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Abstract. The response of leaky integrate-and-fire neurons is analyzed for periodic inputs whose phases vary
with their spatial location. The model gives the relationship between the spatial summation distance and the
degree of phase locking of the output spikes (i.e., locking to the periodic stochastic inputs, measured by the
synchronization index). The synaptic inputs are modeled as an inhomogeneous Poisson process, and the anal-
ysis is carried out in the Gaussian approximation. The model has been applied to globular bushy cells of
the cochlear nucleus, which receive converging inputs from auditory nerve fibers that originate at neighbor-
ing sites in the cochlea. The model elucidates the roles played by spatial summation and coincidence detec-
tion, showing how synchronization decreases with an increase in both frequency and spatial spread of inputs. It
also shows under what conditions an enhancement of synchronization of the output relative to the input takes
place.
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1. Introduction

Information in the nervous system is carried by the
action potentials (or spikes) that are generated by and
transmitted between neurons. Both the timing of the ac-
tion potentials (APs) (i.e., temporal information) and
the identity of the spiking neuron (i.e., place informa-
tion) convey aspects of the information contained in the
neural code. There are a number of situations where the
identity of the neuron is related to some external (e.g.,
spatial) dimension and where the spatial relationships
between the neurons reflect this external structure, re-
sulting in a spatiotemporal coding of information. Such
interactions between spatial and temporal aspects of the
neural code have been observed in a number of sen-
sory systems, particularly the auditory system where
the tonotopic organization of frequency has been ex-
tensively studied (von Békésy, 1960; Liberman, 1982;
Webster et al., 1992), as well as in other more central
parts of the nervous system, such as the hippocampus
(Bose et al., 2000), cerebellum (Buonomano and Mauk,
1994), and visual cortex (receiving LGN inputs during
stimulation by drifting gratings) (Hubel and Wiesel,
1962).

Spatiotemporal coding in the auditory system is gen-
erated within the cochlea, where the vibration of the
basilar membrane (BM) gives rise to both a spatial and
temporal representation of the frequency spectrum of
the stimulus. The spatial (or tonotopic) organization is
brought about by the frequency filtering properties of
the BM, whereby the place at which maximum dis-
placement occurs (the characteristic place, CP) varies
from the base to the apex of the cochlea as the fre-
quency of the stimulating tone varies from high to low
(von Békésy, 1960). Auditory nerve (AN) fibers, which
are stimulated by hair cells attached to the BM, dis-
play the tonotopic organization of their CP through
their characteristic frequencies (CF) (the stimulus fre-
quency at which an increase in spiking rate can be in-
duced at the lowest stimulus intensity) determined by
their responses to pure tones. Consequently the AN
carries a spatial (or spectral) representation of the fre-
quency (see Pickles, 1982, and Webster et al., 1992, for
reviews).

In addition to this spectral information, the audi-
tory pathway also carries temporal information. The
peripheral auditory pathway has long been known as
one of the major neural systems where temporal cod-
ing in neurons takes place (Galambos and Davis, 1943;
Tasaki, 1954; Kiang et al., 1965; Rose et al., 1967;

Lavine, 1971). Temporal coding in the peripheral au-
ditory pathway has been observed in the form of phase
locking to low frequency sinusoidal stimuli of up to
3 to 5 kHz in mammals (Rose et al., 1967; Lavine,
1971; Johnson, 1980; Joris et al., 1994a, 1994b). These
phase locking neurons generate spikes at a preferred
phase of the stimulus period and, as a result, respond
with interspike intervals that are integer multiples of
the stimulus period (Kiang et al., 1965; Rose et al.,
1967; Lavine, 1971). The degree of phase locking of
a neuron’s response can be quantified by the synchro-
nization index (SI), also known as the vector strength
(Goldberg and Brown, 1969; Anderson, 1973; Johnson,
1980). The SI ranges between the value of one when
the neuron response is locked tightly to a particular
phase of the stimulus period and zero when the neu-
ron responds equally at all phases of the stimulus pe-
riod. Temporal coding has been shown to be important
for sound localization (Rayleigh, 1876; Jeffress, 1948;
Mills, 1958; Carr and Konishi, 1990; Gerstner et al.,
1996), but its role in auditory tasks such as sound and
speech recognition remains to be fully understood (see
Greenberg, 1996, for a review).

The first stage of processing in the central auditory
pathway is the cochlear nucleus (CN), whose neurons
are the targets of the afferent AN fibers and whose
temporal properties have been the subject of a num-
ber of studies (Eggermont et al., 1983; Carney, 1990,
1992; Carney and Friedman, 1998). Joris et al. (1994a,
1994b) examined the relationship between the output
SI of antero-ventral cochlear nucleus (AVCN) neurons,
which include bushy cells, and the SI of the incoming
AN fibers. They demonstrated that the output SI of
AVCN neurons relative to the SI of AN fibers from
which they receive input was enhanced for stimulus
frequencies up to approximately 0.7 kHz (and reduced
at higher frequencies). A similar enhancement of syn-
chronization at low frequencies has also been observed
in the AVCN analogue in the barn owl (Köppl, 1997).
Joris et al. (1994a, 1994b) showed that these results
were consistent with those obtained by studying a sin-
gle spiking-neuron model that employs coincidence de-
tection (see Joris et al., 1998, and Kempter et al., 1998,
for reviews of coincidence detection). They demon-
strated that the degree of synchronization enhancement
is dependent on various neural parameters such as the
membrane potential decay time constant and the size of
the input excitatory postsynaptic potential (EPSP) am-
plitudes relative to the spiking-threshold. An enhance-
ment of synchronization requires the convergence of
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two or more inputs onto the neuron and the coinci-
dence of input spikes (i.e., a short temporal window of
integration). More detailed studies of bushy cells us-
ing a single compartment model were able to identify
a number of different response patterns corresponding
to various ranges of the neural parameters (Rothman
et al., 1993; Rothman and Young, 1996).

An important feature missing from both these stud-
ies was the question of how the output synchronization
is affected by differences in the phases of arrival of AN
fiber inputs that arise from their spatial distribution on
the BM. One model that does address this question is
that by Bruce et al. (1998), in which they analyze a
mathematical model of spatiotemporal summation of
AN firings based on the idea of input phase differences
resulting from consecutive activation of AN fibers by
the traveling wave of the BM (Ruggero and Rich,
1987). Their model uses a stochastic point process rep-
resentation of AN fiber activity, where each fiber’s re-
sponse to a pure tone sound stimulus is described by
the time-dependent mean and variance of its spiking-
rate—i.e., a periodic/inhomogeneous Poisson process
(Papoulis, 1991). A summing neuron (nonthresholded)
was created, in which the output spiking-rate function
was the sum of the spiking-rate functions for each input
fiber. This summation was performed spatially, across
an arbitrary number of (consecutively activated) AN
fibers originating from a spread over the BM, and then
temporally, over a fixed duration time window. This
results in an output spiking-rate function that is the
total of the input spiking-rate functions of the pop-
ulation of fibers considered, from which a measure
of the synchronization of the population response can
be obtained, termed the population SI (PSI). Their re-
sults demonstrated that the PSI is greatest for a narrow
spread of AN fibers and drops off with both increasing
frequency and summation distance. Due to the con-
straints of their summing neuron, Bruce et al. (1998)
were unable to show an enhancement of synchroniza-
tion or to address the question of whether threshold-
ing neurons (i.e., neurons that generate an AP when
their membrane potential reaches threshold) would be
able to generate an enhancement of synchronization
for narrow spreads of input along the BM. A number
of studies have shown the importance of the threshold
in the distribution of output spikes generated by coher-
ent synaptic input (Maršálek et al., 1997; Burkitt and
Clark, 1999; Salinas and Sejnowski, 2000).

The aim of this study is to better understand the
spatiotemporal code, the way in which it is processed

and transmitted, and the conditions under which an en-
hancement of synchronization can occur. In order to do
this we use a thresholding neuron—namely, the leaky
integrate-and-fire (LIF) neuron in which the membrane
potential decays towards its resting value with a char-
acteristic time constant, τ . The membrane potential
is augmented by input spikes from individual afferent
fibers that arrive at synapses on the soma and gener-
ate postsynaptic potentials (PSPs) that summate. The
neuron generates an output spike when the membrane
potential exceeds the firing threshold. The LIF neuron
is one of the most widely used models for studying sys-
tems of neurons (see Tuckwell, 1988, for a review) and
has been used extensively to study aspects of the au-
ditory pathway (Molnar and Pfeiffer, 1968; Tuckwell
and Richter, 1978; Colburn et al., 1990; Carney, 1992;
Young et al., 1993; Joris et al., 1994a; Kalluri, 2000).
The present study uses a recently developed technique
for analyzing the LIF neuron (Burkitt and Clark, 1999,
2000, 2001; Hohn and Burkitt, 2001) that allows the
calculation of the output SI given that the inputs to the
model are periodic Poisson processes. This model has
been generalized here to allow for phase differences
between the periodic inputs, which models a globular
bushy cell (GBC) of the AVCN receiving AN fiber in-
puts originating over a spatial spread of the BM and
therefore having differing phases. As a result, estima-
tions of the spatial summation distance for which the
SI of a GBC’s response to a pure tone is enhanced,
or degraded, relative to the SI of the input AN fibers’
responses to a tone are made.

The neuron model is outlined in the Methods sec-
tion, which also gives details of the inputs and how the
spatial summation and integration are carried out. The
Results section contains a description of how the output
SI varies as a function of frequency and summation dis-
tance, both with and without introducing a general form
of temporal jitter. In the Discussion section the results
presented here are related to current understanding of
the processing of information in the auditory pathway
and their possible implications for cochlear implants.

2. Methods

2.1. Neural Model

The analysis presented here considers a single neuron
with N independent inputs (afferent fibers) assumed to
have the same synaptic response amplitude, a, and time
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course, s(t). The time course of an input at the site of
spike generation is described by the synaptic response
function u(t) for the LIF neuron. The membrane po-
tential is assumed to be reset to its initial value at time
t = 0, V (0) = v0, after a spike has been generated. A
spike is produced only when the membrane potential
exceeds the threshold, Vth, which has a potential dif-
ference with the reset potential of θ = Vth − v0. The
potential is the sum of the EPSPs (Burkitt and Clark,
1999, 2000, 2001; Hohn and Burkitt, 2001)

V (t) = v0 + N a s(t), s(t) =
∞∑

m=1

u(t − tm), (1)

where the index m denotes the mth input spike
from the particular fiber, whose time of arrival is tm
(0 < t1 < t2 < · · · < tm < · · ·). The rate of the input
spike arrival times is discussed in the following section.
The synaptic response function, u(t), is given by the
shot-noise response function

u(t) =
{

e−t/τ for t ≥ 0

0 for t < 0,
(2)

where τ is the decay time constant of the membrane
potential. Consequently, the membrane potential has
a discontinuous jump of size a on the arrival of an
EPSP and then decays exponentially between inputs.
The decay of the EPSP across the membrane means
that the contribution from EPSPs that arrive earlier has
partially decayed by the time that later EPSPs arrive.
In this study the voltage scale is set so that v0 = 0 and
θ = 1.0.

2.2. Spatial Integration of Inputs

The input to GBCs provided by each AN fiber may be
described by a periodic input spiking-rate function λ(t)
(chosen here to be a sum of identical Gaussian func-
tions centered at multiples of the period), modeled as
a periodic Poisson process (Kempter et al., 1998). In
order to include a phase delay associated with the trav-
eling wave stimulating consecutive AN fibers (labeled
with a subscript n) over a spatial spread of the BM, the
phase of the function λn(t) must depend on the posi-
tion of the fiber. As the sound-induced traveling wave
moves from the base of the BM, where high frequen-
cies are represented, to the apex of the BM, where low
frequencies are represented, the AN fibers are consec-
utively stimulated. This gives rise to phase differences

between the spiking-rate functions, λn(t), of each in-
put AN fiber, and these phase differences depend on
the distance between the points of BM innervation of
each AN fiber.

The same treatment of input frequency is employed
as used in the study by Bruce et al. (1998), where each
input fiber responds to a tone that is at the fiber’s CF.
Furthermore, it is assumed that each input fiber orig-
inates at the position on the BM corresponding to the
CF of interest (i.e., at the CP), that the fibers all have the
same conduction time (Paolini and Clark, 1998), and
that the fibers have a high spontaneous rate (or equiv-
alently a low-threshold). Thus the SI and spiking-rate
of each input will be the same, and the phase of each
input spiking-rate function depends on the CP. More-
over, this results in phase delays between inputs, tφ,n ,
that change linearly with slope α (called the phase-
delay parameter) over small distances around the CP.
For N identical fibers spread out evenly over distance
d on the BM, the phase delay of the nth fiber can be
expressed by tφ,n = αdn/N (Bruce et al., 1998), and
thus the input spiking-rate function of the nth fiber is

λn(t) = p

( ∞∑
k=−∞

1√
2πσ 2

× exp

(
−

(
t − kT + tφ + αd n

N

)2

2σ 2

))
, (3)

where the time-dependent rate of arrival of input spikes
at a synapse is periodic with period T and initial phase
tφ (i.e., the phase of the input at the time when the PSP
summation commences), p is the time-averaged input
spiking-rate per period, and σ is the standard deviation
(SD) of the Gaussians. The SI of the above spiking-rate
function, denoted R, is given by Kempter et al. (1998)

R = exp

(
−2π2σ 2

T 2

)
. (4)

This expression for R can be calculated by dividing the
first complex Fourier coefficient of λn(t) by the zeroth
complex Fourier coefficient of λn(t). The period and
the SD of the Gaussians can be varied independently.
The use of the term period (or frequency f = 1/T )
here and throughout the analysis refers to this peri-
odic modulation of the rate of inputs (and is not to be
confused with the time averaged spiking-rate on each
input fiber, which is λ̄in = p/T ). This input spiking-
rate function represents an inhomogeneous (i.e.,
nonstationary) Poisson process (Papoulis, 1991).
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The treatment of neural spike trains as homogeneous
Poisson processes provides a good approximation to
spontaneous activity (Cox and Lewis, 1966; Perkel
et al., 1967), as observed in AN fibers. Furthermore,
the treatment of neural spike trains involved in temporal
coding as periodic inhomogeneous Poisson processes
has also been shown to provide a good approximation
of AN fiber responses to tones (Johnson and Swami,
1983). The Poisson model presented here appears to be
a reasonably accurate description of neural spike trains
involved in temporal coding, with the only major short-
coming being the lack of refractory effects. However,
this can be compensated for by reducing the input SI,
Rin, for high frequencies where refractory effects are
most noticeable. The above definition of SI, Eq. (4),
allows the modeling of Rin values between zero and
one (Kempter et al., 1998).

2.2.1. Integral Approximation of the Spatial Summa-
tion. The spatial summation of the activity of these
N AN fibers over the distance d can be simplified,
both analytically and computationally, by converting
the input spiking-rate function, Eq. (3), into a continu-
ous expression of spiking-rate per unit distance, λ(x, t)
(Bruce et al., 1998). Expressing λn(t) in the spatially
continuous (rate per unit distance) form, λ(x, t), gives

λ(x, t) = pN

d

( ∞∑
k=−∞

1√
2πσ 2

× exp

(
− (t − kT + tφ + αx)2

2σ 2

))
, (5)

where N/d is the nerve fiber density and x is the spa-
tial variable. The spatial summation over the N evenly
spread inputs can be approximated by the integration
of the spiking-rate per unit distance function, λ(x, t),
over the distance [0, d], for which it is assumed that the
inputs are uniformly distributed. This integral approx-
imation of the spatial summation of the spiking-rate
functions of the AN fiber inputs, denoted λ̂(t), becomes

λ̂(t) =
∫ d

0
dx λ(x, t). (6)

Since λ̂(t) involves a bi-infinite sum of aperiodic func-
tions, its evaluation can be quite computationally de-
manding when it is approximated with a finite number
of terms. Instead, it is possible to approximate λ(x, t)

by using its Fourier series, given by

λF (x, t) = N p

T d
+ 2N p

T d

( ∞∑
m=1

exp

(
−2m2π2σ 2

T 2

)

× cos

(
2πm

T
(t + tφ + αx)

))
. (7)

The resultant expression for λ̂(t) is then

λ̂(t) = N p

T
+ N p

παd

∞∑
m=1

exp
(− 2m2π2σ 2

T 2

)
m

×
(

sin

(
2πm

T
(t + tφ + αd)

)

− sin

(
2πm

T
(t + tφ)

))
. (8)

Consequently, λ̂(t) is approximated by an expression
involving an infinite sum of periodic functions. Using
λF (x, t) it was found that the first 30 terms of λ̂(t)
provided an accurate approximation for SI values up to
and including 0.9 (this was half the number of terms
required for a similar accuracy of λ̂(t) over the same
SI range when the expression for λ(x, t) in Eq. (5) was
used).

2.2.2. The Input Population Synchronization. In or-
der to understand the relative effects of spatial sum-
mation and temporal integration on the output syn-
chronization, we first consider the input population
synchronization, R̂in, which is the SI of the spiking-
rate function of the spatially integrated synaptic input,
λ̂(t)—i.e., the SI of the arriving PSPs in a population
of fibers,

R̂in = Rin

∣∣∣∣
(

T

παd

)
sin

(
παd

T

)∣∣∣∣. (9)

The input population synchronization, R̂in, is clearly
less than the input synchronization on the individ-
ual fibers, Rin, since it involves the average over
many such fibers with different phases (note that
R̂in → Rin as d → 0). The input population synchro-
nization, R̂in, corresponds to the output synchroniza-
tion, Rout, for the neuron model with an infinite mem-
brane time constant, τ → ∞, also known as the perfect
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integrate-and-fire model,

Rout
τ→∞−→ R̂in. (10)

This relationship follows by noting that in the perfect
integrate-and-fire model the probability of crossing the
spiking threshold is simply proportional to the instan-
taneous rate of the combined synaptic inputs (i.e., the
sum total of the product of the individual input spiking-
rates with their resulting PSP amplitudes), assuming
that the PSPs are of equal amplitude (Burkitt and Clark,
2001). The perfect integrate-and-fire model also forms
a good approximation in the situation where the aver-
age rate of synaptic input is very high, resulting in a
temporal integration time that is effectively very much
shorter than the membrane potential decay time con-
stant. This limit therefore provides a lower bound on
the output SI as the input rate increases. However, the
perfect integrate-and-fire model is clearly incapable of
enhancing the output SI relative to either the input SI
on individual fibers, Rin or the input population SI, R̂in.

2.2.3. Upper Bound on the Error of the Integral
Approximation. The main mathematical approxima-
tion of this spatiotemporal analysis is the integral ap-
proximation, Eq. (6), of the spatial summation of the
spiking-rate functions of N input AN fibers. As shown
explicitly by Bruce et al. (1998), this type of approxi-
mation becomes more accurate as the nerve fiber den-
sity, N/d, increases. Because we are interested in an-
alyzing the spatial summation distance of AN fiber
inputs to GBCs, AN fiber input densities as low as
40 cm−1 were used. The integral approximation is con-
sequently expected to be more accurate for high fre-
quency inputs where the spiking-rate expression for the
nth fiber, Eq. (3), becomes flatter—which is a result of
low input SIs, Eq. (4), and the maximum slope with
respect to distance of the spiking-rate per unit distance
expression, Eq. (5), being at its lowest values. An upper
bound on the (normalized) relative difference between
the integral approximation and the spatial summation is
given in the Appendix (although this upper bound does
not represent the lowest upper bound on the relative
difference, it nevertheless still provides a constraint on
the error of the integral approximation).

2.3. Output of the Model

Now that the neuron model and its synaptic inputs have
been defined, the output of the model can be evaluated

using the methods of Burkitt et al. (1999, 2000, 2001).
Based on a description of the membrane potential and
the spatially integrated synaptic inputs, the synaptic
inputs can be temporally integrated and the probability
density of the membrane potential V (t) can be obtained
in the Gaussian approximation (Kenyon et al., 1992;
Burkitt and Clark, 1999). The probability density of
the potential V (t), denoted by p(v, t | v0; ω, φ), is the
probability that the potential has the value v at time t ,
given that the initial condition is V (0) = v0, the angular
frequency of the input is ω (with ω = 2π f ), and the
initial phase is φ (corresponding to an initial time tφ
with φ = 2π tφ) (Burkitt and Clark, 2001). This initial
condition corresponds to the reset of the membrane
potential to v0 immediately after the previous spike,
which is assumed to occur at time t = 0. In the Gaussian
approximation, the probability density can be written as

p(v, t | v0; ω, φ) = 1√
2π�(t; ω, φ)

× exp

{
− (v − v0 − ϒ(t; ω, φ))2

2�(t; ω, φ)

}
,

(11)

where

ϒ(t; ω, φ) = a
∫ t

0
λ̂(t ′)u(t − t ′)dt ′,

�(t; ω, φ) = a2

∫ t

0
λ̂(t ′)u2(t − t ′)dt ′.

(12)

The dependence of ϒ(t; ω, φ) and �(t; ω, φ) on angu-
lar frequency, ω, and initial phase, φ, is consequently
given explicitly through their dependence on λ̂(t). In
the above we have assumed for simplicity that both
the amplitude, a, and time course, u(t), of all input
PSPs are identical. The Gaussian approximation, which
takes its name from the Gaussian form of the expres-
sion for the membrane potential given in Eq. (11), may
be derived by keeping only the terms to second order in
the amplitude a of the postsynaptic potential (Kenyon
et al., 1992; Burkitt and Clark, 1999, 2000), and conse-
quently the approximation is expected to work best for
small values of a (compared to the spiking threshold
θ ), which corresponds to large values of N .

In order to calculate the output spike-phase dis-
tribution (corresponding to the experimentally mea-
sured phase histogram), it is first necessary to calculate
the conditional first-passage time density, fθ (t; ω, φ),
which is the distribution of interspike interval times
(i.e., the times when the summed membrane voltage
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crosses threshold, given that the previous spike oc-
curred at time t = 0), dependent on the angular fre-
quency and phase of the synaptic input. This condi-
tional first-passage time density is evaluated using a
generalization of the renewal equation (Plesser and
Tanaka, 1997; Burkitt and Clark, 2000). In the cal-
culation of the phase distribution of output spikes, a
discretization of 40 time-steps per period was used
(this ensures an accurate determination of the output SI
over the range of values investigated here). An absolute
refractory period was also introduced into the model
(Burkitt and Clark, 2000). For increasing input frequen-
cies and decreasing output spiking-rates the calculation
of the conditional first-passage time densities results in
an increasing number of required time-steps, which de-
mands increasing computational resources.

The next step is to find the phase distribution of the
output spikes, χ(s)(φ), which is also the distribution
of initial phases of the conditional first-passage time
density. This phase distribution is given by the station-
ary solution to a phase transition density (Plesser and
Geisel, 1999; Burkitt and Clark, 2001), which is de-
fined by the periodic wrapping of the conditional first-
passage time densities with varying initial phases. It is
then straightforward to calculate the output SI from the
phase distribution.

Although the model used in this study accounts for
stochastic temporal jitter in AN fiber responses to a
pure tone, there are several forms of neural noise that
have not been incorporated into the model. Such forms
of noise include spontaneous inputs from fibers not
associated with the stimulus, spike propagation delay
time jitter in AN fibers (Anderson, 1973) and synap-
tic EPSP release time jitter (Walmsley et al., 1998).
In order to account for these forms of neural noise an
additional Gaussian neural noise term was introduced
into the model. This was incorporated by convolving
the output phase distribution of the model, χ(s)(φ),
with a periodically wrapped Gaussian jitter function
with standard deviation σJ in the vicinity of the experi-
mentally observed range of 50 to 110 µsec (Anderson,
1973; Paolini et al., 2001)

χ(s)
conv(φ)=

∫ 2π

0
dφ′χ(s)(φ′)G(φ − φ′; σJ),

(13)

G(φ; σJ)=
∞∑

k=−∞

1

σJ

√
2π

exp

(
− (φ − 2kπ)2

2σ 2
J

)
.

The effect of introducing this Gaussian neural noise is
to smear the output spike-time distribution, resulting

in a reduction of the degree of phase locking to high-
frequency stimuli, and the results of this analysis are
presented in Section 3.3.

3. Results

3.1. Parameters for Modeling AN Fibers
and Globular Bushy Cells

The CN contains a number of different cell types that
exhibit spatiotemporal summation of AN inputs, of
which bushy cells are one such class. The terminals of
many AN fibers form large endbulbs that are attached to
the soma of bushy cells and that contain many synapses
(Brawer et al., 1974; Cant and Morest, 1979). Bushy
cells also exhibit exceptionally short membrane time
constants that arise as a result of a low-threshold potas-
sium conductance (approximately −70 mV) (Manis
and Marx, 1991), which plays an important role in their
ability to process temporal information (Oertel, 1983;
Paolini et al., 1997). Two types of bushy cells with
distinct morphologies have been described: spherical
bushy cells (SBCs) in the anterior AVCN and GBCs
in the posterior AVCN (Cant and Morest, 1979). In
the spatiotemporal analysis presented in this study, the
parameters of the LIF neurons were chosen to model
those of GBCs. GBCs are characterized by an ovoid
soma with predominantly one primary dendrite with
extensive branches (Brawer et al., 1974; Tolbert and
Morest, 1982; Smith and Rhode, 1987). GBCs receive
input predominately from high spontaneously active,
low threshold AN fibers (Liberman, 1991). These AN
fibers terminate in the form of modified (small) end-
bulbs (Osen, 1969, 1970; Brawer and Morest, 1975).
Measurements indicate that they have up to 52 termi-
nals on the soma of GBCs (Ostapoff and Morest, 1991),
although the number of AN fibers that these terminals
come from is not known (Rouiller et al., 1986). By
contrast, SBCs typically receive larger endbulb of Held
(Osen, 1969, 1970; Cant and Morest, 1979; Ryugo and
Fekete, 1982) input from only 1 to 3 AN fibers (Lorente
de Nó, 1981; Sento and Ryugo, 1989), which means
that the Gaussian approximation of the LIF neuron for-
mulation used in this study does not provide a good
model of the responses of SBCs (Burkitt and Clark,
2001).

The analysis presented here establishes the relation-
ship between the output SI, Rout (and the normalized
output SI, which is the output SI divided by the in-
put SI—namely, Rout/Rin) with the stimulus frequency
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( f = 500, 1000, 2000, and 5000 Hz) and spatial sum-
mation distance (0 mm ≤ d ≤ 5 mm, with a spatial res-
olution of 0.125 mm). The parameter values used for
the AN fiber input in this study were chosen to be the
same as those used by Bruce et al. (1998) with the
exception of the input SI, Rin, values at f = 500 Hz
and f = 1000 Hz (because the analytical form of their
spiking-rate function did not allow input SIs greater
than 0.5, whereas the expression in Eq. (3) allows larger
values). This enables a direct comparison to be made
between their results, in which there was a finite tempo-
ral integration window with no thresholding, and our
results, which include both a finite temporal integra-
tion window and the thresholding mechanism for spike
generation (our analysis also allows a comparison with
a neuron model with an infinite temporal integration
window—the perfect integrate-and-fire model).

In the present study, the summation distance, d, was
varied while keeping the number of input fibers, N ,
constant, whereas in the study of Bruce et al. (1998), the
summation distance, d , was varied while keeping the
input fiber density, N/d , constant. Two values for the
number of input fibers N were chosen: 20 and 40, which
are comparable to the numbers seen for GBCs (Lorente
de Nó, 1981; Sento and Ryugo, 1989; Ostapoff and
Morest, 1991; Rothman et al., 1993; Rothman and
Young, 1996). The AN fiber parameters are chosen to
model high spontaneous rate, low threshold AN fibers
(Liberman, 1991; Bruce et al., 1998). The input SI was
estimated for a stimulus intensity of 60 dB SPL for
AN fibers responding to each stimulus frequency from
plots of the nonoscillatory (An) and oscillatory (Bn) in-
put spiking rates versus normalized position on the BM
that were produced using a cochlea/AN model (Neely
and Kim, 1986; Meddis et al., 1990; Bruce et al., 1998).
The An and Bn values corresponding to the CP of the
stimulus frequency of interest were chosen. The re-
quired input SI, denoted Rin, was calculated using the
expression (Bruce et al., 1998)

Rin = Bn

2An
. (14)

The width, σ , of the Gaussian functions in the input
spiking-rate function is given using Eq. (4),

σ =
√

T 2

2π2
ln

(
1

Rin

)
. (15)

Values for the input SI, Rin, at the four frequencies
investigated are given in Table 1, and the values for

Table 1. Values of the input SI, Rin, and the phase-delay
parameter, α, at the four frequencies investigated.

Frequency (Hz) 500 1000 2000 5000

(Period (ms)) (2.0) (1.0) (0.5) (0.2)

Rin 0.682 0.574 0.405 0.194

α (ms/cm) −9.04 −6.02 −3.59 −1.71

2000 Hz and 5000 Hz are the same as those used by
Bruce et al. (1998). The values of the phase-delay pa-
rameter, α, for each input frequency were determined
by the slope at the corresponding CP of phase lag
curves for BM vibrations at the frequencies investi-
gated, which were produced using a cochlea model
(Neely and Kim, 1986) and are the same values as used
in Bruce et al. (1998) (values provided in Table 1). The
parameter values used here correspond to those of the
cat auditory system, which has a BM length of about
25 mm (Retzius, 1984; Neely and Kim, 1986).

The average spiking rate of each input per period,
p, can be calculated from the plots of the nonoscilla-
tory (An) and oscillatory (Bn) input spiking rates ver-
sus normalized position on the BM produced by the
cochlear/AN model. The average spiking rate of each
input per period is then given by

p = T (An + Bn). (16)

However, for f = 5 kHz these plots provide an aver-
age spiking rate per input that is so low that the spiking
rate of the output of the model neuron was unacceptably
low. In order to avoid this problem, the average spik-
ing rate of each input fiber was taken to be λ̄in = 180
spikes/s across all input frequencies. This value en-
sured that a sufficient output response could be cal-
culated across all input frequencies. Furthermore, it
meant that the same (input) EPSP amplitude could be
used across all the frequencies investigated. The EPSP
amplitudes chosen—namely, a = 0.27 (for N = 20 in-
puts, τ = 0.5 ms), 0.1228 (N = 20 inputs, τ = 2 ms),
and 0.0656 (N = 40 inputs, τ = 2 ms)—are the ampli-
tudes for which the output spiking rate of the model is
the same as the input spiking rate of the model for a
nonmodulated input (i.e., λ(x, t) constant). The values
chosen for the temporal jitter, σJ = 0, 25, 50, 75, 100 µs
cover the range observed for both AN fibers (Anderson,
1973) and bushy cells (Paolini et al., 2001). An abso-
lute refractory period of 1 ms was used. These values
for the LIF neuron and input parameters are summa-
rized in Table 2 and represent values typical for GBCs
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Table 2. Values of the remaining LIF neuron parameters and input
parameters.

Number of inputs, N 20 & 40

EPSP amplitude, a 0.27, 0.1228, 0.0656

Average input spike rate on each fiber, 180
λ̄in (spikes/s)

Membrane potential decay time constant, 0.5 & 2.0
τ (ms)

Absolute refractory period, τR (ms) 1.0

Threshold, θ 1.0

Temporal jitter, σJ (µs) 0, 25, 50, 75, 100

(Rothman et al., 1993; Joris et al., 1994a; Zhang and
Trussell, 1994; Rothman and Young, 1996).

3.2. Enhancement of Synchronization

This study looks at the effects of summation distance,
d, and input frequency, f , on the SI of the output spikes,
Rout, in the LIF neuron. Figure 1A is a plot of output
SI, Rout, as a function of the summation distance, d,
and input frequency, f , with N = 20 inputs, a mem-
brane potential decay time constant of τ = 2 ms, an
input EPSP amplitude of a = 0.1228, a temporal jitter
of σJ = 0 µs, and the rest of the parameter values as
given in Tables 1 and 2. The lines on the plot connect
the points at which the output SI was evaluated. The
figure shows a clear decrease in SI as the summation
distance and input frequency increase. Bumps in the
curve arise from a resonance between the phase differ-
ences (dependent on the α values) and the input period,
T , with the minima corresponding to zeros in the in-
put population synchronization, R̂in (Eq. (9)). With an
increase in input frequency, the width of these bumps
decreases and the number of the bumps increases. Fig-
ure 1B is a plot, for the same parameter values as in
Fig. 1A, of normalized output SI versus the summation
distance, d, and the input frequency, f . In addition to
the features evident in Fig. 1A, the figure shows that
there is an enhancement of output SI relative to the input
SI for short summation distances at all given input fre-
quencies. It should also be noted that the enhancement
of synchronization at d = 0 is greater for f = 2000 Hz
than for frequencies below this value. This is because
the output SI, Rout, saturates with an increase in the
input SI, Rin, for the LIF neuron (Burkitt and Clark,
2001) and the input SI values studied here are larger at
lower frequencies.

Figure 1. Plots of (A) output SI, Rout, and (B) normalized output
SI, Rout/Rin, versus summation distance, d (in units of mm), and
input frequency, f (in units of kHz). Parameter values are N = 20
inputs, τ = 2 ms, a = 0.1228 and σJ = 0 µs. All other parameters are
as given in Tables 1 and 2. The lines on the plot connect the points
at which the output SI was evaluated.

Upper bounds on the errors due to approximating the
discrete spatial summation of the rate function by an
integral, as shown in Eq. (6), are given in Table 3 (see
the Appendix for details of the error calculation). The
upper bound is roughly proportional to the summation
distance, d, and inversely proportional to the number
of inputs, N , so that the error is least for small summa-
tion distances and large numbers of inputs (the values in
Table 3 are for N = 20). Although these values are rela-
tively large, they represent an upper bound (not a lowest
upper bound) on the error of the integral approximation,
and the integral approximation is still expected to pro-
vide a good qualitative description of the effect of the
spatial summation (which becomes better for larger N )
and therefore is suitable for the purposes of this study.
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Table 3. Upper bound on the error in the spiking-rate function
due to approximating the spatial sum by an integral (values calcu-
lated for N = 20 and M = 20, see Appendix).

Frequency, f (Hz)
Spatial Summation
Distance d (mm) 500 1000 2000 5000

0.1 17.3% 15.4% 10.4% 5.3%

0.2 34.6% 30.7% 20.7% 10.6%

0.3 52.0% 46.1% 31.1% 15.9%

0.4 69.3% 61.4% 41.5% 21.1%

0.5 86.6% 76.8% 51.9% 26.4%

Figure 2 shows the output SI, Rout, versus number of
input fibers, N , for the Gaussian approximation (solid
line), the spatially integrated input (dashed line), and
the spatially summed input (dash-dotted line, which is
almost coincident with the dashed line). The numerical
simulations for the spatially integrated inputs (Eq. (8))
and the spatially summed inputs (Eq. (3)) in these plots
represent averages over 20,000 output spikes. These
results indicate that the Gaussian approximation is ac-
curate in the large N limit. The difference between

Figure 2. Plot of output SI, Rout, versus number of input fibers,
N . The results for the Gaussian approximation (solid line) and
the numerical simulations of both the spatially integrated input
(dashed line) and the spatially summed input (dotted line) are
shown. The spatially integrated input is described by Eq. (8) and
the the spatially summed input is described by Eq. (3), with the
N input fibers evenly distributed over the distance d. The param-
eters were as follows: f = 1000 Hz, d = 0.513 mm, τ = 2 ms,
λin = 180 spikes/s, Rin = 0.574, α = −6.02 ms/cm, τR = 1 ms, θ = 1,
σ j = 0 s. The lines connect the results for individual points at the
values N = 20, 40, 60, 100, 160, 320, with corresponding PSP am-
plitudes of a = 0.1228, 0.0656, 0.0450, 0.0278, 0.0177, 0.0064, re-
spectively. Each numerical simulation represents results averaged
over 20,000 output spikes.

Figure 3. Plot of critical summation distance, dc (in units of
mm), required for synchronization enhancement versus input fre-
quency, f (in units of kHz), in the presence of Gaussian noise
with SDs of σJ = 0, 25, 50, 75, 100 µs. (The uppermost plot cor-
responds to σJ = 0 µs and the plots with successively greater slope
correspond respectively to larger values of σJ and are labeled ac-
cordingly.) The plot labeled 50 is partially obscured by that la-
beled 75. The remaining parameter values are the same as those in
Fig. 1.

the results for the numerical simulations of the spa-
tially integrated and the spatially summed expressions
is negligible.

There is a critical summation distance, dc, for
each input frequency, below which synchronization is
enhanced. The critical summation distance depends on
frequency, and it corresponds to that part of the sur-
face in Fig. 1B for which the normalized output SI,
Rout/Rin, is greater than one. In Fig. 3 the uppermost
plot (the solid line labeled 0) shows the critical sum-
mation distance, dc, required for synchronization en-
hancement versus input frequency, f , corresponding
to Fig. 1B (i.e., σJ = 0 µs). As input frequency in-
creases, the critical summation distance decreases (the
remaining plots in Fig. 3 with nonzero temporal jitter
are discussed in the following section).

The results of this analysis of the effects of
spatiotemporal summation on GBC synchronization
demonstrate both qualitatively and quantitatively (for
the specific set of model parameter values used here)
that phase differences between input AN fibers result-
ing from the traveling wave consecutively activating
AN fibers originating over a spatial spread of the BM
can either enhance or degrade the SI of the GBC’s re-
sponse relative to the SI of its input AN fibers. The de-
gree of enhancement, or degradation, depends on these
phase differences and thus also on the spatial spread of
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the BM from which the input AN fibers originate (i.e.,
the summation distance, d).

In Fig. 1 the output response of the thresholding neu-
ron shows a number of similarities with the output re-
sponse of a summing (nonthresholding) neuron with
similar parameter values, as studied by Bruce et al.
(1998). Both models allow the output synchronization
of the corresponding model neuron to be described as
a function of the summation distance, d , over which
input AN fibers originate, and the input frequency, f .
Before the two models are compared, it is important
to note some differences between the approaches used,
apart from the major difference associated with thresh-
olding (i.e., Bruce et al., 1998, did not include a spike-
generation mechanism). First, the number of inputs to
the thresholding neuron in this figure is fixed at 20,
which is well within the range of inputs observed in
GBCs of the AVCN (Lorente de Nó, 1981; Ostapoff and
Morest, 1991), whereas Bruce et al. (1998) assumed a
fixed nerve fiber density of 8570 cm−1, resulting in a
number of inputs that varies with summation distance.
Second, the temporal integration of inputs was different
for the two studies. The present study incorporated the
summation of EPSPs that decayed with time (accord-
ing to the membrane potential decay time constant),
while the study of Bruce et al. (1998) incorporated a
fixed temporal summation window without any decay.
Third, in the present study only frequencies up to 5 kHz
(instead of up to 10 kHz) were analyzed, since synchro-
nization is observed to fall off well below this in almost
all animals (Joris et al., 1994a; Oertel, 1999). Despite
these differences, it is clear that the use of similar input
parameters produces similar features in the responses
of the two models, including the position of bumps
resulting from a resonance between the input period
and the phase differences. The most important differ-
ence is that the results for the summing neuron do not
show an enhancement of synchronization (Bruce et al.,
1998), which is seen in the present results and has been
observed in GBCs (Joris et al., 1994a, 1994b; Köppl,
1997). The thresholding neuron shows the existence
of a critical spatial summation distance for each in-
put frequency, with spatial summation distances below
this value giving an output SI that is greater than the
input SI, as shown in Fig. 3. The values of the critical
summation distances for each input frequency can be
used to provide an upper bound on the length along the
BM, about the CP, from which GBCs that display an
enhancement of synchronization can receive afferent
AN fiber input.

Figure 4. Plots of (A) convolved-output SI, Rc
out, and (B) normal-

ized convolved-output SI, Rc
out/Rin, versus summation distance, d

(in units of mm), and input frequency, f (in units of kHz), for a
Gaussian noise with SD of σJ = 75 µs and the same model param-
eter values as in Fig. 1. The lines on the plot connect the points at
which the output SI was evaluated.

3.3. The Effects of Temporal Jitter

The results discussed in the previous section neglect
the effect of stochastic temporal jitter in the neu-
ral response. Such jitter can be incorporated by con-
volving the output phase distribution with a period-
ically wrapped Gaussian function, as described in
Section 2.3. Figure 4A is a plot of the convolved-output
SI, Rc

out (i.e., the SI of χ(s)
conv defined in Eq. (13)), as a

function of the summation distance, d, and input fre-
quency, f , for a Gaussian noise with a standard de-
viation of σJ = 75 µs and the same model parameter
values as in Fig. 1. Figure 4A demonstrates that the ad-
dition of temporal jitter to Fig. 1A reduces the SI of the
output. This effect is greatest for higher frequencies,
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where synchronization is almost completely removed.
Figure 4B is a plot of the normalized convolved-output
SI, Rc

out/Rin, as a function of the summation distance, d,
and input frequency, f , for the same parameter values
as in Fig. 4A.

The degree of temporal jitter in the auditory
pathway varies across the different levels and cell
types (Anderson, 1973; Walmsley et al., 1998) (see
Section 2.3). The effect of this variability on the en-
hancement of synchronization in GBCs can be seen
in Fig. 3, which shows plots of the critical sum-
mation distance, dc, required for synchronization en-
hancement versus input frequency, f , in the presence
of Gaussian noise (i.e., temporal jitter) with SDs of
σJ = 0, 25, 50, 75, 100 µs (The uppermost plot corre-
sponds to σJ = 0 µs and the plots with successively
greater slope correspond respectively to larger val-
ues of σJ and are labeled accordingly). The remain-
ing parameter values are the same as those in Fig. 1.
From Fig. 3 it is clear that an increase in the Gaus-
sian noise term reduces the critical distance associ-
ated with the enhancement of synchronization, and the
amount of reduction increases as frequency increases.
Furthermore, when the SD of the Gaussian noise term
is sufficiently large all enhancement of synchroniza-
tion is removed, first at higher frequencies and then
at lower frequencies as the temporal jitter increases.
This effect is illustrated by the solid line labeled 75
in Fig. 3 (corresponding to σJ = 75 µs and Fig. 4B),
where an enhancement of synchronization is only seen
for short summation distances at input frequencies of
f = 500 Hz and f = 1000 Hz. Comparing this with the
solid line labeled 0 in Fig. 3 (corresponding to σJ = 0 µs
and Fig. 1B), where enhancement of synchronization
occurs for all frequencies when no Gaussian noise is
present, it can be seen that a sufficiently large amount
of temporal jitter prevents any enhancement of syn-
chronization at input frequencies of f = 2000 Hz and
f = 5000 Hz.

Apart from the variability in temporal jitter that
can affect information processing in GBCs, there is
also variability in the neuron parameters that constrain
GBCs. Two GBC neuron parameters that vary between
GBCs are the number of inputs N , which varies up to
about N = 50 (Lorente de Nó, 1981; Sento and Ryugo,
1989; Ostapoff and Morest, 1991; Rothman et al., 1993;
Rothman and Young, 1996), and the membrane poten-
tial decay time constant τ , which ranges from approx-
imately τ = 0.2 ms to τ = 8 ms (Rothman et al., 1993;
Joris et al., 1994a; Zhang and Trussel, 1994; Rothman

Figure 5. Plot of critical summation distance, dc (in units of mm),
required for synchronization enhancement versus input frequency, f
(in units of kHz), when a Gaussian noise with a SD of σJ = 75 µs is
present and A: N = 20 inputs, τ = 2 ms and a = 0.1228, B: N = 40
inputs, τ = 2 ms and a = 0.0656, C: N = 20 inputs, τ = 0.5 ms
and a = 0.27. The remaining parameter values are the same as those
in Fig. 4.

and Young, 1996). Figure 5 shows the effects of varying
either the number of inputs or the membrane potential
decay time constant on the critical distance required for
an enhancement of synchronization. All plots shown
correspond to responses when a Gaussian noise with a
SD of σJ = 75 µs is present. The plot A in Fig. 5 corre-
sponds to N = 20 inputs, a membrane potential decay
time constant of τ = 2 ms and an input EPSP amplitude
of a = 0.1228. Plot B corresponds to N = 40 inputs, a
membrane potential decay time constant of τ = 2 ms
and an input EPSP amplitude of a = 0.0656. Plot C cor-
responds to N = 20 inputs, a membrane potential decay
time constant of τ = 0.5 ms and an input EPSP ampli-
tude of a = 0.27. The remaining parameter values are
the given in Tables 1 and 2. Comparison of plots A and
B indicates that an increase in the number of inputs (and
a decrease in the EPSP amplitude), while the membrane
potential decay time constant remains fixed, causes an
increase in the critical distance for an enhancement of
synchronization. This occurs because an increase in
the number of inputs makes the membrane potential
response to the input modulation less variable (Burkitt
and Clark, 2001), thus increasing the SI of the output
spikes and allowing larger values of the summation dis-
tance, d, that give an enhancement of synchronization.
Comparison of plots A and C in Fig. 5 indicates that
a decrease of the membrane potential decay time con-
stant (and an increase in the EPSP amplitude), while



Summation of Spatiotemporal Input Patterns in Leaky Integrate-and-Fire Neurons 67

the number of inputs is fixed, causes an increase in the
critical distance for an enhancement of synchroniza-
tion. This occurs because a decrease of the membrane
potential decay time constant improves the coincidence
detection properties of the model, thus increasing the SI
of the output spikes and allowing larger values of the
summation distance, d , that give an enhancement of
synchronization. The value σJ = 75 µs in Figs. 4 and 5
for the SD of the Gaussian neural noise was chosen
because (as seen in Figs. 3 and 5) it produces an en-
hancement of synchronization only in the range of fre-
quencies (i.e., f ≤ 1 − 2 kHz) at which enhancement of
synchronization is seen in real GBCs (Joris et al.,
1994a, 1994b).

Enhancement of synchronization in the present
model arises because of the model’s short membrane
potential decay time constant (for the analysis pre-
sented here values of τ = 2 ms and 0.5 ms were cho-
sen) that produces short EPSPs. Furthermore, given
that each of the EPSPs are subthreshold, the model
neuron is likely to spike only when EPSPs have similar
phases and coincidence detection occurs. The phase
differences between the arrival of EPSPs are propor-
tional to the spatial summation distance. As spatial
summation distance decreases, so too do the phase
differences. For a large spatial summation distance,
EPSPs are out of phase, and the model neuron is less
likely to spike at any particular phase of the input pe-
riod. Thus, the output of the model neuron will be
less synchronized than its inputs. On the other hand,
as spatial summation distance is decreased there will
be a spatial summation distance below which the EP-
SPs will be sufficiently in phase with one another, such
that the synchronization of the membrane potential to
the input period, in combination with the threshold-
ing of the membrane potential, will lead to an en-
hancement of the output SI relative to the input SI.
The addition of Gaussian noise, although convolved
with the output of the LIF neuron, can effectively be
thought of as being the result of random temporal fluc-
tuations that are present in both the input spatiotem-
poral summation process described above as well as
in the thresholding process of the LIF neuron. Thus
comparing Fig. 1 with Fig. 4 it can be seen that the ad-
dition of such temporal jitter will have a greater smear-
ing effect on temporal structure at high frequencies
than at low frequencies. This will result in a greater
reduction in the output SI at high frequencies than
at low frequencies. Furthermore, the addition of tem-
poral jitter, as is seen in Figs. 3 and 5, restricts the

enhancement of synchronization in the present model
to low frequencies.

4. Discussion

In order to model the synaptic input of neurons in the
auditory pathway, it is necessary to consider the spa-
tiotemporal patterns of activation caused by the travel-
ing wave of the BM. This introduces spatially depen-
dent phase differences to the periodic input of tono-
topically organized neurons. The results presented here
show the differing roles played by the spatial summa-
tion, which causes a decrease in the synchronization
of the output as the spatial summation distance d in-
creases, and the temporal summation, which causes
an enhancement of the output synchronization through
coincidence detection when the membrane potential
decay time constant τ is small. In this study we have
analyzed how these two contrasting effects depend on
both the input (stimulus) and neuron parameters. Such
considerations will be important for understanding how
the auditory system processes more complex stimuli
such as speech (Greenberg, 1996).

The use of the LIF neuron presented in this study
as an approximation of GBCs can be justified on sev-
eral grounds. First, the termination of modified end-
bulbs from AN fibers directly onto the soma of GBCs
(Osen, 1969, 1970; Brawer and Morest, 1975; Rouiller
et al., 1986; Ostapoff and Morest, 1991) is approx-
imated well by the point nature of the LIF neuron,
where input terminals arrive directly at the point of
action potential generation. Second, the description of
AN fiber inputs by inhomogenous Poisson processes
provides a description of the stochastic nature of AN
fiber spiking (Johnson and Swami, 1983). Furthermore,
the model provides a small set of parameters that can
be fitted (albeit only approximately) to existing ex-
perimental data for GBCs. However, there are a num-
ber of simplifications to realistic GBCs that the model
presented here makes. One such important factor that
has not been included in the model is the inhibitory
inputs GBCs receive (Adams and Mugnaini, 1987;
Saint-Marie et al., 1989), since not enough is known
about their number, amplitude, and time course to in-
clude them in a useful way. These inhibitory inputs,
however, have been shown to enhance the frequency
tuning of GBCs (Paolini et al., 1998). Another im-
portant simplification is that the model assumes that
the EPSPs are all of equal amplitude and time course,
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whereas on a realistic neuron it is possible that the
inputs on the dendritic tree and the soma have quite
different amplitudes (and possibly also different time
courses). Likewise, differences in the average input
spiking rates are ignored, which is equivalent to as-
suming that all input fibers have the same threshold.
The model also assumes that the input distribution is
well characterized by the input spiking rate and in-
put SI, which entails that more complex input distribu-
tions, such as peak splitting (Kiang and Moxon, 1972;
Johnson, 1980; Palmer and Russell, 1986; Ruggero
et al., 1986; Kiang, 1990; Joris and Yin, 1992; Ruggero
et al., 1995; Cai and Geisler, 1996; Kuhlmann et al.,
2001), are ignored.

Another assumption in the AN/GBC model of this
study is that the AN fiber inputs all have the same av-
erage conduction delays. This approximation is sup-
ported by the work of Paolini and Clark (1998), in
which intracellular recordings of the membrane po-
tential of rat GBCs were made while AN fibers were
electrically stimulated at their BM terminations. A sin-
gle EPSP from a single AN fiber could be evoked in the
membrane potential of the GBC using a small electric
current. Increasing the amount of electrical stimula-
tion resulted in the recruitment of more AN fibers that
provided input to the GBC. It was found that increas-
ing the amount of electrical stimulation did not signifi-
cantly alter the position of the poststimulation peak of
the membrane potential (which is the sum of the indi-
vidual EPSPs from the various input fibers) indicating
that all the EPSPs arrived at the GBC at approximately
the same time. Furthermore, even if conduction de-
lays are not uniform, the effect of their variance on
the spatiotemporal summation presented in this analy-
sis is likely to be much less significant than the effects
of the slope of the phase-delay function, α, which is
very steep in all cases of this analysis (see Table 1) and
consequently produces significant phase delays across
a small spatial spread of the BM. The temporal jitter
incorporated into the model of this study is expected to
account for the variability about the mean of the con-
duction delays (Anderson, 1973) but cannot account for
fixed differences in the mean conduction delays across
AN fibers.

The bumps observed in the output SI, Rout, in Figs. 1
and 4 result from a resonance between the phase dif-
ferences and the period, with minima corresponding
to zeros in the input population synchronization, R̂in

(Eq. (9)), when there are equal inputs from all phases.
This resonance arises as a consequence of considering

a uniform distribution of the inputs over the distance
d, as can be seen from Eq. (9), where the input popu-
lation synchronization R̂in is zero when d is a multiple
of T/α, irrespective of the input synchronization Rin

on the individual fibers (this equation also describes
the reduction in amplitude of successive maxima as d
increases in Figs. 1 and 4). This uniform distribution
was chosen in order to facilitate the comparison with
existing results (Bruce et al., 1998). It is quite possible,
however, to consider distributions of inputs different
from Eq. (6), and another natural choice is the Gaussian
distribution, for which

λ̂(t) =
∫

dx√
2πd2

λ(x, t) exp

{
− x2

2d2

}
. (17)

The relationship between the input synchronization
and the input population synchronization in this case
is

R̂in = Rin exp

{
− 2π2α2d2

T 2

}
, (18)

which shows a gradual decrease as d increases.
The results of this analysis significantly highlight the

presence of noise in the processing of AN fiber inputs
by GBCs. In the model without temporal jitter, illus-
trated in Fig. 1B, it is clear that at high frequencies
( f = 2000 Hz and f = 5000 Hz) there is an enhance-
ment of synchronization of the output SI relative to
the input SI. However, electrophysiology demonstrates
that there is a degradation of synchronization in GBCs
at these frequencies (Joris et al., 1994a, 1994b). The
addition of Gaussian noise (σJ = 75 µs) produces an
enhancement of synchronization only at f = 500 Hz
and f = 1000 Hz, as seen in Fig. 4B, which is in
agreement with electrophysiology (Joris et al., 1994a,
1994b). Future studies will be aimed at elucidating
the sources of this noise, which could specifically in-
clude spike propagation delay time jitter in AN fibers
(Anderson, 1973) and synaptic EPSP release time jitter
(Walmsley et al., 1998), as mentioned in Section 2.3.
The use of compartmental models could also be fruit-
ful in such an analysis (Rothman et al., 1993; Rothman
and Young, 1996).

The critical distances presented in Figs. 3 and 5,
although they are only upper bounds on the summa-
tion distances required for enhancement of synchro-
nization across CF, still demonstrate the possibility
that AN fiber inputs to a given GBC could originate
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from a comparatively large spatial spread of the BM.
The ability for GBCs (i.e., the LIF neuron) to produce
an enhancement of synchronization under these con-
ditions indicates the robustness of the temporal cod-
ing abilities of GBCs. A further point to note from
Figs. 3 and 5 is that the critical distance appears to de-
cay exponentially with an increase in input frequency.
This indirectly supports the notion that the actual sum-
mation distance as a function of the CF of GBCs de-
creases exponentially with an increase in CF. By study-
ing the responses of GBCs to high-intensity 500 Hz
tones, Joris et al. (1994b) have demonstrated that GBCs
with high CFs respond with a greater enhancement of
synchronization relative to the responses of AN fibers
with high CFs than the enhancement of synchroniza-
tion seen in the responses of GBCs with low CFs rela-
tive to the responses of AN fibers with low CFs. This
provides indirect evidence that the actual summation
distance over which AN fibers (that provide the GBC
input) originate on the BM decreases with the CF of
the AN fibers and the GBCs. It would be hoped that
future modeling studies could investigate the actual
summation distance over which the AN fibers orig-
inate as a function of the CF of GBCs when more
accurate parameters are available from experimental
studies. An important point to consider in such mod-
eling studies will be the actual range of CFs repre-
sented by the AN fiber inputs to a given GBC (Carney,
1990; Carney and Friedman, 1998). Thus future work
could apply a generalization of the spatiotemporal sum-
mation analysis presented in this study to the model-
ing of the responses of CN neurons that receive AN
fiber inputs over a broad range of CFs—e.g., stellate
cells or octopus cells in the ventral CN (Rhode and
Smith, 1986; Carney, 1990). This type of modeling
could have implications for sound intensity coding in
the CN (Evans, 1981; Rhode and Smith, 1986; May and
Sachs, 1992; Carney, 1994) or for the coding and de-
tection of spatiotemporal features of the AN response
to a complex sound in the responses of AVCN neu-
rons (Carney, 1990, 1992, 1994; Carney and Friedman,
1998).

The analysis presented here may have implications
for cochlear implants. One of the key factors in the
performance of cochlear implants is the degree of cur-
rent spread from the stimulating electrodes (see Clark,
1996, 1999) and Loizou (1999) for reviews on cochlear
implants). The critical summation distances, presented
in Figs. 3 and 5, provide an indication of the spatial res-
olution of the current spread necessary in order that the

GBC response to electrical stimulation from a cochlear
implant be comparable to their response with acoustical
stimulation (i.e., to enhance synchronization in GBCs
relative to the synchronization of input AN fibers for
each input frequency). Present electrical stimulation
paradigms only coarsely approximate the spatiotempo-
ral pattern of activation of AN fibers that occurs with
acoustical stimulation in normal hearing. In particular,
a pulse from a single implant electrode typically gener-
ates APs in neighboring AN fibers that are highly syn-
chronized and have little temporal jitter (Clark et al.,
1995). As a result, present stimulation paradigms do
not mimic the way in which the traveling wave ac-
tivates AN fibers. Nevertheless, future developments
in electrode array design may provide sufficiently fine
spatial resolution that the stimulation of consecutive
electrodes could mimic the traveling wave activation
of AN fibers and CN neurons that are generated by
acoustical stimulation.

5. Conclusions

The results presented in this study show how LIF neu-
rons receiving periodic input respond when the phases
of the inputs vary with their spatial location. The anal-
ysis shows how the temporal information contained in
the output spikes—namely, the output SI, depends on
the spatial summation distance of the periodic stochas-
tic inputs, as well as the details of the LIF neuron model
(number of inputs N , EPSP amplitude a, threshold θ ,
membrane potential decay time constant τ , and tem-
poral jitter σJ) and the details of the periodic input
(frequency f , input synchronization Rin, average spik-
ing rate per period for each input fiber p, phase-delay
parameter α, and analytical form of the periodic spik-
ing rate function λn(t)). As a model of GBCs in the
AVCN, it enables an upper bound on the degree of
spatial spread (i.e., the summation distance d) on the
BM from which their AN fiber inputs originate to be
deduced. This neural model for spatiotemporal summa-
tion provides insight into the relationship between the
various model parameters and the temporal properties
of the output spikes. In particular, the analysis eluci-
dates the different effects on the output caused by the
spatial summation, which reduces the output synchro-
nization, and by temporal integration, which increases
the output synchronization through coincidence detec-
tion. The model also shows under what conditions
(i.e., amount of temporal jitter) an enhancement of
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synchronization, such as observed for GBCs (Joris
et al., 1994a), will occur for low frequencies of acous-
tical stimulation.

Appendix: The (Normalized) Relative Difference
Between the Integral Approximation
and the Spatial Summation

The spatial analysis presented here (Section 2.2) con-
siders N input AN fibers, each defined by the spiking-
rate function, λn(t) Eq. (3). The spatial summation of
these N input AN fibers, denoted λS(t), is therefore
defined as

λS(t) =
N∑

n=1

λn(t). (19)

The integral approximation of the above spatial sum-
mation, denoted λ̂(t), is given by Eq. (6). The (nor-
malized) relative difference between λ̂(t) and λS(t)
provides a upper bound on the error of the integral
approximation.

Following the method of Bruce et al. (1998) and
letting the absolute difference between λ̂(t) and λS(t)
be defined as β gives∥∥∥∥∥

∫ d

0
dx λ(x, t) −

N∑
n=1

λn(t)

∥∥∥∥∥ = β. (20)

Replacing λ(x, t) with its Fourier Series, denoted
λF (x, t) Eq. (7), and multiplying both sides by d/N
gives∥∥∥∥∥ d

N

∫ d

0
dx λF (x, t) −

N∑
n=1

d

N
λn(t)

∥∥∥∥∥ = d

N
β. (21)

The left-hand side of Eq. (21) is the difference between
the integral over distance d of a function continuous in
space and the sum of N rectangles each of height λn(t)
and width d/N . The greatest relative difference will oc-
cur where the absolute slope of the spiking rate λF (x, t)
is at a maximum. The absolute slope of λF (x, t) is
bound by

∥∥∥∥δλF (x, t)

δx

∥∥∥∥ ≤
∥∥∥∥∥4πpα

T 2

∞∑
m=1

m(Rin)
m2

∥∥∥∥∥. (22)

Since there is no known finite expression for∑∞
m=1 m(Rin)

m2
, the lowest upper bound on the relative

difference between the integral approximation and the
spatial summation cannot be determined analytically.
However, it is possible to obtain a useful upper bound
by noting that the sum converges very quickly for
the values of Rin we use. Consequently, we explic-
itly sum the first M terms (M = 20 is sufficient) and
use the bound

∑∞
m=M m(Rin)

m2 ≤ ∑∞
m=M m(Rin)

m (for
Rin < 1). An upper bound in the absolute slope of
λF (x, t) exists as follows

∥∥∥∥δλF (x, t)

δx

∥∥∥∥
≤

∥∥∥∥∥4πpα

T 2

(
M∑

m=1

m(Rin)
m2 +

∞∑
m=M+1

m(Rin)
m

)∥∥∥∥∥
=

∥∥∥∥∥4πpα

T 2

(
M∑

m=1

m(Rin)
m2

+ (M + 1)(Rin)
M+1 − M(Rin)

M+2

(1 − Rin)2

)∥∥∥∥∥. (23)

Therefore, by summing the upper bounded errors of the
individual rectangles and then dividing by the mean of
λ̂(t), denoted 〈λ̂〉, an upper bound on the normalized
relative difference between the integral approximation
and the spatial summation can be obtained,

∥∥∥∥ λ̂(t) − λS(t)

〈λ̂〉

∥∥∥∥
≤

∥∥∥∥∥2παd

N T

(
M∑

m=1

m(Rin)
m2

+ (M + 1)(Rin)
M+1 − M(Rin)

M+2

(1 − Rin)2

)∥∥∥∥∥. (24)

Acknowledgments

This work was funded by the Bionic Ear Institute and
the National Health and Medical Research Council of
Australia (NHMRC, Project Grant #990816). We thank
Ian Bruce for providing the values of the parameters
used in Bruce et al. (1998).

References

Adams JC, Mugnaini E (1987) Patterns of glutamate decarboxylase
immunostaining in the feline cochlear nuclear complex studied
with silver enhancement and electron microscopy. J. Comp. Neu-
rol. 262: 375–401.



Summation of Spatiotemporal Input Patterns in Leaky Integrate-and-Fire Neurons 71

Anderson DJ (1973) Quantitative model for the effects of stimulus
frequency upon synchronization of auditory nerve discharges. J.
Acoust. Soc. Am. 54: 361–364.

Bose A, Booth V, Reece M (2000) A temporal mechanism for gener-
ating the phase precession of hippocampal place cells. J. Comput.
Neurosci. 9: 5–30.

Brawer JR, Morest DK (1975) Relations between auditory nerve
endings and cell types in the cat’s anteroventral cochlear nucleus
seen with the Golgi method and Nomarski optics. J. Comp. Neurol.
160: 491–506.

Brawer JR, Morest DK, Kane EC (1974) The neuronal architecture
of the cochlear nucleus of the cat. J. Comp. Neurol. 155: 251–300.

Bruce IC, Irlicht LS, Clark GM (1998) A mathematical analysis
of spatiotemporal summation of auditory nerve firings. Inform.
Sciences 111: 303–334.

Buonomano DV, Mauk MD (1994) Neural network model of the
cerebellum: Temporal discrimination and the timing of motor re-
ponses. Neural Comput. 6: 38–55.

Burkitt AN, Clark GM (1999) Analysis of integrate-and-fire neu-
rons: Synchronization of synaptic input and spike output in neural
systems. Neural Comput. 11: 871–901.

Burkitt AN, Clark GM (2000) Calculation of interspike intervals for
integrate-and-fire neurons with poisson distribution of synaptic
inputs. Neural Comput. 12: 1789–1820.

Burkitt AN, Clark GM (2001) Synchronization of the neural re-
sponse to noisy periodic synaptic input. Neural Comput. 13: 2639–
2672.

Cai Y, Geisler CD (1996) Temporal patterns of the responses of
auditory-nerve fibers to low-frequency tones. Hearing Res. 96:
83–93.

Cant NB, Morest DK (1979) Organization of the neurons in the
anterior division of the anteroventral cochlear nucleus of the cat:
Light-microscopic observations. Neurosci. 4: 1909–1923.

Cant NB, Morest DK (1979) The bushy cells in the anteroventral
cochlear nucleus of the cat: Study with the electron-microscope.
Neurosci. 4: 1925–1945.

Carney LH (1990) Sensitivities of cells in the anteroventral cochlear
nucleus of cat to spatio-temporal discharge patterns across primary
afferents. J. Neurophysiol. 64: 437–456.

Carney LH (1992) Modelling the sensitivity of cells in the anteroven-
tral cochlear nucleus to spatiotemporal discharge patterns. Phil.
Trans. R. Soc. Lond. B336: 403–406.

Carney LH (1994) Spatiotemporal encoding of sound level: Models
for normal encoding and recruitment of loudness. Hearing Res.
76: 31–44.

Carney LH, Friedman M (1998) Spatiotemporal tuning of low-
frequency cells in the anteroventral cochlear nucleus. J. Neurosci.
18: 1096–1104.

Carr CE, Konishi M (1990) A circuit for detection of interaural time
differences in the brain stem of the barn owl. J. Neurosci. 10:
3227–3246.

Clark GM (1996) Electrical stimulation of the auditory nerve: The
coding of frequency, the perception of pitch, and the develop-
ment of cochlear implant speech processing strategies for pro-
foundly deaf people. Clin. Exp. Pharmacol. Physiol. 23: 766–
776.

Clark GM (1999) Cochlear implants in the third millennium. Am. J.
Otol. 20: 4–8.

Clark GM, Carter TD, Maffi CL, Shepherd RK (1995) Temporal
coding of frequency: Neuron firing probabilities for acoustic and

electrical stimulation of the auditory nerve. Ann. Otol. Rhinol.
Laryngol. 104 (Suppl. 166): 109–111.

Colburn HS, Han Y, Culotta CP (1990) Coincidence model of MSO
responses. Hearing Res. 49: 335–346.

Cox DR, Lewis PAW (1966) The Statistical Analysis of Series of
Events. Methuen, London.

Eggermont JJ, Aertsen AMJH, Johannesma PIM (1983) Quantita-
tive characterisation procedure for auditory neurons based on the
spectro-temporal receptive field. Hearing Res. 10: 167–190.

Evans EF (1981) The dynamic range problem: Place and time coding
at the level of the cochlear nerve and nucleus. In: J Syka, LM
Atkins, eds. Neuronal Mechanisms and Hearing. Plenum, New
York. pp. 69–85.

Galambos R, Davis H (1943) The response of single auditory-nerve
fibers to acoustic stimulation. J. Neurophysiol. 6: 39–57.

Gerstner W, Kempter R, van Hemmen JL, Wagner H (1996) A neu-
ronal learning rule for sub-millisecond temporal coding. Nature
383: 76–78.

Goldberg JM, Brown PB (1969) Response of binaural neurons of dog
superior olivary complex to dichotic tonal stimuli: Some physio-
logical mechanisms of sound localization. J. Neurophysiol. 32:
613–636.

Greenberg S (1996) Auditory processing of speech. In: NJ Lass, ed.
Principles of Experimental Phonetics. Mosby, St. Louis. pp. 362–
407.

Hohn N, Burkitt AN (2001) Shot noise in the leaky integrate-and-fire
neuron. Phys. Rev. E 63: 031902.

Hubel D, Wiesel T (1962) Receptive fields, binocular interaction,
and functional architecture in the cat’s visual cortex. J. Physiol.
160: 106–154.

Jeffress LA (1948) A place theory of sound localization. J. Comp.
Physiol. 41: 35–39.

Johnson DH (1980) The relationship between spike rate and syn-
chrony in responses of auditory-nerve fibers to single tones. J.
Acoust. Soc. Am. 68: 1115–1122.

Johnson DH, Swami A (1983) The transmission of signals by
auditory-nerve fiber discharge patterns. J. Acoust. Soc. Am. 74:
493–501.

Joris PX, Carney LH, Smith PH, Yin TCT (1994a) Enhancement
of neural synchronization in the anteroventral cochlear nucleus. I.
Responses to tones at the characteristic frequency. J. Neurophysiol.
71: 1022–1036.

Joris PX, Smith PH, Yin TCT (1994b) Enhancement of neural syn-
chronization in the anteroventral cochlear nucleus. II. Responses
in the tuning curve tail. J. Neurophysiol. 71: 1037–1051.

Joris PX, Smith PH, Yin TCT (1998) Coincidence detection in the
auditory system: Fifty years after Jeffress. Neuron 21: 1235–1238.

Joris PX, Yin TCT (1992) Responses to amplitude-modulated tones
in the auditory nerve of the cat. J. Acoust. Soc. Am. 91: 215–
232.

Kalluri S (2000) Cochlear nucleus onset neurons studied with math-
ematical models. Ph.D. thesis, Harvard-MIT Division of Health
Sciences and Technology, Massachusetts Institute of Technology,
Cambridge, MA.

Kempter R, Gerstner W, van Hemmen JL, Wagner H (1998) Ex-
tracting oscillations: Neuronal coincidence detection with noisy
periodic spike input. Neural Comput. 10: 1987–2017.

Kenyon GT, Puff RD, Fetz EE (1992) A general diffusion model for
analyzing the efficacy of synaptic input to threshold neurons. Biol.
Cybern. 67: 133–141.



72 Kuhlmann et al.

Kiang NYS (1990) Curious oddments of auditory-nerve studies.
Hearing Res. 49: 1–16.

Kiang NYS, Moxon EC (1972) Physiological considerations in arti-
ficial stimulation of the inner ear. Ann. Otol. 81: 714–730.

Kiang NYS, Watanabe T, Thomas EC, Clark LF (1965) Discharge
Patterns of Single Fibers in the Cat’s Auditory Nerve. MIT Press,
Cambridge, MA.
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