Skip to main content
Log in

Shape-Preserving C 2 Functional Interpolation via Parametric Cubics

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The paper proposes a method for the construction of a shape preserving C 2 function interpolating a given set of data. The constructed interpolant is a parametric cubic curve. The shape of the curve can be easily controlled via tension parameters which have an immediate geometric interpretation. The approximation order is investigated and numerical examples are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Akima, A new method of interpolation and smooth curve fitting based on local procedures, J. Assoc. Comput. Mech. 17 (1970) 589–602.

    Google Scholar 

  2. P. Costantini, On monotone and convex spline interpolation, Math. Comput. 46 (1986) 203–214.

    Google Scholar 

  3. P. Costantini, An algorithm for computing shape-preserving interpolating splines of arbitrary degree, J. Comput. Appl. Math. 22 (1988) 89–136.

    Google Scholar 

  4. P. Costantini, Curve and surface construction using variable degree polynomial splines, Comp. Aided Geom. Design 17 (2000) 419–446.

    Google Scholar 

  5. R. Delbourgo and J.A. Gregory, C 2 rational quadratic spline interpolation to monotonic data, IMA J. Numer. Anal. 3 (1983) 141–152.

    Google Scholar 

  6. R.L. Dougherty, A. Edelman and J.M. Hyman, Nonnegativity, monotonicity or convexity-preserving cubic and quintic Hermite interpolation, Math. Comput. 52 (1989) 471–494.

    Google Scholar 

  7. F.N. Fritsch and R.E. Carlson, Monotone piecewise cubic interpolation, SIAM J. Numer. Anal. 17 (1980) 238–246.

    Google Scholar 

  8. T.N.T. Goodman, Total positivity and the shape of curves, in: Total Positivity and its Applications, eds. M. Gasca and C.A. Micchelli (Kluwer, Dordrecht, 1996) pp. 157–186.

    Google Scholar 

  9. C. Grandison, Behaviour of exponential splines as tensions increase without bound, J. Approx. Theory 89 (1997) 289–307.

    Google Scholar 

  10. J. Hoschek and D. Lasser, Fundamentals of Computer Aided Geometric Design (Peters, Wellesley, MA, 1993).

    Google Scholar 

  11. H.T. Huynh, Accurate monotone cubic interpolation, SIAM J. Numer. Anal. 30 (1993) 57–101.

    Google Scholar 

  12. P.D. Kaklis and D.G. Pandelis, Convexity-preserving polynomial splines of non-uniform degree, IMA J. Numer. Anal. 10 (1990) 223–234.

    Google Scholar 

  13. B.I. Kvasov, Algorithms for shape preserving local approximation with automatic selection of tension parameters, Comput. Aided Geom. Design 17 (2000) 17–37.

    Google Scholar 

  14. C. Manni, C 1 comonotone Hermite interpolation via parametric cubics, J. Comput. Appl. Math. 69 (1996) 143–157.

    Google Scholar 

  15. C. Manni, Parametric shape preserving Hermite interpolation by piecewise quadratics, in: Advanced Topics in Multivariate Approximation, eds. F. Fontanella, K. Jetter and P.J. Laurent (World Scientific, Singapore, 1996) pp. 211–226.

    Google Scholar 

  16. C. Manni, On shape preserving C 2 Hermite interpolation, BIT 41 (2001) 127–148.

    Google Scholar 

  17. C. Manni and P. Sablonnière, Monotone interpolation of order 3 by C 2 cubic splines, IMA J. Numer. Anal. 17 (1997) 305–320.

    Google Scholar 

  18. M. Marusic and M. Rogina, Sharp error bounds for interpolating splines in tension, J. Comput. Appl. Math. 61 (1995) 205–223.

    Google Scholar 

  19. B. Mulansky and J.W. Schmidt, Constructive methods in convex C 2 interpolation using quartic splines, Numer. Algorithms 12 (1996) 111–124.

    Google Scholar 

  20. G.M. Nielson, Some piecewise polynomial alternatives to spline under tension, in: Computer Aided Geometric Design, eds. R.E. Barnill and R.F. Riesenfeld (Academic Press, 1974) pp. 209–235.

  21. D.G. Schweikert, An interpolation curve using a spline in tension, J. Math. Phys. 45 (1966) 312–317.

    Google Scholar 

  22. R.J. Walker, Algebraic Curves (Dover, New York, 1962).

    Google Scholar 

  23. G. Wang and T.W. Sederberg, Verifying the implicitization formulae for degree n rational Bézier curves, J. Comput. Math. 17 (1999) 33–40.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lamberti, P., Manni, C. Shape-Preserving C 2 Functional Interpolation via Parametric Cubics. Numerical Algorithms 28, 229–254 (2001). https://doi.org/10.1023/A:1014011303076

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014011303076

Navigation