Skip to main content
Log in

The Cauchy–Riemann Equations: Discretization by Finite Elements, Fast Solution of the Second Variable, and a Posteriori Error Estimation

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper we will concentrate on the numerical solution of the Cauchy–Riemann equations. First we show that these equations bring together the finite element discretizations for the Laplace equation by standard finite elements on the one hand, and by mixed finite element methods on the other. As a consequence, methods for a posteriori error estimation for both finite element methods can derive their validity from each other. Moreover, we show that given a finite element approximation of one of the vectorfields, the missing can be accurately computed in optimal complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Ainsworth and J.T. Oden, A Posteriori Error Estimation in Finite Element Analysis (John Wiley & Sons, 2000).

  2. I. Babuška and T. Strouboulis, The Finite Element Method and Its Reliability (Oxford University Press, 2001).

  3. A. Borzì, K.W. Morton, E. Süli and M. Vanmeale, Multilevel solution of cell vertex Cauchy-Riemann equations, SIAM J. Sci. Comput. 18 (1997) 441–459.

    Google Scholar 

  4. A. Brandt and N. Dinar, Multigrid solutions to elliptic flow problems, in: Numerical Methods for Partial Differential Equations, ed. S.V. Parter (Academic Press, New York, 1979).

    Google Scholar 

  5. J.H. Brandts, Superconvergence and a posteriori error estimation in triangular mixed finite elements, Numer. Math. 68 (1994) 311–324.

    Google Scholar 

  6. C. Carstensen, S. Bartels and R. Klose, An experimental survey of a posteriori error estimation, Adv. Comput. Math., to appear.

  7. P. Ciarlet, The Finite Element Method for Elliptic Problems (North-Holland, Amsterdam, 1978).

    Google Scholar 

  8. C. Cuvelier, A. Segal and A. van Steenhoven, Finite Element Methods and Navier-Stokes Equations (Reidel, Dordrecht, Netherlands, 1986).

    Google Scholar 

  9. J. Douglas and J.E. Roberts, Global estimates for mixed methods for second order elliptic problems, Math. Comput. 44 (1985) 39–52.

    Google Scholar 

  10. V. Girault and P.A. Raviart, Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms, Springer Series in Computational Mathematics (Springer-Verlag, Berlin-Heidelberg, 1986).

    Google Scholar 

  11. M. Ghil and R. Balgovind, A fast Cauchy-Riemann solver, Math. Comput. 33 (1979) 585–635.

    Google Scholar 

  12. W. Hackbush, Theorie und Numerik elliptischer Differentialgleichungen (B.G. Teubner, Stuttgart, 1986).

    Google Scholar 

  13. M. Krizek and P. Neittaanmäki, On superconvergence techniques, Acta Appl. Math. 9 (1987) 175–233.

    Google Scholar 

  14. L.A. Oganesjan and L.A. Ruhovets, Study of the rate of convergence of variational difference schemes for second-order elliptic equations in a two-dimensional field with a smooth boundary, Ž. Vyčisl.Mat. i Mat. Fiz. 9 (1969) 1102–1120.

    Google Scholar 

  15. P. Peisker and D. Braess, Uniform convergence of mixed interpolated elements for Reissner-Mindlin plates, RAIRO Modèl. Math. Anal. Numér. 26 (1992) 557–574.

    Google Scholar 

  16. P.A. Raviart and J.M. Thomas, A mixed finite element method for 2nd order elliptic problems, in: Lecture Notes in Mathematics, Vol. 606 (1977) pp. 292–315.

    Google Scholar 

  17. R.P. Stevenson, A direct solver for the gradient equation, Preprint No. 1163, Department of Mathematics, Utrecht University, Netherlands (2000). To appear in Math. Comput.

  18. S. Ta'asan, Canonical forms of multidimensional steady inviscid flows, ICASE 93-34, Institute for Computer Applications in Science and Engineering, Hampton, VA (1993).

    Google Scholar 

  19. S. Turek, Multigrid techniques for a divergence-free finite element discretization, East-West J. Numer. Math. 2 (1994) 229–255.

    Google Scholar 

  20. R. Verfürth, A Review of a Posteriori Error Estimation and Adaptive Mesh Refinement Techniques (Wiley-Teubner, 1996).

  21. J. Wilkinson, The calculation of eigenvectors of codiagonal matrices, Computer J. 1 (1958) 90–96.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Brandts.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brandts, J. The Cauchy–Riemann Equations: Discretization by Finite Elements, Fast Solution of the Second Variable, and a Posteriori Error Estimation. Advances in Computational Mathematics 15, 61–77 (2001). https://doi.org/10.1023/A:1014217225870

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014217225870

Navigation