Skip to main content
Log in

Computing Transient Gating Charge Movement of Voltage-Dependent Ion Channels

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

The opening of voltage-gated sodium, potassium, and calcium ion channels has a steep relationship with voltage. In response to changes in the transmembrane voltage, structural movements of an ion channel that precede channel opening generate a capacitative gating current. The net gating charge displacement due to membrane depolarization is an index of the voltage sensitivity of the ion channel activation process. Understanding the molecular basis of voltage-dependent gating of ion channels requires the measurement and computation of the gating charge, Q. We derive a simple and accurate semianalytic approach to computing the voltage dependence of transient gating charge movement (Q–V relationship) of discrete Markov state models of ion channels using matrix methods. This approach allows rapid computation of Q–V curves for finite and infinite length step depolarizations and is consistent with experimentally measured transient gating charge. This computational approach was applied to Shaker potassium channel gating, including the impact of inactivating particles on potassium channel gating currents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Almers W (1978) Gating currents and charge movements in excitable membranes. Rev. Physiol. Biochem. Pharmacol. 82: 96–190.

    Google Scholar 

  • Armstrong CM (1975) Ionic pores, gates, and gating currents. Q. Rev. Biophysics 7: 179–210.

    Google Scholar 

  • Armstrong CM (1981) Sodium channels and gating currents. Physiol. Rev. 61: 644–683.

    Google Scholar 

  • Armstrong CM, Bezanilla F (1973) Currents related to movement of the gating particles of the sodium channels. Nature 242: 459–461.

    Google Scholar 

  • Armstrong CM, Bezanilla F (1977) Inactivation of the sodium channel. II. Gating current experiments. J. Gen. Physiol. 70: 567–590.

    Google Scholar 

  • Armstrong CM, Hille B (1998) Voltage-gated ion channels and electrical excitability. Neuron 20: 371–380.

    Google Scholar 

  • Bezanilla F (2000) The voltage sensor in voltage-dependent ion channels. Physiol. Rev. 80: 555–592.

    Google Scholar 

  • Bezanilla F, Perozo E, Papazian DM, Stefani E (1991) Molecular basis of gating charge immobilization in Shaker potassium channels. Science 254: 679–683.

    Google Scholar 

  • Bezanilla F, White MM, Taylor RE (1982) Gating currents associated with potassium channel inactivation. Nature 296: 657–659.

    Google Scholar 

  • Bezanilla F, Perozo E, Stefani E (1994) Gating of Shaker K+ channels: II. The components of gating currents and a model of channel activation. Biophys. J. 66: 1011–1021.

    Google Scholar 

  • Boland LM, Jackson KA (1999) Protein kinase C inhibits Kv1.1 potassium channel function. American J. Physiol. 277: C100–C110.

    Google Scholar 

  • Boland LM, Price DL, Jackson KA (1999) Episodic ataxia/ myokymia mutations functionally expressed in the Shaker potassium channel. Neurosci. 91: 1557–1564.

    Google Scholar 

  • Brenan KE, Campbell SL, Petzold LR (1996) Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations.SIAM Press, Philadelphia.

    Google Scholar 

  • Brown PN, Hindmarsh AC, Petzold LR (1994) Using Krylov methods in the solution of large-scale differential algebraic systems. SIAM J. Scientific Computing 15: 1467–1488.

    Google Scholar 

  • Cha A, Snyder GE, Selvin PR, Bezanilla F (1999) Atomic scale movement of the voltage-sensing region in a potassium channel measured via spectroscopy. Nature 402: 809–813.

    Google Scholar 

  • Choi K, Aldrich RW, Yellen G (1991) Tetraethylammonium blockade distinguishes two inactivation mechanisms in voltageactivated K+ channels. Proc. Nat. Acad. Sciences USA 88: 5092–5095.

    Google Scholar 

  • Colquhoun D, Hawkes AG (1995) A Q matrix cookbook. In: B Sakmann, E Neher, eds. Single Channel Recording (2nd ed.). Plenum Press, New York.

    Google Scholar 

  • Davis PJ, Rabinowitz P (1978) Methods of Numerical Integration. Academic Press, New York.

    Google Scholar 

  • Eyring H (1935) The activated complex in chemical reactions. J. Chem. Physics 3: 107–115.

    Google Scholar 

  • Gandhi CS, Loots E, Isacoff EY (2000) Reconstructing voltage sensor-pore interaction from a fluorescence scan of a voltage-gated K+ channel. Neuron 27: 585–595.

    Google Scholar 

  • Golub GH, van Loan CF (1998) Matrix Computations (4th ed.). Johns Hopkins University Press, Baltimore.

    Google Scholar 

  • Hille B (2001) Ionic Channels of Excitable Membranes (3rd ed.). Sinauer, Sunderland.

    Google Scholar 

  • Horn R (1996) Counting charges. J Gen. Physiol. 108: 129–132.

    Google Scholar 

  • Hoshi T, Zagotta WN, Aldrich RW (1990) Biophysical and molecular mechanisms of Shaker potassium channel inactivation. Science 250: 533–538.

    Google Scholar 

  • Hurst RS, Roux MJ, Toro L, Stefani E (1997) External barium influences the gating charge movement of Shaker potassium channels. Biophys. J. 72: 77–84.

    Google Scholar 

  • Johnston D, Hoffman DA, Magee JC, Poolos NP, Watanabe S, Colbert CM, Migliore M (2000) Dendritic potassium channels in hippocampal pyramidal neurons. J. Physiol. 525: 75–81.

    Google Scholar 

  • Keynes RD, Rojas E (1974) Kinetics and steady-state properties of the charge system controlling sodium conductance in the squid axon. J. Physiol. 239: 393–434.

    Google Scholar 

  • Mannuzzu LM, Isacoff EY (2000) Independence and cooperativity in rearrangements of a potassium channel voltage sensor revealed by single subunit fluorescence. J. Gen. Physiol. 115: 257–268.

    Google Scholar 

  • Martin RS, Wilkinson JH (1968) Similarity reduction of a general matrix to Hessenberg form. Numerische Mathematik 12: 349–368.

    Google Scholar 

  • Melishchuk A, Armstrong CM (2001) Mechanism underlying slow kinetics of the OFF gating current in Shaker potassium channel. Biophys. J. 80: 2167–2175.

    Google Scholar 

  • Noceti F, Baldelli P, Wei X, Qin N, Toro L, Birnbaumer L, Stefani E (1996) Effective gating charges per channel in voltage-dependent K+ and Ca2+ channels. J. Gen. Physiol. 108: 143–155.

    Google Scholar 

  • Onsager L (1931) Reciprocal relations in irreversible processes. Part 1. Phys. Rev. 37: 405–426.

    Google Scholar 

  • Parlett BN, Reinsch C (1969) Balancing a matrix for calculation of eigenvalues and eigenvectors. Numerische Mathematik 13: 293–304.

    Google Scholar 

  • Perozo E, MacKinnnon R, Bezanilla F, Stefani E (1993) Gating currents from a nonconducting mutant reveal open-closed conformations in Shaker K+ channels. Neuron 11: 353–358.

    Google Scholar 

  • Perozo E, Papazian DM, Stefani E, Bezanilla F (1992) Gating currents in Shaker K+ channels. Biophys. J. 62: 160–171.

    Google Scholar 

  • Peters G, Wilkinson JH (1970) Eigenvectors of real and complex matrices by LR and QR triangularizations. Numerische Mathematik 16: 181–204.

    Google Scholar 

  • Schoppa NE, Sigworth FJ (1998) Activation of Shaker potassium channels. I. Characterization of voltage-dependent transitions. J. Gen. Physiol. 111: 271–294.

    Google Scholar 

  • Sigg D, Bezanilla F (1997) Total charge movement per channel. J. Gen. Physiol. 109: 27–39.

    Google Scholar 

  • Sigworth FJ (1994) Voltage gating of ion channels. Q. Rev. Biophys. 27: 1–40.

    Google Scholar 

  • Starace DM, Stefani E, Bezanilla F (1997) Voltage-dependent proton transport by the voltage sensor of the Shaker K+ channel. Neuron 19: 1319–1327.

    Google Scholar 

  • Stefani E, Toro L, Perozo E, Bezanilla F (1994) Gating of Shaker K+ channels: Ionic and gating currents. Biophys. J. 66: 996–1010.

    Google Scholar 

  • Stuhmer W, Conti F, Stocker M, Pongs O, Heinemann SH (1991) Gating currents of inactivating and non-inactivating potassium channels expressed in Xenopus oocytes. Pflugers Archiv 418: 423–429.

    Google Scholar 

  • Taglialatela M, Toro L, Stefani E (1992) Novel voltage clamp to record small fast currents from ion channels expressed in Xenopus oocytes. Biophys. J. 61: 78–82.

    Google Scholar 

  • Tsien RW, Noble D (1969) A transition state theory approach to the kinetics of conductance changes in excitable membranes. J. Membrane Biol. 1: 248–273.

    Google Scholar 

  • Yellen G (1998) The moving parts of voltage-gated ion channels. Q. Rev. Biophys. 31: 239–295.

    Google Scholar 

  • Zagotta WN, Aldrich RW (1990) Voltage-dependent gating of Shaker A-type potassium channels in Drosophila muscle. J. Gen. Physiol. 95: 29–60.

    Google Scholar 

  • Zagotta WN, Hoshi T, Aldrich RW (1994) Shaker potassium channel gating III: Evaluation of kinetic models for activation. J. Gen. Physiol. 103: 321–362.

    Google Scholar 

  • Zhou M, Morais-Cabral JH, Mann S, MacKinnon R (2001) Potassium channel receptor site for the inactivation gate and quaternary amine inhibitors. Nature 411: 657–661.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varghese, A., Boland, L.M. Computing Transient Gating Charge Movement of Voltage-Dependent Ion Channels. J Comput Neurosci 12, 123–137 (2002). https://doi.org/10.1023/A:1015712824133

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015712824133

Navigation