Skip to main content
Log in

Implicit spatial reference systems using proximity and aligment knowledge

  • Published:
Spatial Cognition and Computation

Abstract

In this paper, we explore the situation where no cardinal directions or globally available orientations are available and no metric estimates are given. This corresponds to the way many people perceive their environment and carry out spatial reasoning tasks. We consider three kinds of locally available information – proximity (nearest neighbor), relevance (different sets of neighbors) and distribution (alignments) – and we limit our interest to a universe of point objects. We show how the theory of manifolds and sheaves can be applied to the problem of combining locally available information of a qualitative nature into a global model of an environmental space. We then explore the limitations of the resulting global model if information capture is incomplete or uncertain. Finally, we note that some indeterminacy in the global model does not entail difficulties for a user, provided the reasoning task is appropriately constrained or appropriate additional information is used, such as an external reference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bennett B., Cohn, A.G., Torrini, P. and Hazarika, S.M. (2000). A Foundation for Region-Based Qualitative Geometry, Proc. Of ECAI-2000 pp. 204–208.

  • Edwards, G. (2001). Reasoning about Shape using the Tangential Axis Transform (TAT) or the Shape's Grain, Proceedings of the AAAI'97 Spring Conference, Providence, Rhode Island: Lawrence Erlbaum.

    Google Scholar 

  • Edwards, G. (1997). Geocognostics - A new framework for spatial information theory.In S.C. Hirtle and A.U. Frank (eds.), Spatial Information Theory - A Theoretical Basis for GIS (COSTI'97), Lecture Notes in Computer Science 1329,Berlin: Springer-Verlag, 455–472.

    Google Scholar 

  • Edwards, G., Benmahbous M., Courteau M., deGroeve T., Fortin M., Reginster I. Plouffe G., Romeo T., Thierry B. and Vincent F. (1999). Spatial Error and Uncertainty and the Decision-Making Process.In Proceedings of the Ninth International Symposium on Spatial Data Handling.

  • Edwards, G., Ligozat G., Gryl A. Fraczak L., Moulin B. and Gold C.M. (1996). A Voronoïbased pivot representation of spatial concepts and its application to route descriptions expressed in natural language.In M.J. Kraak and M. Molenaar (eds.), Proceedings of the Seventh International Symposium on Spatial Data Handling, Volume 1, 7B1–7B15.

  • Edwards, G. and Moulin B. (1995). Towards the Simulation of Spatial Mental Images Using the Voronoï Model.In Proceedings of the IJCAI'95 Workshop on the Representation and Processing of Spatial Expressions.Montréal, 63–74.

  • Egenhofer, M.J. and Franzosa R.D. (1991). Point-set topological spatial relations, International Journal of GIS 5: 161–174.

    Google Scholar 

  • Frank, A.U. (1992). Qualitative spatial reasoning about distances and directions in geographic space, Journal of Visual Languages and Computing 3: 343–371.

    Google Scholar 

  • Freksa, C. (1992). Using orientation information for qualitative spatial reasoning, in A.U. Frank, I. Campari and U. Formentini (eds.), Theories and methods of spatio-temporal reasoning in geographic space (pp. 162–178). Berlin: springer Verlag.

    Google Scholar 

  • Freksa, C. (1991). Qualitative Spatial Reasoning, In D.M. Mark and A.U. Frank (eds.), Cognitive and Linguistic Aspects of Geographic Space (pp. 361–372). Kluwer Academic Press: Dordrecht.

    Google Scholar 

  • Galton, A. (1993). Towards and integrated logic of space, time and motion, Proc. Of IJCAI-93, pp. 1550–1555.

  • Gärdenfors, P. (2000). Conceptual Spaces: The Geometry of Thought, MIT Press.

  • Gapp, K.-P. (1995). Object Localization: Selection of Optimal Reference Objects.In A.U. Frank and W. Kuhn (eds.), Conference on Spatial Information Theory COSIT'95 (pp. 519–536).

  • Gerevini, A. and Renz, J. (1998). Combining Topological and Qualitative Size Constraints for Spatial Reasoning, in Proceedings of the Fourth Conference on Principles and Practice of Constraint Programming (CP'98).Berlin: Springer-Verlag.

    Google Scholar 

  • Hernandez, D. (1992). Qualitative representation of spatial knowledge, Ph.D. Dissertation, Technical University of Munich.

    Google Scholar 

  • Kettani, D. and Moulin B. (1999). A spatial model based on the notions of spatial conceptual map and of objects influence areas.In C. Freksa and D.M. Mark (eds.), Spatial Information Theory - Cognitive and Computational Foundations of Geographic Information Science COSIT'99 (pp. 401–416). Lecture Notes in Computer Science 1661.

  • Kirkpatrick, D.G. and Radke J.D. (1985). A Framework for Computational Morphology.In G.T. Toussaint (ed.), Computational Geometry (pp. 217–248). North Holland: Elsevier Science Publishers B.V.

    Google Scholar 

  • Kuipers, B. (1985). The Map-Learning Critter, AI Laboratory Report, The University of Texas at Austin, AITR85-17.

    Google Scholar 

  • Ladkin, P. (1987). The Completeness of a Natural System for Reasoning with Time Intervals, Proc. Of IJCAI-87 462–467.

  • Ligozat, G. (1990). Weak representations of Interval Algebras, Proc. Of AAAI-90 715–720.

  • Ligozat, G. (1999). Simple Models for Simple Calculi.In C. Freksa, and Mark D.M. (eds.), Spatial Information Theory - Cognitive and Computational Foundations of Geographic Information Science COSIT'99 (pp. 173–188). Lecture Notes in Computer Science 1661.

  • Ligozat, G. (1998). Reasoning about cardinal directions, Journal of Visual Languages and Computing 9: 23–44.

    Google Scholar 

  • MacLane, S. and Moerdijk, I. (1992), Sheaves in Geometry and Logic: A First Introduction to Topos Theory.Springer-Verlag.

  • Marciniak, J. (1999). Language, perception, action: raisonnement spatio-temporal dans le guidage d'un agent virtuel, PhD. Thesis. Université Paris-Sud, Orsay.

    Google Scholar 

  • Masolo, C. and Vieu, L. (1999), Atomicity vs. Infinite Divisibility of Space.In C. Freksa and D.M. Mark (eds.), Spatial Information Theory - Cognitive and Computational Foundations of Geographic Information Science COSIT'99 (pp. 235–250). Lecture Notes in Computer Science 1661.

  • Musto, A., Stein K., Schill K., Eisenkilb A. and Brauer W. (1999). Qualitative motion representations in egocentric and allocentric frames of reference.In C. Freksa and D.M. Mark (eds.), Spatial Information Theory - Cognitive and Computational Foundations of Geographic Information Science COSIT'99 (pp. 461–776). Lecture Notes in Computer Science 1661.

  • Nicod, J. (1962). La géométrie dans le monde sensible, Presses Unitaires de France. English translation in: Geometry and Induction 1969, Routledge and Kegan Paul.

  • Okabe, A., Boots B. and Sugihara K. (1992). Spatial Tessellations - Concepts and Applications of Voronoï Diagrams.Chichester: John Wiley and Sons.

    Google Scholar 

  • Pujari, A.K., Vijaya Kumari, G. and Sattar, A. (1999). INDU: An Interval and Duration Network, Proc. Of the Australian Joint Conference on Artificial Intelligence, pp. 291–303.

  • Pujari, A.K. and Sattar, A. (1999). A New Framework for Reasoning about Points, Intervals and Durations.Proc. Of IJCAI-99, pp. 1259–1267.

  • Randell, D.A., Cui, Z. and Cohn, A.G. (1992), A Spatial Logic Based on Regions and Connection, 3rd Conference on Knowledge Representation and Reasoning (pp. 165–176). Morgan Kaufmann.

  • Schlieder, C. (1995) Reasoning about ordering.In A.U. Frank and W. Kuhn (eds.), Conference on Spatial Information Theory COSIT'95 (pp. 341–349).

  • Stell, J.G. and Worboys, M.F. (1998). Stratified Map Spaces: A Formal Basis for Multiresolution Spatial Databases.In T.K. Poiker and N. Chrisman (eds.), Proceedings of the English International Symposium on Spatial Data Handling SDH'98 (pp. 180–189). IGU.

  • Tarski, A. (1956). Logic, Semantics, Metamathematics, Clarendon Press.

  • Timpf, S. and Frank, A.U. (1997). Using hierarchical spatial data structures for hierarchical spatial reasoning.In S.C. Hirtle and A.U. Frank (eds.), Spatial Information Theory - A Theoretical Basis for GIS (COSIT'97) (pp. 69–83), Lecture Notes in Computer Science 1329.Berlin: Springer-Verlag.

    Google Scholar 

  • Worboys, M.F. (1994). A uniform model for spatial and temporal information, The Computer Journal 37(1): 26–34.

    Google Scholar 

  • Zimmermann, K. (1995). Measuring Without Measures: The Delta-Calculus.In A.U. Frank and W. Kuhn (eds.), Conference on Spatial Information Theory COSIT'95 (pp. 59–67).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ligozat, G., Edwards, G. Implicit spatial reference systems using proximity and aligment knowledge. Spatial Cognition and Computation 2, 373–391 (2000). https://doi.org/10.1023/A:1015566216134

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015566216134

Navigation