Skip to main content
Log in

Functional group placement in protein binding sites: a comparison of GRID and MCSS

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

One approach to combinatorial ligand design begins by determining optimal locations (i.e., local potential energy minima) for functional groups in the binding site of a target macromolecule. MCSS and GRID are two methods, based on significantly different algorithms, which are used for this purpose. A comparison of the two methods for the same functional groups is reported. Calculations were performed for nonpolar and polar functional groups in the internal hydrophobic pocket of the poliovirus capsid protein, and on the binding surface of the src SH3 domain. The two approaches are shown to agree qualitatively; i.e., the global characteristics of the functional group maps generated by MCSS and GRID are similar. However, there are significant differences in the relative interaction energies of the two sets of minima, a consequence of the different functional form used to evaluate polar interactions (electrostatics and hydrogen bonding) in the two methods. The single sphere representation used by GRID affords only positional information, supplemented by the identification of hydrogen bonding interactions. By contrast, the multi-atom representation of most MCSS groups yields in both positional and orientational information. The two methods are most similar for small functional groups, while for larger functional groups MCSS yields results consistent with GRID but superior in detail. These results are in accord with the somewhat different purposes for which the two methods were developed. GRID has been used mainly to introduce functionalities at specific positions in lead compounds, in which case the orientation is predetermined by the structure of the latter. The orientational information provided by MCSS is important for its use in the de novo design of large, multi-functional ligands, as well as for improving lead compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goodford, P.J., J. Med. Chem., 28 (1985) 849.

    Google Scholar 

  2. Boobbyer, D.N.A., Goodford, P.J., McWhinnie, P.M. and Wade, R.C., J. Med. Chem., 32 (1989) 1083.

    Google Scholar 

  3. Wade, R.C., Clark, K.J. and Goodford, P.J., J. Med. Chem., 36 (1993) 140.

    Google Scholar 

  4. Wade, R.C. and Goodford, P.J., J.Med. Chem., 36 (1993) 148.

    Google Scholar 

  5. Evensen, E., Joseph-McCarthy, D. and Karplus, M., MCSSv2, Harvard University, 1997.

  6. Miranker, A. and Karplus, M., Proteins, 11 (1991) 29.

    Google Scholar 

  7. Caflisch, A., Miranker, A. and Karplus, M., J. Med. Chem., 36 (1993) 2142.

    Google Scholar 

  8. Caflisch, A. and Karplus, M., Perspectives in Drug Discovery and Design, 3 (1995) 51.

    Google Scholar 

  9. Jedrzejas, M.J., Singh, S., Brouillette, W.J., Air, G.M. and Luo, M., Proteins, 23 (1995) 264.

    Google Scholar 

  10. von Itzstein, M., Dyason, J., Oliver, S., White, H., Wu, W., Kok, G. and Pegg, M., J. Med. Chem., 39 (1996) 388.

    Google Scholar 

  11. Appelt, K., Bacquet, R.J., Bartlett, C.A., Booth, C.L.J., Freer, S.T., Fuhry, M.A.M., Gehring, M.R., Herrmann, S.M., Howland, E.F., Jansen, C.A., Reddy, M.R., Reich, S.H., Schoettlin, W.S., Smith, W.W., Varney, M.D., Villafranca, J.E., Ward, R.W., Webber, S., Webber, S.E., Welsh, K.M. and White, J., J. Med. Chem., 34 (1991) 1925.

    Google Scholar 

  12. Goodford, P.J., GRID User Manual, Edition 16.

  13. Joseph-McCarthy, D., Hogle, J.M. and Karplus, M., Proteins, 29 (1997) 32.

    Google Scholar 

  14. Hogle, J.M., Chow, M. and Filman, D.J., Science, 229 (1985) 1358.

    Google Scholar 

  15. Filman, D.J., Syed, R., Chow, M., Macadam, A.J., Minor, P.D. and Hogle, J.M., EMBO J., 8 (1989) 1567.

    Google Scholar 

  16. Grant, R.A., Hiremath, C.N., Filman, D.J., Syed, R., Andries, K. and Hogle, J.M., Curr. Biol., 4 (1994) 784.

    Google Scholar 

  17. Hiremath, C., Grant, R.A., Filman, D.J. and Hogle, J.M., Acta Cryst., D51 (1995) 473.

    Google Scholar 

  18. Hiremath, C.N., Filman, D.J., Grant, R.A. and Hogle, J.M., Acta Cryst., D53 (1997) 558.

    Google Scholar 

  19. Rossmann, M.G., Arnold, E., Erickson, J.W., Frankenberger, E.A., Griffith, J.P., Hecht, H.-J., Johnson, Kamer, G., Luo, M., Mosser, A.G., Rueckert, R.R., Sherry, B. and Vriend, G., Nature, 317 (1985) 145.

    Google Scholar 

  20. Kim, K.H., Willingmann, P., Gong, Z.X., Kremer, M.J., Chapman, M.S., Minor, I., Oliveira, M.A., Rossmann, M.G., Andries, K., Diana, G.D., Dutko, F.J., McKinlay, M.A. and Pevear, D.C., J. Mol. Biol., 230 (1993) 206.

    Google Scholar 

  21. Badger, J.; Minor, I., Kremer, M.J., Oliveira, M.A., Smith, T.J., Griffith, J.P., Guerin, D.M.A., Krishnaswamy, S., Luo, M., Rossmann, M.G., McKinlay, M.A., Diana, G.D., Dutko, F.J., Fancher, M., Rueckert, R.R. and Heinz, B.A., Proc. Natl. Acad. Sci. USA, 85 (1988) 3304.

    Google Scholar 

  22. Badger, J., Minor, I., Oliveira, M.A., Smith, T.J. and Rossmann, M.G., Proteins, 6 (1989) 1.

    Google Scholar 

  23. Feng, S., Kapoor, T.M., Shirai, F., Combs, A.P. and Schreiber, S.L., Chem. Biol., 3 (1996) 661.

    Google Scholar 

  24. MacKerell, A.D., Bashford, D., Bellot, M., Dunbrack, R.L., Evanseck, J.D., Field, M.J., Fischer, S., Gao, J., Guo, H., Ha, S., Joseph-McCarthy, D., Kuchnir, L., Kuczera, K., Lau, F.T.K., Mattos, C., Michnick, S., Ngo, T., Nguyen, D.T., Prodhom, B., Reiher, W.E., Roux, B., Schlenkrich, M., Smith, J.C., Stote, R., Straub, J., Watanabe, M., Wiorkiewicz-Kuczera, J., Yin, D. and Karplus, M., J. Phys. Chem. B, 102 (1998) 3586.

    Google Scholar 

  25. Brünger, A.T., Kuriyan, J. and Karplus, M., Science, 235 (1987) 458.

    Google Scholar 

  26. Brooks, B.R., Bruccoleri, R.E., Olafson, B.D., States, D.J., Swaminathan, S. and Karplus, M., J. Comp. Chem., 4 (1983) 187.

    Google Scholar 

  27. Elber, R. and Karplus, M., J. Am. Chem. Soc., 112 (1990) 9161.

    Google Scholar 

  28. Neria, E., Fischer, S. and Karplus, M., J. Chem. Phys., 105 (1996) 1902.

    Google Scholar 

  29. Halgren, T.A., J. Comput. Chem., 17 (1996) 490.

    Google Scholar 

  30. Eisen, M.B., Wiley, D.C., Karplus, M. and Hubbard, R.E., Proteins, 19 (1994) 199.

    Google Scholar 

  31. Miranker, A. and Karplus, M., Proteins, 23 (1995) 472.

    Google Scholar 

  32. Tsang, S.K., Cheh, J., Isaacs, L., Joseph-McCarthy, D., Choi, S.K., Pevear, D.C., Whitesides, G.M. and Hogle, J.M., Chem. Biol., 8 (2001) 33.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bitetti-Putzer, R., Joseph-McCarthy, D., Hogle, J.M. et al. Functional group placement in protein binding sites: a comparison of GRID and MCSS. J Comput Aided Mol Des 15, 935–960 (2001). https://doi.org/10.1023/A:1014309222984

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014309222984

Keywords

Navigation