-known ¢-insensitive loss (Vapnik, 1995; Scholkopf
et al., 1999) as loss function:

le(y = f(X) := |y = f(X)]e =max(0, |y — f(x)| —¢) “)

This does not penalize errors below some ¢ > 0, chosen a priori. It has been shown to have
several nice properties—as we will see later (cf. Smola, 1998). However, in principle the
analysis and algorithms also work for other loss functions (cf. Rétsch, 2001).

In this paper we consider F to be the space of linear combinations of base hypotheses of
another space H—the so-called base hypothesis space—including a bias, i.e.

:{fa

Here we assume H has a finite number of hypotheses (J of them). This will be generalized
to infinite hypothesis classes in Sections 3.3 and 3.4. Throughout the paper we assume that
'H is closed under complementation (2 € H = —h € 'H). Hence, one may enforce ar; > 0
without effectively changing F.

Let us consider the £;-norm of the hypothesis coefficients as a regularization operator,
ie. Pi[fal := llal;. Using (4), minimizing (3) can be stated as a linear program, which
we call the LP-Regression problem:

min_ i + 5 (an + s:)

Wlth o — fa(xy) <e+& n=1,...,N
faXp) =y <e+& n=1,...,N
a,§ & >0,
acR/,beR, ¢ ¢ eRY,

J
fa®) =b+> ajhj(x). beR,0<aeR’ (5)
j=I

(6)

where fo(X) = b + Z§=1 ajhj(x) asin (5) and ¢ > 0 is a fixed constant. The regular-
ization operator ||c¢||; is frequently used in sparse favoring approaches, e.g. basis pursuit
(Chen, Donoho, & Saunders, 1995) and parsimonious least norm approximation (Bradley,
Mangasarian, & Rosen, 1998). Roughly speaking, a reason for the induced sparseness is
the fact that vectors far from the coordinate axes are “larger” with respect to the £;-norm
than with respect to p-norms with p > 1. For example, consider the vectors (1,0) and

196 G. RATSCH, A. DEMIRIZ, AND K.P. BENNETT

(1/+/2, 1/+/2). For the two norm, ||(1, 0)[l» = [|(1/~/2, 1/+/2)|l> = 1, but for the £;-norm,
1= (1,0 < ||(1/ﬁ, 1/ﬁ)||2 = /2. Note that using the £;-norm as regularizer the
optimal solution is always a vertex solution (or can be expressed as such) and tends to be
very sparse. It can easily be shown (cf. Corollary 4) that independent of the size of a (finite)
hypothesis space H, the optimal number of hypotheses in the ensemble is not greater than
the number of samples. The optimization algorithms proposed in Section 4 exploit this
property.

A nice property of (6) is that its solution is robust with respect to small changes of the
training data:

Proposition 1 (Smola et al., 1999). Using Linear Programming Regression with the e-
insensitive loss function (4), local movements of target values of points inside and outside
(i.e. not on the edge of) the e-tube do not influence the regression.

The parameter ¢ in (6) is usually difficult to control (Miiller et al., 1997; Scholkopf
et al., 2000), as one usually does not know beforehand how accurately one is able to fit the
curve. This problem is partially resolved in the following optimization problem (Smola,
Scholkopf, & Ritsch, 1999) for v € (0, 1]:

1 N
i C— n * C
min e+ N(Z& +sn>+ ve

n=1

with y, — fa(x)) <e+& n=1,...,N
faXp) =y <e+& n=1,...,N
a>0,e>0¢&68">0
beR,EE eRY, acR.

(7

The difference between (6) and (7) lies in the fact that ¢ has become a positively constrained
variable of the optimization problem itself. The core aspect of (7) can be captured in the
proposition stated below.

Proposition 2 (Smola et al., 1999). Assume ¢ > 0. The following statements hold:
(1) v is an upper bound on the fraction of errors (i.e. points outside the ¢ tube).
(i1) v is a lower bound on the fraction of points not inside (i.e. outside or on the edge of)
the ¢ tube.
(iii) Suppose the data were generatedi.i.d. from a distribution P (X, y) = P (X)P (y | X) with
P (y | x) continuous. With probability 1, asymptotically, v equals both the fraction of
points not inside the tube and the fraction of errors.

Summarizing, the optimization problem (7) has two parameters: (i) the regularization
parameter C, which controls the size of the hypothesis set and therefore the complexity of
the regression function, and (ii) the tube-parameter v, which directly controls the fraction
of patterns outside the e-tube and indirectly controls the size of the e-tube.

SPARSE REGRESSION ENSEMBLES 197

3.2. Dual finite LP formulation

In this section we state the dual optimization problem of (7) by introducing Lagrangian
multipliers d, for the first constraint which computes the error if the target is underestimated,
and d;" which the error measures if the target is overestimated. See any linear programming
text book for specifics on how to construct a dual LP problem.

The dual problem of (7) is

N
max ;yn (dy — d}Y)

with Y d, —di =0

> dy+dp < Cv ®)
S ohixa)dy —di) <1 j=1,....J
0<d,, d*<C/N n=1,...,N,

where the constraint), d, + d; < Cv comes from the reparameterization of & with v.
Here, we have 2N + 2 fixed constraints and J := || constraints, one for each hypothesis
h € 'H. At optimality for each point, the quantity p, = d, — d' defines an error residual.
By complementarity, we know that if the e-error is zero (that is if —¢ < fo(X,) — y, < &),
then d, = d = 0. If the point is underestimated, —& > f,(X,) — y,, then d, > 0 and
dy = 0. Likewise, if the point is overestimated, fo(X,) — Y, > &, then d, =0 and d;; > 0.
Thus p, =0 if the point is within the e-tube, p, >0 when the point falls below the &-
tube, and p, <O if the point falls above the ¢-tube. The magnitude of p, reflects the
sensitivity of the objective to changes in ¢. The larger the change in error, the larger p,. The
quantity in the constraints Y, h(x,)(d, — d;}) reflects how well the hypothesis addressed
the residual errors. If), h(x,)(d, —d}) is positive and large in size then the hypothesis
will be likely to improve the ensemble. But it must be sufficiently large to offset the penalty
for increasing || a||;.

3.3. Generalization to infinite hypotheses

Consider now the case where there is an infinite set of possible hypotheses H. Say we select
any finite subset H; of H, then the primal and dual regression LPs on H; are well defined.
Now say we increase the subset size and define H, D H; of H. What is the relationship
between the optimal ensembles created on the two subsets? A solution of the smaller H;
LP is always primal feasible for the larger H, LP. If the H, solution is dual feasible for the
larger H, LP, then the solution is also optimal for the problem H,. So dual feasibility is the
key issue. Define the base learning algorithm L for a fixed p as

hp := L(X, p) := argmax Zh(xn)pn)
heH n

198 G. RATSCH, A. DEMIRIZ, AND K.P. BENNETT

IfY, hp(Xn)pn = Y, hp(X,)(d, — d) > 1, then dual feasibility is violated; &, is a good
hypothesis that should be added to the ensemble, and the solution may not be optimal.

By thinking of % as a function of X = (xq, ..., Xy) and p as in (9), we can extend the
dual problem (8) to the infinite hypotheses case. The set of dual feasible values of p is
equivalent to the following compact polyhedron:

it

The dual SILP-regression problem is

>le

N N
Y 1Pl £Cv,> pu=0.1pl < ,n=1,...,N}. (10)
n=1 n=1

N
Q(D) = —d;
(D) max ;yn(dn dy)

N
with th(x,,)(dn —d¥ <1, VpeP
n=1

N
>, +dp) = Cv b

n=1

N
> (dy—di) =0

n=1

c
0<d,,di<—,n=1,...,N
N

This is an example of semi-infinite linear program (SILP), a class of problems that has
been extensively studied in mathematical programming. The problem is called semi-infinite
because it has an infinite number of constraints and a finite number of variables. The set P is
known as the index set. If the set of hypotheses producible by the base learner is finite, e.g. if
{h | h =L(X,p),p € P} is finite, then the problem is exactly equivalent to LP-Regression
problem (8).

We will establish several facts about this semi-infinite programming problem using the
results for general linear semi-infinite programs summarized in the excellent review paper
(Hettich & Kortanek, 1993). To simplify the presentation, we simplified the results in Hettich
and Kortanek (1993) to the case of SILP with an additional set of finite linear constraints.
The results presented can be easily derived from Hettich and Kortanek (1993) through a
change in notation and by increasing the index set to include the additional finite set of
traditional linear constraints. To be consistent with our derivation of the SILP-regression
problem, we will refer to the problem with infinitely many constraints as the dual problem
and the problem with infinitely many variables as the primal problem. Care should be taken,
since this is the reverse of the convention used in the mathematical programming literature.

We define the generic dual SILP as

e(D) = 111]1%;5{(6, z) [{a(p), z) = b(z), Oz < q,Vp € B} 12)

SPARSE REGRESSION ENSEMBLES 199

where c e RV, Q e R™*", g e R", B and {z | Qz < ¢} are compact sets, a(-) is a function
from B to R", and () is a function from R" to R. We will make the additional assumption
that the problem is always feasible and that the feasible region is compact. Clearly the
maximum value is always obtained since we are maximizing a continuous function over a
compact set.

Ideally, we would like the solution of a linear program to correspond to the optimal
solution of the semi-infinite problem. We now define a necessary condition for the existence
of a finite linear program whose optimal solution also solves the semi-infinite program. We
will denote the generic dual SILP restricted to a finite subset Py = {p;,...,pny} € B as
®(D(Py)). This is a linear program since it has a finite number of constraints.

The first theorem gives necessary conditions for the optimal solution of a generic dual
SILP to be equivalent to the solution of a finite linear program (Theorem 4.2 in Hettich &
Kortanek, 1993):

Theorem 3 (Necessary condition for finite solution). Assume the following Slater con-

dition holds: For every set of N + 1 points, po, p1, ..., PN, there exists Z such that
(a(pn),z) < bpy),n=1,...,N,and Qz < r.Then there exists Py = {p1,...,pnv} C B
such that
L. ®(D) = ®(D(Pn));
2. There exist multipliers u, > 0, n =1, ..., N, such that
N
®(D) = min 1 (¢, z) = Y pala(p,) —b(pa) | 0z < q . (13)
zeRN 1

This result immediately applies to the dual SILP regression problem since the strictly
interior point p = d — d* with d, = d* = Cv/(2N? + 1) satisfies the Slater condition.

Corollary 4 (Finite solution of regression ensemble). For Problem Q (D) (11) withv < 1,
there exists Py = {p1,...,pn} € P such that (D) = Q(D(Py)).

The significance of this result is that there exists an optimial ensemble that consists of at
most N hypotheses where N is the number of data points and that this is true even if the set
of possible hypotheses is infinite.

3.4. Primal regression SILP

Next we look at the corresponding primal problem for the semi-infinite case. We would
like our semi-infinite dual problem to be equivalent to a meaningful primal problem that
simplifies to the original primal for the finite hypothesis case.

Let M (B) be the set of nonnegative Borel measures on B. The subset

R := {u € M*(B) | supp(s) finite} (14)

200 G. RATSCH, A. DEMIRIZ, AND K.P. BENNETT

denotes the set of nonnegative generalized finite sequences. The primal problem of the
generic SILP (12) is

D ap)u(p) = c, (15)

peB

®(P) = inf { > b®)np)

neRY | peB

In finite linear programming, the optimal objective values of the primal and dual problems
are always equal. This is not always true for the semi-infinite case. Weak duality always
holds, that is, ®(P) < & (D). We must ensure that there is no duality gap, i.e., that ®(P) =
@ (D). From Hettich and Kortanek (1993) (Theorem 6.5) we have the following

Theorem 5 (Sufficient conditions for no duality gap). Let the convex cone

o 50) o]

= F:Zx@)(iép"i),ml&@} e RV*L, (16)

peB

be closed, then ®(P) = © (D) and primal minimum is attained.

For the regression problem, a(p) = hy(X) = [hp(X1), ..., hp(xN)]T is the set of base
hypotheses (evaluated at the training points) obtainable by our learning algorithm, and
b(p) = 1 is constant. Thus the theorem can be simplified as follows.

Corollary 6 (Sufficient conditions for base learner). Let the convex cone
My = co({hp(X) |p € P}) e RY

=1w=) AphpX). 2 eRPt eR. (17)
peP

be closed, then Q2(P) = Q(D) and primal minimum is attained.

This corollary imposes conditions on the set of possible base hypotheses. Some examples
of sets of base hypothesis that would satisfy this condition are:

— The set of possible hypotheses is finite, e.g. {h | h = L(X, p), p € P} is finite.
— The function A, = L(X, p) is continuous with respect to p.

These two conditions are sufficient to cover all the base hypotheses considered in this paper,
but other conditions are possible.

SPARSE REGRESSION ENSEMBLES 201

4. LP ensemble optimization algorithms

In this section we propose two algorithms for optimizing finite and infinite regression
linear programs. The first uses column generation to execute a simplex-type algorithm. The
second adopts an exponential barrier strategy that has connections to boosting algorithms
for classification (Rétsch et al., 2000).

4.1. Column generation approach

The basic idea of Column Generation (CG) is to construct the optimal ensemble for a
restricted subset of the hypothesis space. LP (8) is solved for a finite subset of hypotheses.
It is called the restricted master problem. Then the base learner is called to generate a
hypothesis #; = L(X, p) where p = d — d*. Assuming the base learner finds the best
hypothesis satisfying condition (9), if >, &,(x,)(d, — d}) < 1 then the current ensemble
is optimal as all constraints are fulfilled. If not, the hypothesis is added to the problem.
This corresponds to generating a column in the primal LP or SILP or a row of the dual
LP or SILP. The CG-Regression algorithm (cf.Algorithm 1) assumes that the base learner
L(X, p) is finite for any p € P.

Algorithm 1 is a special case of the set of SILP algorithms known as exchange methods.
These methods are known to converge. Clearly if the set of hypotheses is finite, then the
method will converge in a finite number of iterations since no constraints are ever dropped.
But one can also prove that it converges for SILP (cf. Theorem 7.2 in Hettich & Kortanek,
1993):

Theorem 7 (Convergence of Algorithm 1). Algorithm 1 stops after a finite number of steps
with a solution to the dual regression SILP or the sequence of intermediate solutions (d, d*)
has at least one accumulation point and each of these solves the dual regression SILP.

Algorithm 1 The CG-Regression algorithm.

argument: Sample X = {Xy,..., Xy}, Y= {y1,..., v}

Regularization constant C, Tube parameter v e (0,1)
returns: Linear combination from H.
function CG-Reg(X,y,C,v)

t =0;
repeat
t=t+1

Let [d,d*] be the solution of (8) using t—1 hypotheses
h, := L(X,p),wherep:=d—d*
until), 7, (x,)(d, —d}) < 1
Let [a, b] be the dual solution to [d,d*], i.e. a solution to (7)
return f = b+ Y\ a,hy
end

202 G. RATSCH, A. DEMIRIZ, AND K.P. BENNETT

This theorem holds for a more general set of exchange methods than Algorithm 1. For
example, it is possible to add or drop multiple constraints at each iteration, and the con-
vergence result is unchanged. In practice, we found the column generation algorithm stops
at an optimal solution in a small number of iterations for both LP and SILP regression
problems.

4.2. A barrier algorithm

In the following we propose an algorithm (see also Rétsch et al., 2000) that uses the barrier
optimization technique (Bertsekas, 1995; Frisch, 1955; Cominetti & Dussault, 1994). For
details on the connection between Boosting-type algorithms and barrier methods see Ritsch
& Warmuth (2001) and Ritsch (2001). A similar algorithm has been proposed in Duffy and
Helmbold (2000), which has been developed independently. In this sequel, we will give a
very brief introduction to barrier optimization.

The goal of barrier optimization is to find an optimal solution of the problem ming.s
f(0), where f is a convex function over a non-empty convex set S = {0 | ¢,(0) >
0,n=1,..., N}offeasible solutions. This problem can be solved using a so called barrier
function (e.g. Bertsekas, 1995; Cominetti & Dussault, 1994; Mosheyev & Zibulevsky, 2000;
Censor & Zenios, 1997), the exponential barrier being a particularly useful choice for our
purposes,

N o’
Ep(6) = f(0)+ﬂZeXP<—C;T)>, (1)
n=1

B > 0 being a penalty parameter. By finding a sequence of (unconstrained) minimizers {6'},
to (18), using any sequence {8, }, with lim,_, , 8; = 0, these minimizers can be shown to
converge to a global solution of the original problem, i.e. it holds:

glel‘rglf(G) =;1_r)r%)m91nEﬂ(0). (19)

The barrier minimization objective for the problem (7) using the exponential barrier can be
written as:

J

R
Eg(a, b, ¢, &, &%) =Z|Olj|+cﬁ<;én+§:) + Cve

J=1

N
+Bexp(—e/B) + B Y _[exp(—&/B) + exp(—£;/B)]
n=1

N _ *
e)
n=1

(20)

SPARSE REGRESSION ENSEMBLES 203

where §, 1= y, — Z;zl a;hj(x,) — b and for simplicity we have omitted the constraints
a > 0. The first line in (20) is the objective of (7), the second line corresponds to the con-
straints §,, £, ¢ > 0. The last line implements the constraints §, <& + &, and -6, <& + & .

Note that by setting VeEg = 0 and Vg+Eg = 0, we can find the minimizing slack
variables €, £ of (20) for given B, a and b. Thus, the problem of minimizing (20) is
greatly simplified, as there are 2N variables less to optimize.

In this section, we propose an algorithm (cf. Algorithm 2) that—similar to the column
generation approach of the last section—solves a sequence of optimization problems, the
so called restricted master problems. In each iteration ¢ of the algorithm, one selects a hy-
pothesis and then solves (or approximately solves) an unconstrained optimization problem
int +2 variables. These variables are the ¢ hypothesis coefficients of the previous iterations,
the bias b and the tube size €.

The solution of the restricted master problem with respect to the master problem® is
clearly suboptimal and one cannot easily apply (19). However, it is known how fast one can
decrease g if the intermediate solutions are suboptimal (cf. Proposition 1 in Cominetti &
Dussault 1994; Ritsch et al., 2000): Roughly speaking one has to ensure that 8 — 0 and
B ~ |I[VEg]| to achieve the desired convergence in the sense of (19), where the gradient is
taken with respect to all variables.

Algorithm 2 The Barrier-Regression algorithm

argument: Sample X = {x;,...,xy},y={y1,..., yn}
Number of iterations T, Regularization constant C
Tube parameter v € (0,1)
constants: By, > 0
returns: Linear combination from H.
function BarReg(X,y,T,C,v)
Set B = Bsan
for n = 1’ R N do Pn = exp((_YH - 8)/:3) - eXP((yn - 8)/:3)» endfor
fort=1,...,T
hy = L(X,p)
+ la.be]:= argmin Eg(a. b, e, £(A). £ (P))
forn =1, ...,_N'dO
8y 1= Z;:1 ‘thq(xn) +b— Yn
Pn = exp((8, — &, (B) —&)/B) — exp((—, — &, (B) — €)/B)
endfor
x if Y poh(x,) —1 < B, do B:=next(8); endif
endfor
return f =b+ Y ah,
end

204 G. RATSCH, A. DEMIRIZ, AND K.P. BENNETT

The base learner needs to find a hypothesis with a large edge Ziv=1 pnh(x,), as such
hypotheses correspond to violated constraints in the dual problem. Whereas in the clas-
sification case the maximum edge is minimized, we have in regression just that all edges
have to be below 1. Therefore, we define the corrected edge with respect to the constraint
Z;V:l puh(x,) <1 (cf. (8)) as 22;1 pnh(x,)—1, which is positive, if the constraint is vio-
lated. We now consider the case where the base learner finds a hypothesis, which is only
8-optimal with respect to the corrected edge. By this we mean that it finds a hypothesis that
is not much worse than the best hypothesis in H, i.e.

N N
> puh(x) — 1> 8<r§€%;png<m - 1) } @1)

n=1

L(X,p) € {h

for some constant § € (0, 1]. Note that the correction in the edge comes from the regular-
ization term ||«||;. Then we get:

Lemma 8. While running Algorithm 2 using a base learner satisfying (21), the barrier
parameter B is decreased only if B > 8|V Eg||l«, where the gradient is taken with respect
to all variables e, b, oy, ...ay.

Proof: The gradient of Eg with respect to € and b is always zeros as they are unbounded
variables in the minimization in line “+”. The gradient of Eg with respect to «; is

N
Vo, Egla, b, e, £,6) =1=" p,hj(x,),

n=1
where p, = exp((§, — &, —¢)/B) —exp((—=3, — &, — &)/B). We have two cases:

— The hypothesis is already in the restricted master problem: If V,, £ = 0 (cf. line “+7)
we geta; > O orif Vy E > 0 we have o; = 0. Note that the case V,; E = 0 can not
happen. Thus, the gradient projected on the feasible set (o« > 0) is always zero.

— The hypothesis has not already been included: If V,,, Eg < 0, the last constraint in (8) is
violated for j and the hypothesis /; needs to be included in the hypothesis set.

Thus, one can exploit the property (21) of the base learner to upper-bound the gradient of
the master problem at the current solution. If the learner returns a hypothesis # = L (X, p),
then by (21) there does not exist another hypothesis with an edge larger than by a factor

of §~!. Assume there exists a violated constraint. Then by line “x”, B is decreased if
SIVaEglloe < 30y puh(x,) =1 < B. =

Using this Lemma one gets the desired convergence property of Algorithm 2:

Theorem 9. Assume H is finite and the base learner L satisfies condition (21). Then for
T — oo the output of the algorithm converges to a global solution of (7).

SPARSE REGRESSION ENSEMBLES 205

Proof: Let Eg be given by (20). By Proposition 1 of Comminetti and Dussault (1994) (see
Riitsch et al., 2000), one knows that any accumulation point of a sequence {0'}, satisfying
IVoEg (0")lc — 0 (B, — 0) is a global solution of (7). By Lemma 8 we have that 8 is
decreased only if 8 > §||VEg||«. If B is not decreased, the gradient will be reduced in a
finite number of iterations such that §[|VEg|loc < 8. Thus B — O and [|[VEg| — 0. O

Similar conditions can be used to prove the convergence of Algorithm 1 in the case of
non-optimal base learners in the sense of (21).

Barrier methods have also been applied to semi-infinite programming problems. In
Kaliski et al. (1997) a similar barrier algorithm using the log-barrier has been used (cf also
Mosheyev & Zibulevsky, 2000). It is future work to rigorously prove that Algorithm 2 also
converges to the optimal solution when the hypothesis space is infinite.

The algorithms proposed here are incomplete without descriptions of the base hypoth-
esis space and the base learner algorithm. In the next section, we consider choices of the
hypothesis space and base learner, and how they effect the algorithms.

4.3. Choice of hypothesis space and base learner

Recall that both algorithms require the hypothesis 4, that solves or approximately solves

N
h, = argmax (X)), (22)
P heH Z b

i=n

So the question is how do we solve this for different types of base learners. If the set of base
learners is compact, then this maximum must exist.

4.3.1. Kernel functions. Suppose we wish to construct ensembles of functions that them-
selves are linear combinations of other functions (e.g. of kernel functions) using coefficient
y, 1.e. functions of the form ,(-) = k(x,, -):

N
WY (%) ==Y yuk(x,.%), y € RV, (23)

n=1

The set {47} is an infinite hypothesis set and is unbounded, if ~y is unbounded. So, one has
to restrict y — here we consider bounding the ¢;-norm of y by some constant, e.g. H :=
{h” | |¥lli < 1,~ € RV}. Then the problem (22) has a closed form solution: Let j* be the

maximum absolute sum of the kernel values weighted by p:

N
j* = arglma]zlc E Pk (X, X,).
Jj=1,..., el

Then h” with v =[0,...,0, yj+,0, ..., 0] is a solution to (22), where y;« = sign(z:f:/=1

Pn k(X j+, X,)). This means, if we boost linear combinations of kernel functions bounded by

206 G. RATSCH, A. DEMIRIZ, AND K.P. BENNETT

the £;-norm of y, then we will be adding in exactly one kernel basis function k(x;-, -) per
iteration. The resulting problem will be exactly the same as if we were optimizing a SVM
regression LP (e.g. Smola et al., 1999) in the first place. The only difference is that we have
now defined an algorithm for optimizing the function by adding one kernel basis at a time.
So while we posed this problem as a semi-infinite learning problem it is exactly equivalent
to the finite SVM case where the set of hypotheses being boosted is the individual kernel
functions k(x,,, X).

If the y; were bounded using different norms then this would no longer be true. We would
be adding functions that were the sum of many kernel functions (for using the £,-norm, see
Ritsch et al., 2000a) Likewise, if we performed an active kernel strategy, where the set of
kernels is parameterized over some set then the algorithm would change. We consider this
problem in the next section.

4.3.2. Active kernel functions. Now consider the case where we chose a set of (kernel)
functions parameterized by some vector k. By the same argument above, if we impose the
bound ||v]l; < 1, we need only consider one such basis function at a time. But in this case
since the kernel is parameterized over a set of continuous values ~y, we will have an infinite
set of hypothesis. Say for example we wish to pick the a RBF kernel with parameters g
(the center) and o2 (the variance), i.e. ¥ = [, o]. Then we chose the hypothesis function
(s = dim(x))

y ! Ix— a3
(B6) (%) — _ 2
P = ey eXp(262

with parameters ({1, 6) that maximize the correlation between weight p and the output (the
so-called edge), i.e.

N
(1, 6) = argmax E(p, o) where E(p,0) i=) p,h™) (x,), (24)
M,

n=1

With reasonable assumptions, this is a bounded function that is in p. Thus all of the above
results for the semi-infinite case hold.

There are several ways to efficiently find 1 and 6. The straight forward way is to em-
ploy some standard nonlinear optimization technique to maximize (24). However, for RBF
kernels with fixed variance o2 there is a fast and easy to implement EM-like2 strategy. By
setting V, E(u,0) = 0, we get p = Z;V:l qnXu, Where g, = Zp, exp(%), and Z is a
normalization factor such that), ¢, = 1. By this update, we are computing the weighted
center of the data, where the weights depend on p. Note, for given vector ¢, one can com-
pute (M-step) the optimal center pt. However, q depends on g and one has to iteratively
recompute ¢ (E-step). The iteration can be stopped, if Y, go = 0 or p does not change
anymore. As the objective function has local minima, one may start at a random position,
e.g. at a random training point.

4.3.3. SVM classification functions. Here we consider the case of using a linear com-
bination of classification functions whose output is =1 to form a regression function. An

SPARSE REGRESSION ENSEMBLES 207

example of such an algorithm is the Tree-Boost algorithm of Friedman (Friedman, 1999).
For absolute error functions, Tree-Boost constructs a classification tree where the class of
each point is taken to be the sign of the residual of each point, i.e. points that are overesti-
mated are assigned to class —1 and points that are underestimated are assigned to class 1.
A decision tree is constructed, then based on a projected gradient descent technique with
an exact line-search, each point falling in a leaf node is assigned the mean value of the
dependent variables of the training data falling at that node. This corresponds to a different
o, for each node of the decision tree. So at each iteration, the virtual number of hypotheses
added in some sense corresponds to the number of leaf nodes of the decision tree.

Here we will take a more simplified view and consider one node decision trees where the
decision trees are linear combinations of the data. Specifically our decision function at each
node is f(x, w, b) = sign((w, X) + b). Thus at each iteration of the algorithm we want to

N
(W, b) = argmax E pnsign({(w, x,,) + b) (25)
w,

n=1

Note that there are only finitely many ways to label N points so this is a finite set of
hypotheses. There are infinitely many possible (w, ») but any that produce the same objective
value are equivalent to the boosting algorithm.

The question is how to practically optimize such a problem. Clearly an upper bound on
the best possible value of the above equation is obtained by any (w, b) solution satisfying
sign(f (x,, W, b)) =sign(p,). So in some sense, we can consider the sign(p,) to be the
desired class of x,,. Now it frequently may not be possible to construct such a f. Each x,,
that is misclassified will be penalized by exactly |p,|. Thus we can think of |p,| as the
misclassification cost of x,,. Given these classes, and misclassification weights, we can use
any weight sensitive classification algorithm to construct a hypothesis.

In this study we used the following problem converted into LP form to construct f:

N
W, b) = argmin
(i, b) = argmi ;umsn

with sign(p,)((W,x,)+b)>1-§&,, n=1,....,N
wlli <6, £€=0

(26)

where § > 0 becomes a parameter of the problem.

Some interesting facts about this formulation. The choice of § controls the capacity of
the base learners to fit the data. For a fixed choice of §, classification functions using a
relatively fixed number of w,; nonzero. So the user can determine based on experimentation
on the training data, how § effects the complexity of the base hypothesis. Then the user may
fix § according to the desired complexity of the base hypothesis. Alternatively, a weighted
variation of v-SVMs (Scholkopf et al., 2000) could be used to dynamically chose §.

Like in TreeBoost, we would like to allow each side of the linear decision to have a
different weight. We describe the changes required to Algorithm 1 to allow this. At each
iteration, LP (26) is solved to find a candidate hypothesis (W, l;). Then instead of adding
a single column to the restricted master LP (12), two columns are added. The first column

208 G. RATSCH, A. DEMIRIZ, AND K.P. BENNETT

is h;, = I((W,x) + b > 0) and the second column is #, = —I({W,x) + b < 0). The
algorithms stop if both of these hypotheses do not meet the criteria given in the algorithm.
The algorithm should terminate if), h,, (x,) + A, (x,)(d, — d) < 2. We call this variant
of the algorithm CG-LP. This change has no effect on the convergence properties.

5. Experiments

In this section we present some preliminary results indicating the feasibility of our ap-
proaches. We will start in Section 5.1 with showing some basic properties of the CG and
barrier algorithms for regression. We show that both algorithms are able to produce excellent
fits on a noiseless and several noisy toy problems.

As base learners we use the three proposed in Section 4.3. We will denote by CG-k,
CG-ak and CG-LP, the CG algorithms using RBF kernels, active RBF kernels and classifi-
cation functions as base learners, respectively. Likewise for Bar-k, Bar-ak and Bar-LP using
the barrier algorithm. Not all of these possible combinations have been implemented.

To show the competitiveness of our algorithms we performed a benchmark comparison
in Section 5.2 on time-series prediction problems that have been extensively studied in the
past.

Moreover, we give an interesting application to a problem derived from computer-aided
drug-design in Section 5.3. There, we in particular show that the approach using classifica-
tion functions as base learner is very well suited for datasets where the dimensionality of
the problem is high, but the number of samples is very small.

5.1. An experiment on toy data

To illustrate (i) that the proposed regression algorithm converges to the optimal (i.e. zero
error) solution and (ii) is capable of finding a good fit to noisy data (signal:noise = 2:1) we
applied it to a toy example—the frequently used sinc function (sinc(x) = sin(wx)/(7wx))
in the range [—2m, 27]. For our demonstration (cf. figure 1) we used two base hypothesis
spaces: (i) RBF kernels in the way described in Section 4.3.1, i.e.

H = {h,(x) = exp(=|Ix — x,|I*/o D) [n = 1,..., N}

with 0> = 1/2 and (ii) classification functions as described in Section 4.3.3. In the first
case we used the CG and the Barrier approch—Ileading to the algorithms CG-k and Bar-k.
The latter case is included for demonstration purposes only, the CG-LP is designed for
high-dimensional data sets and does not perform well in low dimensions due to the severely
restricted nature of the base hypothesis set.

To keep the results comparable between different data sets we use a normalized measure
of error—the Q2-error (also called normalized mean squared error), which is defined as:

YN O — Fx)?

0= :
Zr]zvzl (yn - % > yi)z

27

SPARSE REGRESSION ENSEMBLES 209

-0.5 *
-5 0 5 -5 0 5

Figure 1. Toy example: The left panel shows the fit of the sinc function without noise using RBF-kernels (solid)
and classification functions (dashed). The solid fit is almost perfect (0% = 4-1075), while the dashed function is
too simple (92 = 0.4). The right panel shows a fit using RBF-kernels (Q? = 0.12) on noisy data (signal:noise =
2:1, C = 100). The tube size is automatically adapted by the algorithm (¢ = 0.0014 (left) and ¢ = 0.12 (right)),
such that a half of the patterns lie inside the tube (v = 1/2).

A Q?>1 is meaningless since simply predicting the mean target value will result in a
0?-value of one.

Let us first consider the case of RBF-kernels. In the noise-free case (left panel of figure 1)
we observe—as expected from Proposition 2—that the (automatically determined) tube
size ¢ is very small (0.0014), while it is kept large (0.12) for the high noise case (right
panel). Using the right tube size, one gets an almost perfect fit (0> =4 - 107) in the
noise-free case and an excellent fit in the noisy case (Q? =0.12)—without re-tuning the
parameters.

The CG-LP produced a piecewise-constant function based on only two classification
functions. The same solution of Q% = 0.4 was produced in both the noisy and noise-free
cases. Interestingly in the noisy case it produces almost an identical function. Because the
hypothesis space only consists of linear classification functions constructed by LP (26), the
set of base hypothesis is extremely restricted. Thus high bias, but low variance behavior can
be expected. We will see later than on high dimensional datasets the CG-LP can perform
quite well.

Let us now compare the convergence speed of CG- and Barrier-Regression in the con-
trolled setting of this toy example. For this we run both algorithms and record the objective
values of the restricted master problem. In each iteration of the barrier algorithm one has
to find the minimizing or almost minimizing parameters (¢, €, b) of the barrier function
Eg for the restricted master problem. In our implementation we use an iterative gradient
descent method, where the number of gradient steps is a parameter of the algorithm. The
result is shown in figure 2. One observes that both algorithms converge rather fast to the
optimal objective value (dotted line). The CG algorithm converges faster than the barrier
algorithm, as in the barrier parameter usually decreases not quick enough to compete with
the very efficient Simplex method. However, if the number of gradient descent steps is large
enough (e.g. 20), the barrier algorithm produces comparable results in the same number of
iterations. Note that if one does only one gradient descent step per iteration, this approach is

210 G. RATSCH, A. DEMIRIZ, AND K.P. BENNETT

0.1

0.081

alu
o o o ©
(=) (=) < (=)
G & N ®

Obijective Vi

o
[
B

0.03

0.02 3
c 10 20 30 40 50 0 5 10 15 20 25

lteration lteration

Figure 2. Convergence on the toy example: The convergence of the objective function ||cx||; + [|§]l1/N +Cve in
CG-Regression (solid) and Barrier-Regression to the optimal value (dotted) over the number of iterations. Left for
no noise and right for large normal noise (signal:noise =2 : 1). For Barrier-Regression we did 1 (dash-dotted) and
20 (dashed) gradient descent steps in each iteration, respectively. We used v = 1/2, C = 100 and RBF-kernels
with 62 = 1/2. We got |la||; = 2.7, ¢ = 0.0014 (left) and ||x||; = 1.3, & = 0.12 (right).

similar to the algorithm proposed in Collins, Schapire, and Singer (2000) that uses parallel
coordinate descent steps (similar to Jacobi iterations).

5.2. Time series benchmarks

In this section we would like to compare our new methods to SVMs and RBF networks. For
this we chose two well-known data sets that have been frequently used as benchmarks on
time-series prediction: (i) the Mackey-Glass chaotic time series (Mackey & Glass, 1977)
and (ii) data set D from the Santa Fe competition (Weigend & N.A. Gershenfeld (Eds.),
1994). We fix the following experimental setup for our comparison. We use seven different
models for our comparison: three models that have been used in Miiller et al. (1999) (RBF
nets and SVM-Regression (SVR) with linear and Huber loss) and four new models: CG-k,
CG-ak, Bar-k and Bar-ak.

All models are trained using a simple cross validation technique. We choose the model
with the minimum prediction error measured on a randomly chosen validation set (originally
taken from Miiller et al., 1999). The data including our experimental results can be obtained
from http://ida.first.gmd.de/ "raetsch/data/ts.

5.2.1. Mackey glass equation. Our first application is a high-dimensional chaotic system
generated by the Mackey-Glass delay differential equation

dx(t) 0.2x(t —tpa)
= —0lx(t) + — T
d MO T o

(28)

with delay r, = 17. Equation (28) was originally introduced as a model of blood cell reg-
ulation (Mackey & Glass, 1977) and became quite common as an artificial forecasting

SPARSE REGRESSION ENSEMBLES 211

Table 2. 1S denotes the 1-step prediction error (0?) on the test set. 100S is the 100-step iterated autonomous
prediction.

SNR 6.2% 12.4% 18.6%

Test error 1S 100S 1S 100S 1S 100S

CG-k 0.0011 0.0804 0.0035 0.0838 0.0031 0.0882
CG-ak 0.0010 0.0749 0.0035 0.0854 0.0065 0.0998
BAR-k 0.0013 0.0900 0.0032 0.0590 0.0051 0.0661
BAR-ak 0.0012 0.0893 0.0027 0.0621 0.0066 0.0821
SVM ¢-ins. 0.0007 0.0158 0.0028 0.0988 0.0057 0.4065
SVM Huber 0.0013 0.0339 0.0038 0.0852 0.0071 1.0297
RBF-NN 0.0016 0.0775 0.0038 0.1389 0.0154 1.6032

“SNR” is the ratio between the variance of the respective noise and the underlying time series.

benchmark. After integrating (28), we added noise to the time series. We obtained training
(1000 patterns) and validation (the following 194 patterns) sets using an embedding dimen-
sion d = 6 and a step size T = 6. The test set (1000 patterns) is noiseless to measure the
true prediction error. We conducted experiments for different signal to noise ratios® (SNR)
using uniform noise.

In Table 2 we state the results given in the original paper (Miiller et al., 1999) for
SVMs using e-insensitive loss and Huber’s robust loss (quadratic/linear) and RBF net-
works. Moreover, we give the results for the CG and the barrier algorithm using RBF kernels
and active RBF-kernels.* We also applied the CG algorithm using classification functions
(CG-LP), but the algorithm performed very poorly (Q? A 0.16), because it could not gen-
erate complex enough functions. From Table 2 we observe that all four algorithms perform
on average as good as the best of the other algorithms (in 11 cases better and in 13 cases
worse). The 100 step prediction at low noise levels is rather poor compared to SVMs, but
it is great on the higher noise levels.

Note that the CG and the barrier algorithm do not perform significantly different (CG is
in 5 cases better and in 7 cases worse). This shows that the simple barrier implementation
given in Algorithm 2 achieves a high enough accuracy to compete with a sophisticated
simplex implementation used in the CG-algorithms.

5.2.2. Data set D from the Santa Fe competition. Data set D from the Santa Fe com-
petition is artificial data generated from a nine-dimensional periodically driven dissipative
dynamical system with an asymmetrical four-well potential and a slight drift on the pa-
rameters (Weigend & Gershenfeld, 1994). The system has the property of operating in one
well for some time and then switching to another well with a different dynamical behavior.
Therefore, we first segment the time series into regimes of approximately stationary dynam-
ics. This is accomplished by applying the Annealed Competition of Experts (ACE) method
described in Pawelzik, Kohlmorgen, and Miiller (1996), Miiller, Kohlmorgen, and Pawelzik
(1995) (no assumption about the number of stationary subsystems was made). Moreover,
in order to reduce the effect of the continuous drift, only the last 2000 data points of the

212 G. RATSCH, A. DEMIRIZ, AND K.P. BENNETT

Table 3. Comparison (under competition conditions) of 25 step iterated predictions (Q2-value) on Data set D.

CG SVM Neural net
CG-k CG-ak g-ins. Huber RBF PKM
0.036 0.035 0.032 0.033 0.060 0.066

A prior segmentation of the data according to Miiller, Kohlmorgen,
and Pawelzik (1995) and Pawelzik, Kohlmorgen, and Miiller (1996)
was done as preprocessing.

training set are used for segmentation. After applying the ACE algorithm, the data points are
individually assigned to classes of different dynamical modes. We then select the particular
class of data that includes the data points at the end of Data Set D as the training set.’

This allows us to train our models on quasi-stationary data and we avoid having to predict
the average over all dynamical modes hidden in the full training set (see also Pawelzik,
Kohlmorgen, & Miiller, 1996 for further discussion). However, at the same time we are
left with a rather small training set requiring careful regularization, since there are only
327 patterns in the extracted training set. As in the previous section we use a validation set
(50 patterns of the extracted quasi-stationary data) to determine the model parameters of
SVMs, RBF networks and CG-Regression. The embedding parameters used, d = 20 and
T = 1, are the same for all the methods compared in Table 3.

Table 3 shows the errors (Q2-value) for the 25 step iterated prediction.® In the previous
result of Miiller et al. (1999) the Support vector machine with ¢-ins. loss is 30% better than
the one achieved by Pawelzik, Kohlmorgen, and Miiller (1996). This is the current record
on this dataset. Given that it is quite hard to beat this record, our methods perform quite
well. CG-ak improves the result in Pawelzik, Kohlmorgen, and Miiller (1996) by 28%,
while CG-k is 26% better.” This is very close to the previous result. The model-selection is
a crucial issue for this benchmark competition. The model, which is selected on the basis
of the best prediction on the 50 validation patterns, turns out to be rather suboptimal. Thus,
more sophisticated model selection methods are needed here to obtain more reliable results.

5.3. Experiments on drug data

This data set is taken from computer-aided drug design. The goal is to predict bio-reactivity
of molecules based on molecular structure through the creation of Quantitative Structure-
Activity Relationship (QSAR) models. Once a predictive model has been constructed, large
databases can be screened cost effectively for desirable chemical properties. Then this small
subset of molecules can then be tested further using traditional laboratory techniques. The
target of this dataset LCCKA is the logarithm of the concentration of each compound
that is required to produce 50 percent inhibition of site “A” of the Cholecystokinin (CCK)
molecule. These CCK and CCK-like molecules serve important roles as neuro-transmitters
and/or neuro-modulators. 66 compounds were taken from the Merck CCK inhibitor data set.
The dataset originally consisted of 323 descriptors taken from a combination of “traditional”
2D, 3D, and topological properties and electron density derived TAE (Transferable Atomic

SPARSE REGRESSION ENSEMBLES 213

Equivalent) molecular descriptors derived using wavelets (Breneman et al., 2000). All data
was scaled to be between 0 and 1.

It is well known that appropriate feature selection on this dataset and others is essential for
good performance of QSAR models due to the small amount of available data with known
bio-reactivity and the large number of potential descriptors, see for example (Embrechts,
Kewley, & Breneman, 1998). In an unrelated study (Demiriz et al., 2001) feature selection
was done by constructing a £;-norm linear support vector regression machine (like in
Eq. (6) but where the features are the input dimensions) to produce a sparse weighting
of the descriptors. Only the descriptors with positive weights were retained. We take the
reduced set of 39 descriptors as given. We refer to the full data set as LCCKA and the
reduced dataset as LCCKA-R.

The typical performance measured used to evaluate QSAR data is the average sum squared
error between the predicted and true target values divided by the true target variance. This
is 0? as defined in (27). A Q2 of less than 0.3 is considered very good. To measure the per-
formance, 6-fold cross validation was performed. We report the out-of-sample Q2 averaged
over the 6 folds. In this preliminary study, model-selection using parameter selection tech-
niques was not performed. As models we consider CG-LP (CG with classification functions)
and CG-k (CG with non-active kernels) described in Sections 4.3.3 and 4.3.1. For CG-k,
we used only three different values for the regularization constant C, the tube-parameter
v and the parameter of the base learner o (kernel-width) and § (complexity parameter in
(26)), respectively. Thus, we examined 27 different parameter combinations. For CG-LP,
we used parameter values found to work well on a reduced dataset in Demiriz et al. (2001)
and then chose C and § such that the number of hypotheses and attributes per hypothesis
were similar on the training data. Research is in progress to repeat these studies using a more
appropriate model selection technique—leave-one-out cross validation. Model selection is
critical for performance of these methods, thus efficient model selection techniques is an
important open question that needs to be addressed.

First we tried CG-k on the full data set LCCKA, but it failed to achieve good performance
(Q? =0.48), while the simple approach CG-LP performed quite well with Q% = 0.33.
This is because CG-LP is able to select the discriminative features based on subsets of
the attributes, while the kernel-approaches get confused by the uninformative features.
For the reduced set LCCKA-R, where the features are already pre-selected, the kernel
approach improves significantly (Q? = 0.27) and is not significantly different than CG-LP
(Q? = 0.25). Both methods produced sparse ensembles.

On the full dataset, using parameters C = 8, v = 0.8, and § = 6, CG-LP used on average
ensembles containing 22 hypotheses consisting of, on average, 10.1 of the possible 323
attributes, while CG-k with RBF-kernel (¢ = 30) and v = 0.1 used 45 hypotheses. On
the reduced dataset, using parameters C =15, v = 0.8, and § = 10, CG-LP used on aver-
age ensembles containing 23.5 hypotheses consisting of, on average, 10.7 attributes, while
the CG-k approach (¢ = 10) used on average 30.3 hypotheses (v = 0.1). The slight differ-
ence between CG-LP and CG-k might be explained again by the presence of uninformative
features.

Summarizing, the CG-LP approach seems to be a very robust method to learn simple
regression functions in high-dimensional spaces with automatic feature selection.

214 G. RATSCH, A. DEMIRIZ, AND K.P. BENNETT

6. Conclusion

In this work we examined an LP for constructing regression ensembles based on the £;-norm
regularized e-insensitive loss function used for support vector machines first proposed for
ensembles of finite hypothesis sets in Smola, Scholkopf, and Rétsch (1999). We used the
dual formulation of the finite regression LP: (i) to rigorously define a proper extension to
the infinite hypothesis case and (ii) to derive two efficient algorithms for solving them. It is
shown theoretically and empirically that even if the hypothesis space is infinite, only a small
finite set of the hypotheses is needed to express the optimal solution (cf. Corollary 4). This
sparseness is possible due to the use of the ¢;-norm of the hypothesis coefficient vector,
which acts as a sparsity-regularizer.

We proposed two different algorithms for efficiently computing optimal finite ensem-
bles. Here, the base-learner acts as an oracle to find the constraints in the dual semi-
infinite problem that are violated. For the first algorithm (the CG algorithm for regression),
which is based on a simplex method, we proved the convergence for the infinite case (cf.
Theorem 7). The second algorithm—the Barrier algorithm for Regression—is based on an
exponential barrier method that has connections to the original AdaBoost method for clas-
sification (cf. Rétsch et al., 2000). This algorithm converges for finite hypothesis classes (cf.
Theorem 9). Using recent results in the mathematical programming literature (e.g. Mosheyev
& Zibulevsky, 2000; Kaliski et al., 1997) we claim that it is possible to generalize it to the
infinite case. Computationally both algorithms find a provably optimal solution in a small
number of iterations.

We examined three types of base learning algorithms. One, based on boosting kernel
functions chosen from a finite dictionary of kernels, is an example of a finite hypothesis
set. We also consider active kernel methods where the kernel basis are selected from an
infinite dictionary of kernels. Finally, we consider the case using the finite set of linear
classification functions constructed using an LP. This is a very limited hypothesis space
that is specifically designed to work on underdetermined high-dimensional problems such
as the drug design data discussed in this paper.

Our preliminary simulations on toy and real world data showed that the proposed algo-
rithms behave very well in both finite and infinite cases. In a benchmark comparison on
time-series prediction problems our algorithms perform as well as the current state of the
art regression methods such as support vector machines for regression. In the case of “Data
set D” of the Santa Fe competition we obtained results that are as good as the current record
(by SVM) on this dataset. The LP classification-based approach worked extremely well on
the high-dimensional drug design datasets, since the algorithm inherently performs feature
selection essential for success on such datasets.

The primary contribution of this paper has been a theoretical and conceptual study of
LP-based ensemble regression algorithms in finite and infinite hypothesis spaces. For future
work we plan a more rigorous investigation of the computational aspects of our approach.
One open question is how to best perform selection of the LP model parameters. Another
open question involves the best algorithmic approaches for solving the semi-infinite linear
program. While they work well in practice, the column generation and barrier interior-
point methods described here are not the current state of the art for semi-infinite linear

SPARSE REGRESSION ENSEMBLES 215

programming. A primal-dual interior point algorithm may perform even better both the-
oretically and empirically especially on very large datasets. Lastly, the ability to handle
infinite hypothesis sets opens up the possibility of many other possible types of base learn-
ing algorithms.

Acknowledgments

G. Ritsch would like to thank Sebastian Mika, Klaus-R. Miiller, Bob Williamson and
Manfred Warmuth for valuable discussions. This work was partially funded by DFG under
contracts JA 379/91, JA 379/71 and MU 987/1-1 and by the National Science Foundation
under Grant No. 970923 and No. 9979860.

Notes

1. For a more detailed discussion see Ritsch & Warmuth (2001) and Rétsch (2001).

2. The (full) master problem has J + 2 variables.

3. We define the SNR in this experiment as the ratio between the variance of the noise and the variance of the
data.

4. On the entries set as italic, the model selection failed completely. In this case we selected the model manually
by chosing the model on the 10th percentile of the test errors over all tested models.

5. Hereby we assume that the class of data that generated the last points in the training set is the one that is also
responsible for the first couple of steps of the iterated continuation that we aim to predict.

6. Iterated prediction means that based on the past predictions (and not on the original data) the new prediction
is computed.

7. We have not performed experiments with the barrier algorithm on this data, since the performance is expected
to be similar.

References

Bauer, E., & Kohavi, R. (1999). An empirical comparison of voting classification algorithm: Bagging, boosting
and variants. Machine Learning, 36, 105-142.

Bennett, K., Demiriz, A., & Shawe-Taylor, J. (2000). A column generation algorithm for boosting. In Pat Langley
(Ed.), Proceedings Seventeenth International Conference on Machine Learning (pp. 65-72). San Francisco:
Morgan Kaufmann.

Bertoni, A., Campadelli, P., & Parodi, M. (1997). A boosting algorithm for regression. In W. Gerstner, A. Germond,
M. Hasler, & J.-D. Nicoud (Eds.), Proceedings ICANN’97, Int. Conf. on Artificial Neural Networks, Vol. V of
LNCS (pp. 343-348), Berlin: Springer.

Bertsekas, D. (1995). Nonlinear programming. Belmont, MA: Athena Scientific.

Bradley, P., Mangasarian, O., & Rosen, J. (1998). Parsimonious least norm approximation. Computational
Optimization and Applications, 11:1, 5-21.

Breiman, L. (1999). Prediction games and arcing algorithms. Neural Computation, 11:7, 1493-1518. Also Tech-
nical Report 504, Statistics Department, University of California, Berkeley.

Breneman, C., Sukumar, N., Bennett, K., Embrechts, M., Sundling, M., & Lockwood, L. (2000). Wavelet repre-
sentations of molecular electronic properties: Applications in ADME, QSPR, and QSAR. Presentation, OSAR
in Cells Symposium of the Computers in Chemistry Division’s 220th American Chemistry Society National
Meeting.

Censor, Y., & Zenios, S. (1997). Parallel optimization: Theory, algorithms and application. Numerical Mathematics
and Scientific Computation. Oxford: Oxford University Press.

216 G. RATSCH, A. DEMIRIZ, AND K.P. BENNETT

Chen, S., Donoho, D., & Saunders, M. (1995). Atomic decomposition by basis pursuit Technical Report 479,
Department of Statistics, Stanford University.

Collins, M., Schapire, R., & Singer, Y. (2000). Adaboost and logistic regression unified in the context of information
geometry. In Proceedings of the Thirteenth Annual Conference on Computational Learning Theory.

Cominetti, R., & Dussault, J.-P. (1994). A stable exponential penalty algorithm with superlinear convergence
JOTA., 83:2.

Demiriz, A., Bennett, K., Breneman, C., & Embrechts, M. (2001). Support vector machine regression in chemo-
metrics. Computer Science and Statistics. In Proceeding of the Conference on the 32 Symposium on the Interface,
to appear.

Dietterich, T. (1999). An experimental comparison of three methods for constructing ensembles of decision trees:
Bagging, boosting, and randomization. Machine Learning, 40:2.

Drucker, H., Schapire, R., & Simard, P. (1993). Boosting performance in neural networks. International Journal
of Pattern Recognition and Artificial Intelligence, 7, 705-719.

Duffy, N., & Helmbold, D. (2000). Leveraging for regression. In Colt’ 00 (pp. 208-219).

Embrechts, M., Kewley, R., & Breneman, C. (1998). Computationally intelligent data mining for the automated
design and discovery of novel pharmaceuticals. In C. D. et al. (Ed.), Intelligent engineering systems through
artifical neural networks, pp. 391-396. ASME Press.

Fisher, J., D. H. (Ed.). Improving regressors using boosting techniques. In Proceedings of the Fourteenth Interna-
tional Conference on Machine Learning.

Frean, M., & Downs, T. (1998). A simple cost function for boosting. Technical Report, Department of Computer
Science and Electrical Engineering, University of Queensland.

Freund, Y., & Schapire, R. (1996). Game theory, on-line prediction and boosting. In COLT. San Mateo, CA:
Morgan Kaufman. ACM Press, New York, NY, pp. 325-332.

Freund, Y., & Schapire, R. (1994). A decision-theoretic generalization of on-line learning and an
application to boosting. In EuroCOLT: European Conference on Computational Learning Theory.
LNCS.

Freund, Y., & Schapire, R. (1996). Experiments with a new boosting algorithm. In Proc. 13th International
Conference on Machine Learning (pp. 148-146). San Mateo, CA: Morgan Kaufmann.

Friedman, J., Hastie, T., & Tibshirani, R. (1998). Additive logistic regression: A statistical view of boosting.
Technical Report, Department of Statistics, Sequoia Hall, Stanford Univerity.

Friedman, J. (1999). Greedy function approximation. Technical Report, Department of Statistics, Stanford
University.

Frisch, K. (1955). The logarithmic potential method of convex programming. Memorandum, University Institute
of Economics, Oslo.

Grove, A., & Schuurmans, D. (1998). Boosting in the limit: Maximizing the margin of learned ensembles. In
Proceedings of the Fifteenth National Conference on Artifical Intelligence.

Hettich, R., & Kortanek, K. (1993). Semi-infinite programming: Theory, methods and applications. SIAM Review,
3,380-429.

Kaliski, J. A., Haglin, D. J., Roos, C., & Terlaky, T. (1997). Logarithmic barrier decomposition methods for
semi-infinite programming. /nternational Transactions in Operational Research, 4:4,285-303.

Kivinen, J., & Warmuth, M. (1999). Boosting as entropy projection. In Proc. 12th Annual Conference on Compu-
tational Learning Theory (pp. 134—144). New York: ACM Press.

LeCun, Y., Jackel, L. D., Bottou, L., Brunot, A., Cortes, C., Denker, J., Drucker, H., Guyon, L., Miiller, U. A.,
Sédckinger, E., Simard, P., & Vapnik, V. (1995). Comparison of learning algorithms for handwritten digit recog-
nition. In F. Fogelman-Soulié¢, & P. Gallinari (Eds.), Proceedings ICANN’95—International Conference on
Artificial Neural Networks (Vol. 11, pp. 53—60). Nanterre, France. EC2.

Luenberger, D. (1984). Linear and nonlinear programming (2nd edn.). Reading: Addison-Wesley Publishing Co.,
Reprinted with corrections in May, 1989.

Mackey, M. C., & Glass, L. (1977). Oscillation and chaos in physiological control systems. Science, 197, 287—
289.

Maclin, R., & Opitz, D. (1997). An empirical evaluation of bagging and boosting. In Proc. of AAAI.

Mason, L., Bartlett, P., & Baxter, J. (1998). Improved generalization through explicit optimization of margins.
Technical Report, Deparment of Systems Engineering, Australian National University.

SPARSE REGRESSION ENSEMBLES 217

Mason, L., Baxter, J., Bartlett, P., & Frean, M. (1999). Functional gradient techniques for combining hypotheses. In
A.Smola, P. Bartlett, B. Scholkopf, & D. Schuurmans (Eds.), Advances in large margin classifiers (pp. 221-247).
Cambridge, MA: MIT Press.

Mika, S., Ritsch, G., & Miiller, K.-R. (2001). A mathematical programming approach to the Kernel Fisher
algorithm. In T. K. Leen, T. G. Dietterich, & V. Tresp (Eds.), Advances in Neural Information Processing
Systems, 13, 591-597.

Mosheyev, L., & Zibulevsky, M. (2000). Penalty/barrier multiplier algorithm for semidefinite programming.
Optimization Methods and Software, 13:4,235-262.

Miiller, K.-R., Kohlmorgen, J., & Pawelzik, K. (1995). Analysis of switching dynamics with competing neural
networks. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences,
E78-A:10, 1306-1315.

Miiller, K.-R., Smola, A., Rétsch, G., Scholkopf, B., Kohlmorgen, J., & Vapnik, V. (1999). Predicting time series
with support vector machines. In B. Scholkopf, C. J. C. Burges, & A. J. Smola (Eds.), Advances in Kernel
methods—support vector learning (pp. 243-254). Cambridge, MA: MIT Press. Short version appeared in
ICANN’97, Springer Lecture Notes in Computer Science.

Miiller, K.-R., Smola, A., Ritsch, G., Scholkopf, B., Kohlmorgen, J., & Vapnik, V. (1997). Predicting time
series with support vector machines. In W. Gerstner, A. Germond, M. Hasler, & J.-D. Nicoud (Eds.),
Artificial neural networks—ICANN’97 (pp. 999—1004). Berlin: Springer. Lecture Notes in Computer Science,
Vol. 1327.

Pawelzik, K., Kohlmorgen, J., & Miiller, K.-R. (1996). Annealed competition of experts for a segmentation and
classification of switching dynamics. Neural Computation, 8:2, 342-358.

Ritsch, G. (2001). Robust boosting via convex optimization. Ph.D. Thesis, University of Potsdam, Neues Palais
10, 14469 Potsdam, Germany.

Ritsch, G., Onoda, T., & Miiller, K.-R. (2001). Soft margins for AdaBoost. Machine Learning, 42:3, 287-320.
also NeuroCOLT Technical Report NC-TR-1998-021.

Ritsch, G., Scholkopf, B., Mika, S., & Miiller, K.-R. (2000a). SVM and boosting: One class. Technical report
119, GMD FIRST, Berlin. Accepted for publication in IEEE TPAMI.

Ritsch, G., Scholkopf, B., Smola, A., Mika, S., Onoda, T., & Miiller, K.-R. (2000b). Robust ensemble learn-
ing. In A. Smola, P. Bartlett, B. Scholkopf, & D. Schuurmans (Eds.), Advances in large margin classifiers
(pp. 207-219). Cambridge, MA: MIT Press.

Ritsch, G. R., & Warmuth, M. K. (2001). Marginal boosting. Royal Holloway College, NeuroCOLT2 Technical
report, 97. London.

Riitsch, G., Warmuth, M., Mika, S., Onoda, T., Lemm, S., & Miiller, K.-R. (2000). Barrier boosting. In COLT’ 2000
(pp. 170-179). San Mateo, CA: Morgan Kaufmann.

Ridgeway, G. D., & Madigan, T. R. (1999). Boosting methodology for regression problems. In D. Heckerman,
& J. Whittaker (Eds.), Proceedings of Artificial Intelligence and Statistics *99 (pp. 152—161). http:/www.rand.
org/methodology/stat/members/gregr.

Schapire, R., Freund, Y., Bartlett, P., & Lee, W. (1997). Boosting the margin: A new explanation for the effectiveness
of voting methods. In Proc. 14th International Conference on Machine Learning (pp. 322-330). San Mateo,
CA: Morgan Kaufmann.

Scholkopf, B., Burges, C., & Smola, A. (Eds.). (1999). Advances in Kernel methods—support vector learning.
Cambridge, MA: MIT Press.

Scholkopf, B., Smola, A., Williamson, R. C., & Bartlett, P. L. (2000). New support vector algorithms. Neural
Computation, 12, 1207-1245.

Schwenk, H., & Bengio, Y. (1997). AdaBoosting neural networks. In W. Gerstner, A. Germond, M. Hasler, &
J.-D. Nicoud (Eds.), Proc. of the Int. Conf. on Artificial Neural Networks (ICANN’97), Vol. 1327 of LNCS
(pp. 967-972). Berlin: Springer.

Smola, A.J. (1998). Learning with Kernels. Ph.D. Thesis, Technische Universitit Berlin.

Smola, A., Scholkopf, B., & Ritsch, G. (1999). Linear programs for automatic accuracy control in regression. In
Proceedings ICANN’ 99, Int. Conf. on Artificial Neural Networks, Berlin: Springer.

Vapnik, V. (1995). The nature of statistical learning theory. New York: Springer Verlag.

Weigend, A., & N. A. Gershenfeld (Eds.) (1994). Time series prediction: Forecasting the future and understanding
the past. Addison-Wesley. Santa Fe Institute Studies in the Sciences of Complexity.

218 G. RATSCH, A. DEMIRIZ, AND K.P. BENNETT

Zemel, R., & Pitassi, T. (2001). A gradient-based boosting algorithm for regression problems. In T. K. Leen,
T. G. Dietterich, & V. Tresp (Eds.), Advances in Neural Information Precessing Systems 13 (pp. 696-702).
Cambridge, MA: MIT Press.

Received August 31, 2000
Revised January 15, 2001
Accepted January 17, 2001
Final manuscript July 3, 2001

