Skip to main content
Log in

A Spectral Element Projection Scheme for Incompressible Flow with Application to the Unsteady Axisymmetric Stokes Problem

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper presents a modified Goda scheme in the simulation of unsteady incompressible Navier–Stokes flows in cylindrical geometries. The study is restricted to the case of axisymmetric flows. For the justification of the robustness of our scheme some computational test cases are investigated. It turns out that by adopting the new approach, a significant accuracy improvement on both pressure and velocity can be obtained relative to the classical Goda scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Azaiez, M., Ben Belgacem, F., Grundmann, M., and Khallouf, H. (1998). Staggered grids hybrid-dual spectral element method for second order elliptic problems. Application to high-order time splitting for Navier–Stokes equations. Comp. Meth. Appl. Mech. and Engrg. 166(3/4), 183–199.

    Google Scholar 

  2. Bernardi, C., and Maday, Y. (1992). Approximations Spectrales de Problèmes aux Limites Elliptiques, Springer-Verlag.

  3. Bernardi, C., Dauge, M., and Maday, Y. (1998). Spectral Methods for Axisymmetric Domains, Series in Applied Mathematics, Gauthier-Villars.

  4. Canuto, C., Hussaini, M. Y., Quarteroni, A., and Zang, T. A. (1987). Spectral Methods in Fluid Dynamics, Springer-Verlag.

  5. Chorin, A. (1968). Numerical Simulation of the Navier–Stokes Equations. Math. Comput. 22, 745–762.

    Google Scholar 

  6. Goda, K. (1979). A multistep technique with implicit difference schemes for calculating two and three dimensional cavity flows. J. Comput. Physics. 30, 76–95.

    Google Scholar 

  7. Guermond, J.-L. (1998). Un résultat de convergence d'ordre deux en temps pour l'approximation des équations de Navier–Stokes par une technique de projection incrémentale. Modél. Math. Anal. Numér. 30, 169–189.

    Google Scholar 

  8. Lynch, R. E., Rice, J. R., and Thomas, D. H. (1964). Direct solution of partial difference equations by tensor product methods. Numer. Math. 6, 185–199.

    Google Scholar 

  9. Quarteroni, A., Saleri, F. and Veneziani, A. (2000). Factorization methods for the numerical approximation of Navier–Stokes equations. Comp. Methods. Appl. Mech. Engrg. 188, 505–526.

    Google Scholar 

  10. Temam, R. (1964). Une méthode d'approximation de la solution des équations de Navier–Stokes. Bull. Soc. Math. France 98, 115–152.

    Google Scholar 

  11. Timmermans, L. J. P., Minev, P. D., and Van de Vosse, F. N. (1996). An approximate projection scheme for incompressible flow using spectral elements. Int. J. Numer. Meth. Fluids. 22, 673–688.

    Google Scholar 

  12. Vandeven (1989). Compatibilité des espaces discrets pour l'approxiamtion spectrale du problème de Stokes périodiques/non périodique. Modél. Math. et Anal. Numér. 23, 649–688.

    Google Scholar 

  13. Van de Vosse, F. N., Minev, P. D., and Timmermans, L. J. P. (1996). A spectral element projection scheme for incompressible flow with application to shear-layer stability studies. In Ilin, A. V., and Scott, R. (eds.), Houston J. Mathematics, Proceedings 3rd ICOSAHOM, pp. 295–303.

  14. Van Kan (1986). A second-order accurate pressure-correction scheme for viscous incompressible flow. SIAM J. Sci. Stat. Comput. 7, 870–891.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azaiez, M. A Spectral Element Projection Scheme for Incompressible Flow with Application to the Unsteady Axisymmetric Stokes Problem. Journal of Scientific Computing 17, 573–584 (2002). https://doi.org/10.1023/A:1015170629969

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015170629969

Navigation