Skip to main content
Log in

A Convergence Analysis of Gmres and Fom Methods for Sylvester Equations

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We discuss convergence properties of the GMRES and FOM methods for solving large Sylvester equations of the form AXXB=C. In particular we show the importance of the separation between the fields of values of A and B on the convergence behavior of GMRES. We also discuss the stagnation phenomenon in GMRES and its consequence on FOM. We generalize the issue of breakdown in the block-Arnoldi algorithm and explain its consequence on FOM and GMRES methods. Several numerical tests illustrate the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Bartels and G.W. Stewart, Algorithm 432: Solution of the matrix equation AX + XB = C, Comm. ACM 15 (1972) 820-826.

    Google Scholar 

  2. A. Björck, Numerical Methods for Least Squares Problems (SIAM, Philadelphia, PA, 1996).

    Google Scholar 

  3. D. Calvetti, B. Lewis and L. Reichel, On the solution of large Sylvester-obesrver equations, Numer. Linear Algebra Appl. 8 (2001) 435-451.

    Google Scholar 

  4. B. Datta, Numerical linear algebra in control theory, Linear Algebra Appl. 198 (1994) 755-790.

    Google Scholar 

  5. B. Datta and Y. Saad, Arnoldi methods for large Sylvester-like observer matrix equations, and an associated algorithm for partial spectrum assignment, Linear Algebra Appl. 154-156 (1991) 225-244.

    Google Scholar 

  6. M. Eiermann, Fields of values and iterative methods, Linear Algebra Appl. 180 (1993) 167-197.

    Google Scholar 

  7. A. El Guennouni, K. Jbilou and J. Riquet, Block Krylov subspace methods for solving large Sylvester equations, Preprint LMPA, No. 132 (2000), Université du Littoral, to appear in Numer. Algorithms.

  8. G.H. Golub, S. Nash and C. Van Loan, A Hessenberg-Schur method for the problem AX+XB = C, IEEE Trans. Automat. Control 24 (1979) 909-913.

    Google Scholar 

  9. G.H. Golub and C.F. Van Loan, Matrix Computation, 2nd edn (Johns Hopkins Univ. Press, Baltimore, MD, 1989).

    Google Scholar 

  10. D.Y. Hu and L. Reichel, Krylov subspace methods for the Sylvester equations, Linear Algebra Appl. 174 (1992) 283-314.

    Google Scholar 

  11. I.M. Jaimoukha and E.M. Kasenally, Krylov subspace method for solving large Lyapunov equation, SIAM J. Numer. Anal. 31 (1994) 227-251.

    Google Scholar 

  12. M. Robbé and M. Sadkane, Breakdown and stagnation in block FOM and block GMRES methods, Manuscript (2001).

  13. Y. Saad, Numerical solution of large Lyapunov equation, in: Signal Processing, Scattering, Operator Theory and Numerical Methods (Birkhäuser, Boston, 1990) pp. 503-511.

    Google Scholar 

  14. Y. Saad, Iterative Methods for Sparse Linear Systems (PWS, Boston, 1996).

    Google Scholar 

  15. Y. Saad and M.H. Schultz, GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Statist. Comput. 7 (1986) 856-869.

    Google Scholar 

  16. M. Sadkane, A block Arnoldi-Chebyshev method for computing the leading eigenpairs of large sparse unsymmetric matrices, Numer. Math. 64 (1993) 181-193.

    Google Scholar 

  17. V. Simoncini, On the numerical solution of AX - XB = C, BIT 36 (1996) 814-830.

    Google Scholar 

  18. G. Stewart and J. Sun, Matrix Perturbation Theory (Academic Press, San Diego, CA, 1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robbé, M., Sadkane, M. A Convergence Analysis of Gmres and Fom Methods for Sylvester Equations. Numerical Algorithms 30, 71–89 (2002). https://doi.org/10.1023/A:1015615310584

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015615310584

Navigation