Skip to main content
Log in

A Semi-Lagrangian Method for Turbulence Simulations Using Mixed Spectral Discretizations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We present a semi-Lagrangian method for integrating the three-dimensional incompressible Navier–Stokes equations. We develop stable schemes of second-order accuracy in time and spectral accuracy in space. Specifically, we employ a spectral element (Jacobi) expansion in one direction and Fourier collocation in the other two directions. We demonstrate exponential convergence for this method, and investigate the non-monotonic behavior of the temporal error for an exact three-dimensional solution. We also present direct numerical simulations of a turbulent channel-flow, and demonstrate the stability of this approach even for marginal resolution unlike its Eulerian counterpart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Achdou, Y., and Guermond, J. L. (2000). Convergence analysis of a finite element projection/Lagrange-Galerkin method for the incompressible Navier–Stokes equations. SIAM J. Numer. Anal. 37, 799.

    Google Scholar 

  2. Bartello, P., and Thomas, S. J. (1996). The cost-effectiveness of semi-Lagrangian advection. Mon. Wea. Rev. 124, 2883.

    Google Scholar 

  3. Choi, H., and Moin, P. (1994). Effects of computational time step on numerical solutions of turbulent flow. J. Comp. Phys. 113, 1.

    Google Scholar 

  4. Ewing, R. E., and Russel, T. F. (1981). Multistep Galerkin method along characteristics for convection-diffusion problems. In Vichnevetschy, T., and Stepleman, R. S. (eds.), In Advances in Computational Methods for P.D.E., Vol. 28.

  5. Falcone, M., and Ferretti, R. (1998). Convergence analysis for a class of high-order semi-Lagrangian advection schemes. SIAM J. Numer. Anal. 35, 909.

    Google Scholar 

  6. Giraldo, F. X. (1998). The Lagrange-Galerkin spectral element method on unstructured quadrilateral grids. J. Comput. Phys. 147, 114.

    Google Scholar 

  7. Ho, L. W., Maday, Y., Patera, A. T., and Ronquist, E. M. (1989). A high order Lagrangiandecoupling method for the incompressible Navier–Stokes equations. In Canuto, C., and Quarteroni, A. (eds.), Proceedings of ICOSAHOM '89 Conference, Vol. 65, North Holland.

  8. Karniadakis, G. E., and Sherwin, S. J. (1999). Spectral/hp Element Methods for CFD, Oxford University Press, London.

    Google Scholar 

  9. Maday, Y., Patera, A. T., and Ronquist, E. M. (1990). An operator integration factor splitting method for time dependent problems; Application to incompressible fluid flows. J. Sci. Comp. 5.

  10. Malevsky, A. V. (1996). Spline-characteristic method for simulation of convective turbulence. J. Comput. Phys. 123, 466.

    Google Scholar 

  11. Mansour, N. N., Kim, J., and Moin, P. (1988). Reynolds-stress and dissipation-rate budgets in a turbulent channel flow. J. Fluid Mech. 194, 15.

    Google Scholar 

  12. McDonald, A. (1984). Accuracy of multi-upstream, semi-Lagrangian advective schemes. Mon. Wea. Rev. 112, 1267.

    Google Scholar 

  13. McDonald, A., and Bates, J. R., (1987). Improving the estimate of the departure point position in a two-time level semi-Lagrangian and semi-Implicit scheme. Mon. Wea. Rev. 115, 737.

    Google Scholar 

  14. McGregor, J. L. (1993). Economical determination of departure points for semi-Lagrangian models. Mon. Wea. Rev. 121, 221.

    Google Scholar 

  15. Oliveira, A., and Baptista, A. M. (1995). A comparison of integration and interpolation Eulerian-Lagrangian methods. Int. J. Numer. Methods Fluids 21, 183.

    Google Scholar 

  16. Pironneau, O. (1982). On the transport-diffusion algorithm and its applications to the Navier–Stokes equations. Numer. Math. 38, 309.

    Google Scholar 

  17. Robert, A. (1981). A stable numerical integration scheme for the primitive meteorological equations. Atmos. Ocean. 19, 35.

    Google Scholar 

  18. Staniforth A., and Côté, J. (1991). Semi-Lagrangian integration schemes for atmospheric models-A review. Mon. Wea. Rev. 119, 2206.

    Google Scholar 

  19. Süli, E. (1988). Convergence and nonlinear stability of the Lagrange-Galerkin method for the Navier–Stokes equations. Numer. Math. 53, 459.

    Google Scholar 

  20. Süli, E., and Ware, A. (1991). A spectral method of characteristics for hyperbolic problems. SIAM J. Numer. Anal. 28, 423.

    Google Scholar 

  21. Xiu, D., and Karniadakis, G. E. (2001). A semi-Lagrangian high-order method for Navier–Stokes equations. J. Comp. Phys., 172, 658.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, J., Xiu, D. & Karniadakis, G.E. A Semi-Lagrangian Method for Turbulence Simulations Using Mixed Spectral Discretizations. Journal of Scientific Computing 17, 585–597 (2002). https://doi.org/10.1023/A:1015122714039

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015122714039

Navigation