
This is a pre-published versionThis is a pre-published version

 1

 Optimizing Personal Computer Configurations with Heuristic-Based Search
Methods

Vincent Tam and K.T. Ma

{vtam,makengte}@comp.nus.edu.sg
Department of Computer Science

School of Computing, National University of Singapore
Lower Kent Ridge Road, Singapore 119260.

Abstract. Undoubtedly, the hardware technology of personal computers (PCs) are continuously changing and shaping
our daily living. However, given the diversity of PC hardware components, and the limited compatibility between
some of these hardware components, most people are interested to obtain an (sub-)optimal configuration for some
specific usage restricted to their budget limits and other possible criteria. In this paper, we firstly formulate these widely
occurred configuration problems as discrete optimization problems in which users can flexibly add in or modify their
specific requirements at any time. More interestingly, we proposed two intelligent optimizers: a simple-yet-powerful
beam search method and a min-conflict heuristic-based micro-genetic algorithm (MGA) to solve this real-life
optimization problem. The beam search represents a restricted intelligent search while the MGA is an evolutionary
algorithm with small population size. To investigate the feasibility and efficiency of our proposals, we built a Web-
based Personal Computer Configuration Advisor to integrate each of the two optimizers as individual component to
configure PCs for general users. In our empirical evaluation, the heuristic-based MGA consistently outperformed the
beam search method in most cases. Furthermore, our work opens up numerous exciting directions for future
investigation including the improvement of our optimizer to handle more complicated users’ requirements, the
integration of other optimizers like the branch-and-bound heuristic search method [1,2] for comparison, and the
possible uses of efficient learning algorithms such as the ID3 algorithm [2] to classify different user-defined
configurations into useful examples to guide the search during optimization.

Keywords : Discrete Optimization Problems, Heuristic Search Methods, Micro-genetic Algorithms.

1. INTRODUCTION

To obtain the maximal benefits out of nowadays' personal computer (PC) hardware technology, many companies or

families are keen in configuring and building their own personal computers (PC) to suit their specific requirements,

especially due to the influence of the popular “Do-It-Yourself” (DIY) philosophy, the fast development of multimedia

hardware and the wide accessibility of the Internet. Undoubtedly, the PC configuration problems are common decision

problems faced by many people in which people are always interested to know the optimal, or possibly sub-optimal, PC

configuration within their limited budget. However, since the PC technology nowadays are changing very quickly, the

diversity of PC hardware components, such as the different types of processors, random-access memory (RAM) and the

motherboards, and their limited compatibility between certain components due to the underlying proprietary

manufacturers often complicates the whole decision problem, thus making it difficult to handle by the general public.

 2

In fact, there were many well-studied configuration problems [2] in the area of computer-aided design or

manufacturing (CAD/CAM) [6]. In particular, there was an interesting research work [6] on formulating the machine

configuration problems as discrete optimization problems, and then applying local search methods such as genetic

algorithms [11,12] or simulated annealing [9,10] to handle these configuration problems successfully. The preliminary

experimental results reported in [6] already revealed that formulating the machine, or any general, configuration problems

as constrained optimization problems (COPs) would definitely result in systematic handling of users' requirements as

constraints or optimization criteria. At the same time, the users can flexibly add in or modify their requirements at any

time to see the resulting configurations for planning or control [5]. Thus, in this paper, we firstly gave a formal definition

of these PC configuration problems as discrete optimization problems. More importantly, based on this formal definition,

we proposed a systematic and flexible framework which allows the seamless integration of different intelligent optimizers

for solving these difficult real-world discrete optimization problems.

Basically, a discrete optimization problem involves a set Z of variables, each variable Vi (∈ Z) with a finite domain Di

of discrete values, a set C of constraints on some subsets of variables limiting the combination of values assigned to those

involved variables, and a set of objective functions fj for minimization/maximization. The challenge is to find a globally

optimal solution which minimizes/maximizes all the objective functions fj while satisfying all the constraints in C.

Mathematically, the discrete minimization problem can be specified as follow.

 ∑
=

m

j

jf
1

min subject to Cc∈∀ 0)(=ccf

where m denotes the total number of objective functions in the problem, and cf(c) is an arbitrary function which

returns 0 when the specific constraint c is satisfied. Otherwise, it returns 1. Clearly, to solve maximization problems, we

can simply negate all objective function fj in the above formulation as ∑
=

−
m

j
jf

1
min . In handling these optimization

problems, which are always NP-complete [3,4], one of the frequently used heuristics is the branch-and-bound (B&B)

heuristic [1,2] in which the exploration of any partial solution in a search tree will be abandoned immediately whenever

the search cost of that partial solution, as represented by an arbitrary objective function, already exceeds the minimal cost

for the optimal solution found so far. For instance, the B&B heuristic has been successfully applied to handle the famous

traveling salesman problems [2,3] to guarantee the finding of the shortest path to transverse all the required cities in one

 3

round trip. However, in some sparsely constrained optimization problems such as the PC configuration problems which

have too many feasible solutions, heuristic search methods may still be unable to return the globally optimal solution

within a reasonable period of time. In these cases, users may also be willing to accept a sub-optimal solution. Thus, in this

paper, we proposed two heuristic-based optimizers which are capable of returning sub-optimal solutions as a trade-off for

efficiency. In the first proposal of our beam-search based optimizer, we used two major approaches to efficiently

optimize the ultimate PC configurations for satisfying the users’ requirements. First, similar to the branch-and-bound

method [1,2], we prune off any alternative choice which already exceeds the planned budget during each search step. In

addition, we include a constant threshold value n to monitor the size of the possible PC configurations we will consider in

each search step so as to avoid the combinatorial explosion problem due to the diversity of different PC components. In

our second proposal, we used an interesting min-conflict heuristic (MCH) [13] based micro-genetic algorithm (MGA)

[11,12,14], that is an evolutionary algorithm with small population size (usually around 6-20 according to [11]), to solve

these practical configuration problems. In fact, in our previous work [12], we already demonstrated how to successfully

apply this MCH-based evolutionary approach to obtain impressive performance on solving a set of constraint satisfaction

problems (CSPs). Here, our proposal represents the first attempt, up to our knowledge, to adapt this MCH-based

evolutionary approach to handle real-world discrete optimization problems. Nevertheless, since both of our proposed

optimizers are not performing exhaustive search, it is impossible to guarantee the global optimality of the resulting

configurations. Besides, it should be interesting to note that both intelligent optimizers are heuristic-based and restricted

in different ways for reasonable performance. The beam-search based optimizer is restricted by the number n of the best

partial solutions considered in each search step while the MCH-based MGA is restricted by the number of candidate

solutions (chromosomes) in the whole population.

To investigate the feasibility and efficiency of our proposals, we firstly collected the actual data from some major

computer shopping centers in Singapore to build our local databases of PC components and then a Web-based PC

Configuration Advisor as a flexible and useful platform for easy integration of different components. Based on this

flexible framework, we used the widely available Practical Extraction and Report Language (PERL) [7, 8] Version 5.0 to

implement the two different optimizers to compare their performance on handling these practical PC configuration

problems. The heuristic-based MGA mostly outperformed the beam search method in the empirical evaluation.

Obviously, our work opens up many new directions for future investigation such as applying our current optimizers to

 4

handle more complicated users’ requirements, the integration of other optimizers such as the branch-and-bound heuristic

search method [1,2] or SAT-related search algorithms [15] for studying their performance, and the possible uses of

efficient learning algorithms such as the ID3 algorithm [1,2] to classify different user-defined configurations into useful

examples to guide the search during optimization.

This paper is organised as follows. Section 2 describes the PC configuration problems as specific instances of discrete

COPs, thus forming a systematic framework for optimizing choices of PC components to satisfy the users’ requirement.

In Section 3, we describe a flexible system architecture to handle these PC configuration problems, and detail our

interesting proposals of using heuristic-based optimizers to handle these real-life COPs according to their unique problem

structures. Section 4 provides the empirical evaluation of the proposed optimizer in terms of efficiency and costs of the

resulting configurations, with an example application of our optimizer to build a Web-based PC Configuration Advisor.

Lastly, we conclude our work in Section 5.

2. Personal Computer Configuration Problems

 Basically, the personal computer (PC) configuration problem is to select a configuration of PC hardware parts to

build a complete system, taking into account the compatibility issues between the different hardware components. For

instance, Intel Pentium II CPU should be attached to a Slot-1 Motherboard. Definitely, one of the most important

optimization criteria in many real-life situations is price. Thus, a general formulation of the PC configuration problems as

discrete COPs can be as follows.

)(cosmin
1

Pjt
m

j
∑
=

 subject to CPjPicomp ∈∀),(0)),((=PjPicompcf

in which cost(Pj) denotes the cost for the component Pj, C specifies all the compatible relations (constraints) between

the components Pi and Pj, and the arbitrary function cf returns 0 when comp(Pi, Pj) is evaluated as true. For example,

when the variables for the CPU and motherboards are : PCPU = “Intel PII CPU” and PMB = “Slot-1

Motherboard”respectively, comp(PCPU, PMB) = true, then cf(comp(PCPU, PMB)) = 0. Clearly, given the above general COP

formulation, it is flexible to add in or modify the users’ requirements specified as constraints or optimization criteria. For

instance, when new components PX and PY are added into the PC market, it is easy to simply add a new constraint

 5

comp(PX , PY) into C to store their compatibility information.1 Besides, for more complicated real-life cases, we can

simply extend the minimization function to consider other important factors such as a weighting value for each

component to reflect the users’ preference.

Variables

The variables Pi’s of interest for the PC configuration problem is the set of hardware components which will be

assembled to build a functioning personal computer system. Basically, from our general analysis, there are about 12

variables commonly involved in configuring a PC nowadays. The first three variables, namely CPU, Memory and Main-

Board, represent the most important variables which are often highly constrained. The remaining nine variables, including

Casing, Display-Card, Hard-Disk, CD-ROM Drive, Modem, Monitor, Printer, Scanner and Sound-Card, are totally un-

constrained. Thus, this special relationship between the PC components depicts the unique problem structure of the PC

configuration problem: the constraints between the first 3 variables will leave very few combinations of options to be

matched against a possibly large number of possible choices in a later stage of the search. It should be noted that this large

possibility occurred in the later search stage may pose major difficulty to most optimizers such the branch-and-bound

techniques since no other available information can be used to prune off any value during the search.

Domains

From the empirical data we collected, the average domain size for the first three highly constrained variables is 52

while the average domain size for the remaining un-constrained variables is also 52, thus making the average domain size

for all the variables is 52. Hence, the size of the search space for all possible combinations of PC components is roughly

of the order of 5212 . More importantly, this huge search space has lots of possible sub-trees which cannot be further

pruned off by any heuristic. Accordingly, the conventional enumerative search [5] may simply give unsatisfactory

performance to return the globally optimal PC configuration. Therefore, in the next section, we will discuss our proposed

search strategies which sacrifices global optimality for efficiency to tackle these real-life COPs.

Furthermore, it should be noted that these PC, or possibly other, configuration problems are very much different from

some famous routing problems such as the traveling salesman problem, on which the branch-and-bound (B&B) strategy

1 Clearly, some readers may argue that these compatibility constraints are in fact no different from the logical relations like “father(john,

mary)” to specify “john” is the father of “mary” in some logic programs. Of course, we would agree on that since it is generally true
for most constraints. However, the “encapsulation” of these general relations between objects as a specific constraint will in general
provide a more systematic way to handle that particular kind of constraints. As a result, we will discuss how a special-purpose search

 6

performs reasonably well, in terms of the underlying domains for each variable. For a traveling salesman problem with 12

cities, the underlying domains for all the variables V1..V12 , denoting the first to the last city to be visited on a trip, are the

same. That is the range [1..12] to represent the same 12 cities. Thus, at each search step, we can use the B&B heuristic to

prune off any alternative route starting and ending with the same cities, say “city 1 - …..- city 9”, but with a higher total

distance covered. However, in our PC configuration problems, the possible choices at each search step will be totally

different from the previous choices already occurred in the previous search steps. Thus, the B&B heuristic may not

necessarily be a useful heuristic in solving the PC configuration problems.

 Constraints

The following list shows some example of the constraints frequently occurred in the PC configuration problems. The

first one specifies that the total cost of the configuration must be less than or equal to the budget predefined by the user.

The second and third constraints are obviously about the CPU, Memory and MainBoard. The second one states that the

type of the CPU must match with the type of the MainBoard while the last one specifies that the speed of the MainBoard

and the Memory must be the same.

• TotalPrice <= Budget

• CPU.Type = Mainboard.Type

• Mainboard.Bus_Speed = Memory.Bus_Speed

Clearly, it is straightforward to add in more constraints as users’ new requirements. As in most PC configurations, the

cost and performance are definitely two major factors for consideration. However, depending on the different types of

computer programs to be used by individuals, the machine performance requirement for different users are relative and

often subjective measures although there are lots of performance measurement figures published by various PC vendors

for advertisement. For instance, a general user who needs only word-processor to be run on his/her PC tends to consider a

PC configuration with 'average' performance. But defining 'average' performance as a hard constraint for a particular

application can readily be a tough question. Thus, to have more flexibility, we simply allow the users to express their

performance requirements on the ultimate PC configurations possibly as some combined factors of users' preference or

rating in the optimisation criteria rather than as hard constraints.

algorithm (as constraint solver) can be designed to handle those compatibility constraints more efficiently for our PC configuration
problems in the next section.

 7

3. OUR PROPOSED FRAMEWORK & SEARCH STRATEGIES

In this section, we will firstly look into a systematic framework for integrating different optimizers to handle the PC

configuration problems based on the formulation of discrete optimization problems which we discussed in the previous

section. Figure 1 shows our proposed systematic framework for integration of different optimizers.

Fig. 1. Our Proposed Systematic Framework for Optimizing PC Configurations

It should be noted that in our systematic framework for constrained optimization to handle the PC configuration

problems, we assume our search and optimization process have to performed on a set of consistent data from a centralized

database system. In addition, there is a constraint store to provide useful information about the users' requirements as a

collection of constraints. Based on these useful information, our optimizer with customizable search strategies will return

a set of (sub-)optimal PC configurations with their total costs to the users according to the predefined optimization criteria.

Clearly, other possible optimizers can also be added into our framework as some intelligent plug-in components for better

efficiency or handling more complicated optimization criteria. Besides, in our proposed framework, we consider the

optimization of options for PC configurations based on information provided from a centralized database system. It

should be noted that the assumption of a centralized database system is generally valid since nowadays, most of the

A Centralized
and Consistent

DataBase

Our proposed optimizer
(with customizable search

strategies)

A Constraint
Store

Resulting PC
configurations
with total costs

Other possible
optimizer

 8

database systems we used in companies are often compatible with the de facto Open DataBase Connectivity (ODBC)

standard [7]. In general, the heterogeneous database systems linked up via the Internet and the ODBC interface layer can

be regarded a centralized database system when we ignore the latency time mainly due to the network communication and

the possibly inconsistent data stored in these different database systems.

In the following, we will discuss two different intelligent optimizers with heuristic-based search strategies which may

not guarantee to always return the PC configuration with the globally minimal cost. However, as opposed to enumerative

search, our proposals will definitely be more efficient.

3.1 A Beam-Search Based Optimizer

Our first proposal of a heuristic-based optimizer for solving the PC configuration problems simply limits the search to

focus on the best n possible values of every sorted domain to construct the partial solutions in each search step. Since the

PC configuration problems are only sparsely constrained, our proposed strategy should be able to return a solution which

is fairly close to the global optimal solution within a reasonable period of time. Table 3 shows the two main factors which

we used to control the search, together short descriptions to explain their roles. Both control parameters are predefined by

the user of the search strategies.

Table 1. Our Control Factors to Search for (Sub-)Optimal PC Configuration

Similar to the B&B heuristic, the predefined control parameter Budget will be used to filter out any partial

configuration which already exceeds its allowed value. In addition, the Threshold value n will help to ensure the search

will always return the best n partial configurations after sorting all possible partial configurations against their total prices

at each search step. Based on these two strategies, we designed an optimizer to solve these PC configuration problems as

follows.

1. Retrieve and sort the values for the current variable by price.

Control Short Descriptions

Budget The budget for the whole personal computer system. Total prices of the components are
not allowed to exceed the budget.

Threshold Number of the best partial solutions to be considered in each search step

 9

2. Find the next matching value of the variable in the sorted value queue.
Check that all the constraints are satisfied for this value. This includes the
budget constraint (that is Total_price <= Budget).

3. If no constraint is violated, goto 6.

4. Else if queue is not empty, repeat 2. Else Fail.

5. Set the current solution set to include this value.

6. If number of partial solutions < threshold, repeat 2. Else 7

7. If variable queue is not empty, proceed to set current variable to next
variable in the queue. Repeat 1.

8. If number of solutions > 0 then report Solved. Else report Failure.

It should be noted that our work is closely related to the 'beam search' method. In Section 4, we will give an empirical

evaluation of the above-proposed optimizer to solve the actual PC configuration problems with different control

parameter settings for experimentation.

3.2 A Min-Conflict Heuristic-Based Micro-Genetic Algorithm

Our second proposal is a min-conflict heuristic (MCH) based micro-genetic algorithm (MGA) [11,12], that is an

evolutionary algorithm with small population size of chromosomes, to handle the PC configuration problems. In general,

when handling constraint satisfaction or optimization problems with evolutionary algorithms, a bit-string called

chromosome will usually be used to represent a possible valuation for all the variables in the constrained problem. When

the valuation represented by a particular chromosome violates no constraints in the problem, the chromosome denotes a

solution. For solving constrained problems with a large number of variables (say > 500), a MGA with a small population

size PZ in the range of 6-20 may often outperform the traditional evolutionary algorithms with larger population size [6].

This is probably because the computational cost can be minimized by focusing the search only on a reasonably small

population of chromosomes without much impact on the search efficiency. Initially, the MGA randomly generates a small

population of n chromosomes. Then, the algorithm selects the best m chromosomes for reproduction according to some

ranking mechanism as determined by the fitness/objective value of each chromosome. There are two main types of

reproductive operators: crossover and mutation to be applied on those selected chromosomes. After reproduction, a new

generation is formed. And the whole process iterates until a solution is found, the whole population is converged to the

same pattern or the resource limit set for the maximum number of generations (MAX_GENS) is exceeded.

 10

To improve the search efficiency of MGAs in solving CSPs, researchers have tried adding different heuristics in the

evolutionary computation. For instance, Rojas [17] used a heuristic to define the importance of a constraint in a constraint

network to improve an evolutionary algorithm in solving a set of randomly generated 3-colouring graphs. Dozier [11,14]

proposed an interesting heuristic inheritance mechanism for their micro-genetic algorithm for tackling binary CSPs. The

mechanism tries to minimize the number of constraint violations by continuously mutating only a single selected variable,

or moving to mutate another variable. Furthermore, they extended this micro-genetic algorithm with the integration of the

Iterative Descent Method (IDM) [11], which modifies the fitness function to consider not only the number of constraint

violations but to also penalize revisiting inconsistent pairs of values (no-goods) found at previous local minima during the

search. Besides IDM, The min-conflict heuristic [13] forms the basis for many global and local search methods. The idea

behind the min-conflict heuristic is to consider modifying only a single variable at a time, and to assign a value to that

variable which is locally minimum in terms of constraint violations. When there are several local minima (ties) in terms

of constraint violations, a value will randomly be selected among these ties. In our previous work [12], we proposed a

mutation-based evolutionary search scheme (MCH-MGA) to efficiently solve CSPs as follow.

MCH-MGA(CSP, fitness(), PZ, MAX_GENS) {

 initialize the 1st generation of PZ chromosomes randomly;

 set best_fit = best fitness value of the current population;

 set ngens = 1;

 while (best_fit != 0 && ngens < MAX_GENS) {

 uses selection scheme to choose the pivot_gene;

 applies MCH-mutate to pivot_gene;

 applies descent-mutate to other genes;

 if (population is in local minimum) then applies popu-learn;

 update best_fit;

 ngens++;

 }

 if(best_fit == 0) return solution;

 return failure;

}

 11

Clearly, the MCH-MGA depends on the selection scheme, either update-select or usage-select, to pick up the most

important variable/gene for the current search step to apply MCH-mutate in order to get the greatest improvement if

possible. For the remaining variables, it generally applies the more efficient operator descent-mutate. The MCH-mutate is

basically a MCH variable updating operator while the descent-mutate operator is a restrictive operator which allows only

mutations resulting in decreases in the total number of constraint violations. The popu-learn operator is simply an

adaptation of the heuristic learning mechanism discussed in [16] to a population of chromosomes rather than a single

chromosome. For detail, refer to [12].

To handle the PC configuration problems, we have to firstly modify the original fitness function to combine the cost of

constraint violations with actual cost of the different PC hardware components Pj's. Assume the average cost for each PC

component Pj is about 1000, we can adjust the fitness function to give a relatively larger weight associated with the part

for constraint violations as follows.

)((cosmin
1

Pjt
m

j
∑
=

+ 10,000 *)),((
),(

PjPicompcf
CPjPicomp

∑
∈∀

)

Thus, the ultimate effects produced on the evolutionary search will help to avoid any possible constraint violation. It

should be noted that with this new formulation, it is straightforward to add in the users' preferences for certain PC

components by adding another weighted term, for example 1000 * user_pref(Pj), into the above fitness function. Besides

carefully adjusting the fitness function, we have to modify the testing condition for the while-loop in the MCH-MGA to :

while (ngens < MAX_GENS) since we are now handling optimization problems instead of CSPs. Therefore, the

unsatisfiability testing condition: best_fit != 0 should be removed. Furthermore, the last two statements of the MCH-MGA

procedure should also be modified to always: return (sub-)optimal solution for the optimization problems at hands. After

putting into all these minor modifications to the above MCH-MGA procedure, we rename this new MCH-based

evolutionary algorithm for solving optimization problems as MCH-MGA-OPT. In the following section, we are going to

compare the performance of MCH-MGA-OPT against the beam-search based optimizer in solving the real-life PC

configuration problems.

 12

4. EMPIRICAL EVALUATION

 Based on the above algorithms for our proposed optimizers, namely the beam-search based optimizer and the MCH-

MGA-OPT, we built our prototypes in PERL Version 5.0 since we would integrate our optimizers individually into a

Web-based PC Configuration Advisor so as to compare their performance while facilitating the general users to configure

their own PCs. To evaluate the performance of our prototypes for the proposed optimizers to handle the PC configuration

problems, we focused on two main aspects of the computational results returned by our optimizer in the following

analysis. The first important factor to consider is the quality of the solution in term of the total costs of the PC

configurations for minimization. The second factor of interest is the efficiency of our optimizer as reflected by the timings

in CPU seconds. Accordingly, we run our prototype 10 times for different settings of threshold values or combinations of

parameters on a DEC-Alpha workstation running Digital Unix Version 4.0.8.

The table below shows a sorted listing of the total costs of the different PC configurations, labeled from 01 to 30,

returned by our beam-search based optimizer for Budget <= $3000 and Threshold = 30.

Cfg Cost Cfg Cost Cfg Cost Cfg Cost Cfg Cost
01 753 07 757 13 763 19 765 25 766
02 755 08 759 14 763 20 765 26 767
03 755 09 760 15 763 21 765 27 767
04 755 10 762 16 764 22 765 28 768
05 757 11 762 17 764 23 765 29 769
06 757 12 763 18 764 24 766 30 769

Clearly, the optimal cost returned by the beam-search based optimizer is SG $753. And there is a fair difference of SG

$16 between the first minimal total cost and the last total cost of the configuration 30 as shown in the above table. In

addition, it should be noted that from our initial experiments, the top 10 configuration-cost pairs usually remain

unchanged for the same budget limit even though we changed the threshold value from 30 to 20 and then to 10. This

demonstrated the stable performance of our beam-search based optimizer in handling these PC configuration problems.

Table 4 shows the performance of our proposed beam-search based optimizer for handling the PC configuration

problems with Budget <= $3000 and varying the Threshold value at 1, 5, 10, 20 and 30. For each case, the reported data

is the average CPU time in seconds over 10 runs.

Threshold Average CPU time in seconds (10 runs)
1 3.18
5 3.19
10 3.32
20 3.40

 13

30 3.51

Table 2. Performance of our Beam-Search Based Optimizer for Different Threshold Values

The above table clearly showed that our beam-search based optimizer is fairly efficient in handling a typical PC

configuration problem with different threshold values to control the search. Also, the performance of this optimizer is

compact and stable since there is only slight increase in the average CPU time from 3.18 to 3.51 seconds when the

corresponding threshold value is changed from 1 to 30.

Table 3 gives the performance of the MCH-MGA-OPT for PZ = 1, 5, 10 and 202 and MAX_GENS = 20, 50 and 100 for

comparison. Again, all the data reported are averages over 10 runs. For each table entry, the first data represents the CPU

time in seconds while the second one in parentheses denotes the cost in SG$. When we compare against Table 1 for the

quality of solutions as returned by the beam-search based optimizer, it is clear that the MCH-MGA-OPT consistently

outperformed the beam-search based optimizer with the optimal cost = SG $715 for most cases. In fact, as for MCH-

MGA-OPT, the minimal cost over 10 runs consistently stays at SG $715 for all the cases, which probably represents the

global optimal solution3. In general, the beam-search based optimizer could only better the average cost returned by

MCH-MGA-OPT in the weakest case where PZ=1 and MAX_GEN = 20. On the other hand, the MCH-MGA-OPT

generally outperformed the beam-search based optimizer in terms of solution quality.

PZ\MAX_GEN 20 50 100
1 0.35s

(847.2)
0.71s
(715)

1.28s
(715)

5 1.26s
(716.8)

3.10s
(715)

6.04s
(715)

10 2.38s
(715)

5.99s
(715)

12.03s
(715)

20 4.76s
(715)

11.97s
(715)

24.07s
(715)

Table 3. Performance of our MCH-MGA-OPT for Different Population Sizes and Resource Limits

As for the CPU time in seconds, it is interesting to note that, the CPU time in Table 3 almost increases linearly across

the table. For instance, when the MAX_GEN = 20, the CPU time (2.38s) for PZ = 10 is almost double of that (1.26s) of

PZ = 5. Again, this general trend is fairly consistent across the whole table. Besides, when we compare the CPU time of

MCH-MGA-OPT against those of the beam-search based optimizer shown in Table 2, it is clear that the efficiency of the

2 It should be noted that due to time limitation, we do not have sufficient time to obtain the data for PZ = 30. However, in the revised

version, we would definitely provide this data for a more conclusive comparison.

 14

MCH-MGA-OPT is comparable or sometimes even better than those results reported for the beam-search based optimizer.

This is especially true for cases like PZ = 1 for all the resource limits, PZ = 5 for MAX_GEN = 20 or 50 and (PZ = 10,

MAX_GEN = 20). Accordingly, we can safely conclude that MCH-MGA-OPT achieved comparable or slightly better

efficiency to those results reported for the beam-search based optimizer on half of the test cases we have compared. After

all, when we consider both efficiency and quality of solution, MCH-MGA-OPT should provide more exciting preliminary

results as compared to the beam-search based optimizer. In addition, it should be noted that it is straightforward to add in

more users' requirements under the evolutionary search framework.

Since the performance of our proposed optimizers from the initial experiments is satisfactory, we integrated our

optimizers as a plug-in components into our targeted Web-based PC Configuration Advisor for optimizing different PC

configurations according to users' budget as shown in Figure 2.

3 Of course, this will require a complete solver to later verify the global optimality of our solution found.

 15

Fig. 2. Our PC Configuration Advisor

There are a number of interesting points about our prototype system of the Web-based PC Configuration Advisor.

Firstly, our Web-based PC Configuration Advisor supports rule-based information processing to actively anticipate or

validate users’ inputs, and also analyze hardware information stored in databases to provide useful advice on the best PC

configurations for certain usage subject to a user-defined budget limit, and a pre-defined threshold limit used during the

search. Specially, we allows the active uses of rules, as stated in the rule script to represent some domain experts’

knowledge, to “dynamically” prune off options within the same page (intra-page) or between the pages (inter-page). For

example, when the user selects the “Type of PC” to be configured is “Server” on the first page, the option of “17-inch

 16

monitor” will be automatically removed in the last page4 with the active use of the domain experts’ rules. Besides

ensuring valid inputs from the users, it is mainly used to remove irrelevant choices so as to facilitate the search efficiency.

After all possible pruning, our proposed optimizers, implemented as a easy-to-modify plug-in components inside our PC

Configuration Advisor, then performs either the controlled (best-n) search according to the predefined budget limit and

threshold values, or the heuristic evolutionary search according to the preset population size PZ and resource limit

MAX_GENS during optimization of PC configurations. Thus, when applying the beam-search based optimizer, for a

user’s requirement with budget ≤ 3000 and threshold = 20, our Web-based PC Configuration Advisor will definitely

return only the first 20 optimal PC configurations with the total cost less than $3000. Similarly, for the evolutionary

approach, the PC Configuration Advisor can also return the best PZ (sub-)optimal solutions as represented by all the

chromosomes in the last generations. In case where no PC configuration can meet the specified budget, an error message

will be printed on the resulting Web page for both cases.

5. CONCLUSION

It is undeniable that the PC configuration problems are both practical and interesting optimization problems widely

occurring in many well-developed countries of the world. However, specific configuration problems are interesting since

they have the unique problem structures that some components are highly constrained while the rest are totally

unconstrained. This may pose challenge to some conventional enumerative search methods. As the PC technology is

likely to be more complicated in the future, it will definitely become more difficult to handle these specific configuration

problems. In this paper, we gave a formal definition of the PC configuration problems as discrete optimization problems.

Based on this problem formulation, we proposed a systematic framework which allows the integration of different

optimizers for optimizing the PC configurations according to the useful information stored in a centralized database and

constraint store. More importantly, after analyzing the unique features of the PC configuration problems which may

possibly lead to combinatorial explosion during the search, we proposed two useful search strategies to control the search

and optimization process in our optimizer. To demonstrate the feasibility of our proposals, we implemented a prototype

for each of our proposed optimizers in Perl for quick experimentation, and later integrated it into a Web-based PC

Configuration Advisor to facilitate the general public in configuring their own PCs. In our empirical evaluation, the

4 Technically, this special feature is achieved with JavaScript through the uses of cookies to remember some important values for each

 17

heuristic-based evolutionary approach generally gave more promising results as compared to the beam-search based

optimizer.

Clearly, there are several interesting directions for our future investigation. One obvious direction is to test our

optimizers on many different real-life cases. Along this direction, it would be interesting to improve our optimizers to

handle more complicated constraints and optimization criteria so as to solve more complex real-life PC, or other general,

configuration problems. Second, it should be interesting to include other optimizers such as the B&B method for a

complete comparison. Lastly, we are currently studying the possible uses of efficient learning algorithms such as the ID3

algorithm [2] to classify different user-defined configurations into useful examples so as to guide the search during the

optimization process.

REFERENCES

[1] "Artificial Intelligence : A Knowledge-Based Approach” by Morris W. Firebaugh, PWS-Kent Publishing Company, Boston, 1988.

[2] “Artificial Intelligence” by Elaine Rich and Kevin Knight, McGraw-Hill International Edition, 1991.

[3] “Discrete Mathematics – A Unified Approach” by Stephen A. Wiitala, McGraw-Hill International Edition, 1987.

[4] “Introduction to Algorithm” by Thomas H. Cormen, Charles E. Leiserson and Ronald L. Rivest, The MIT Press, 1994.

[5] “Foundations of Constraint Satisfaction” by Edward Tsang, Academic Press, 1993.

[6] “Genetic algorithms versus simulated annealing : Satisfaction of large sets of algebraic mechanical design constraints” by A.C.

Thornton, in Proceedings of Artificial Intelligence in Design, pp. 381-398, 1994.

[7] “Discover PERL 5” by Naba Barkakati, IDG Books WorldWide Inc., 1997.

[8] “Programming in PERL” by Larry Wall, O’Reilly, 1995.

[9] “Boltzmann machines for traveling salesman problems” by E. Aarts and J. Korst, European Journal of Operational Research,

39:79-95, 1989.

[10] “Optimization by simulated annealing : an experimental evaluation; Part II, graph coloring and number partitioning” by D.

Johnson, C. Aragon, L. McGeoch, and C. Schevon. Operations Research, 39(3)378-406, 1991.

[11] “Solving small and large scale constraint satisfaction problems using a heuristic-based microgenetic algorithm” by G.Dozier, J.

Bowen and D. Bahler. In Proceedings of the IEEE International Conference on Evolutionary Computation, 1994.

[12] “Improving Evolutionary Algorithms for Efficient Constraint Satisfaction" by Vincent Tam and Peter Stuckey, International

Journal on Artificial Intelligence Tools, Vol. 8, No. 2, World Scientific Publishers, December 1999.

already visited or currently visiting page.

 18

[13] "Minimizing conflicts: a heuristic repair method for constraint satisfaction and scheduling problem." S. Minton, M. Johnston, A.
Philips, and P. Laird. Artificial Intelligence, 58:161-205, 1992.

[14] "Solving Constraint satisfaction Problems Using A Genetic/ Systematic Search Hybrid that Realizes when to Quit." Bowen James

and Gary Dozier. In Proceedings of the Sixth International Conference on Genetic Algorithms, pages 122-129, 1995.
[15] "Domain-independent extension to GSAT: Solving large structured satisfiability problems." Bart Selman and Henry Kautz. In

Proceedings of IJCAI-93, 1993.

[16] "GENET: A connectionist architecture for solving constraint satisfaction problems by iterative improvement." Andrew Davenport,

E.P.K. Tsang, C.J. Wang, and K. Zhu. In Proceedings of AAAI’94, 1994.

[17] "From Quasi-Solution to Solution: An Evolutionary Algorithm to Solve CSP." Maria Cristina Riff Rojas. In Proceedings of

Principles and Practice of Constraint Programming (CP96), pages 367-381, 1996.

