Skip to main content
Log in

On the Combination of Interval Constraint Solvers

  • Published:
Reliable Computing

Abstract

This paper tackles the combination of interval methods for solving nonlinear systems. A cooperative strategy of application of elementary solvers is designed in order to accelerate the whole computation while weakening the local domain contractions. It is implemented in a prototype solver which efficiently combines interval-based local consistencies and the multidimensional interval Newton method. A set of experiments shows a gain of one order of magnitude on average with respect to Numerica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Apt, K. R.: The Essence of Constraint Propagation, Theoret. Comput. Sci. 221(1-2) (1999), pp. 179-210.

    Google Scholar 

  2. Benhamou, F.: Heterogeneous Constraint Solving, in: Proc. Int. Conference on Algebraic and Logic Programming, 1996.

  3. Benhamou, F., Goualard, F., Granvilliers, L., and Puget, J.-F.: Revising Hull and Box Consistency, in: Proc. Int. Conference on Logic Programming, 1999.

  4. Benhamou, F. and Granvilliers, L.: Automatic Generation of Numerical Redundancies for Nonlinear Constraint Solving, Reliable Computing 3(3) (1997), pp. 335-344.

    Google Scholar 

  5. Benhamou, F., McAllester, D., and Van Hentenryck, P.: CLP(Intervals) Revisited, in: Proc. Int. Logic Programming Symposium, 1994.

  6. Benhamou, F. and Older, W. J.: Applying Interval Arithmetic to Real, Integer and Boolean Constraints, J. Logic Programming 32(1) (1997), pp. 1-24.

    Google Scholar 

  7. Berz, M. and Hoffstätter, G.: Computation and Application of Taylor Polynomials with Interval Remainder Bounds, Reliable Computing 4(1) (1998), pp. 83-97.

    Google Scholar 

  8. Cleary, J. G.: Logical Arithmetic, Future Comp. Sys. 2(2) (1987), pp. 125-149.

    Google Scholar 

  9. Collavizza, H., Delobel, F., and Rueher, M.: Comparing Partial Consistencies, Reliable Computing 5(3) (1999), pp. 213-228.

    Google Scholar 

  10. Farouki, R. and Rajan, V.: On the Numerical Condition of Polynomials in Bernstein Form, Comput. Aided Geom. Design 4(1987), pp. 191-216.

    Google Scholar 

  11. Garloff, J. and Graf, B.: Symbolic Methods in Control SystemAnalysis and Design, in:Munro, N. (ed.), Solving Strict Polynomial Inequalities by Bernstein Expansion, IEE London, 1999, pp. 339-352.

    Google Scholar 

  12. Granvilliers, L.: A Symbolic-Numeric Branch-and-Prune Algorithm for Solving Nonlinear Polynomial Systems, J. Universal Computer Science 4(2) (1998), pp. 125-146.

    Google Scholar 

  13. Granvilliers, L. and Benhamou, F.: Progress in the Solving of a Circuit Design Problem, J. Global Optim., accepted.

  14. Granvilliers, L., Goualard, F., and Benhamou, F.:Box Consistency through Weak Box Consistency, in: Proc. IEEE Int. Conference on Tools with Artificial Intelligence, 1999.

  15. Hansen, E. R.: Global Optimization Using Interval Analysis, Marcel Dekker, 1992.

  16. Henkin, L., Monk, J. D., and Tarski, A.:Cylindric Algebras, Studies in Logic, North-Holland Publishing Company, Amsterdam-London, 1971.

  17. IEEE Standard for Binary Floating-Point Arithmetic, Institute of Electrical and Electronics Engineers, IEEE Std 754-1985, 1985, reaffirmed 1990.

  18. Kahan, W. M.: A More Complete Interval Arithmetic, in: Lecture Notes for an Engineering Summer Course in Numerical Analysis, University of Michigan, 1968.

  19. Kearfott, R. B.: Some Tests of Generalized Bisection, ACMTrans. Math. Software 13(3) (1987), pp. 197-220.

    Google Scholar 

  20. Kearfott, R. B. and Shi, X.: Optimal Preconditionners for Interval Gauss-Seidel Methods, in: Scientific Computing and Validated Numerics, 1996, pp. 173-178.

  21. Lhomme, O.: Consistency Techniques for Numeric CSPs, in: Proc. Int. Joint Conference on Artificial Intelligence, 1993.

  22. Lhomme, O., Gotlieb, A., and Rueher, M.: Dynamic Optimization of Interval Narrowing Algorithms, J. Logic Programming 37(1-2) (1998), pp. 165-183.

    Google Scholar 

  23. Moore, R. E.: Interval Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1966.

    Google Scholar 

  24. Neumaier, A.: Interval Methods for Systems of Equations, Cambridge University Press, Cambridge, 1990.

    Google Scholar 

  25. Puget, J.-F. and Leconte, M.: Beyond the Glass Box: Constraints as Objects, in: Proc. Int. Logic Programming Symposium, 1995.

  26. Ratschek, H. and Rokne, J.: About the Centered Form, SIAM J. Numer. Anal. 17(3) (1980), pp. 333-337.

    Google Scholar 

  27. Stahl, V.: Interval Methods for Bounding the Range of Polynomials and Solving Systems of Nonlinear Equations, PhD thesis, University of Linz, Austria, 1995.

  28. Van Hentenryck, P., McAllester, D., and Kapur, D.: Solving Polynomial Systems Using a Branch and Prune Approach, SIAM J. Numer. Anal. 34(2) (1997), pp. 797-827.

    Google Scholar 

  29. Van Hentenryck, P., Michel, L., and Deville, Y.: Numerica: a Modeling Language for Global Optimization, MIT Press, 1997.

  30. Verschelde, J.: Database of Polynomial Systems, Michigan State University, USA, 1999, http://www.math.msu.edu/jan/demo.html.

  31. Verschelde, J.: PHCpack: A General-Purpose Solver for Polynomial Systems by Homotopy Continuation, ACM Trans. Math. Software 25(2) (1999), pp. 251-276.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Granvilliers, L. On the Combination of Interval Constraint Solvers. Reliable Computing 7, 467–483 (2001). https://doi.org/10.1023/A:1014750702474

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014750702474

Keywords

Navigation