Skip to main content
Log in

Dihydrofolate reductase: A potential drug target in trypanosomes and leishmania

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Dihydrofolate reductase has successfully been used as a drug target in the area of anti-cancer, anti-bacterial and anti-malarial chemotherapy. Little has been done to evaluate it as a drug target for treatment of the trypanosomiases and leishmaniasis. A crystal structure of Leishmania major dihydrofolate reductase has been published. In this paper, we describe the modelling of Trypanosoma cruzi and Trypanosoma brucei dihydrofolate reductases based on this crystal structure. These structures and models have been used in the comparison of protozoan, bacterial and human enzymes in order to highlight the different features that can be used in the design of selective anti-protozoan agents. Comparison has been made between residues present in the active site, the accessibility of these residues, charge distribution in the active site, and the shape and size of the active sites. Whilst there is a high degree of similarity between protozoan, human and bacterial dihydrofolate reductase active sites, there are differences that provide potential for selective drug design. In particular, we have identified a set of residues which may be important for selective drug design and identified a larger binding pocket in the protozoan than the human and bacterial enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Filman, D.J., Bolin, J.T., Matthews, D.A. and Kraut, J., J. Biol. Chem., 257 (1982) 13663.

    Google Scholar 

  2. Reyes, V.M., Sawaya, M.R., Brown, K.A. and Kraut, J., Biochemistry, 34 (1995) 2710.

    Google Scholar 

  3. Blaney, J.M., Hansch, C., Silipo, C. and Vittoria, A., Chem. Rev., 84 (1984) 333.

    Google Scholar 

  4. Knighton, D.R., Kan, C.C., Howland, E., Janson, C.A., Hostomska, Z., Welsh, K.M. and Matthews D.A., Nat. Struct. Biol., 1 (1994) 186.

    Google Scholar 

  5. Reche, P., Arrebola, R., Olmo, A., Santi, D.V., Gonzales-Pakanowska, D. and Ruiz-Perez, L., Mol. Biochem. Parasitol., 65 (1994) 247.

    Google Scholar 

  6. Gamarro, F., Yu, P.L., Zhao, J., Edman, U., Greene, P.J. and Santi, D., Mol. Biochem. Parasitol., 72 (1995) 11.

    Google Scholar 

  7. Ivanetich, K.M. and Santi, D.V., FASEB J., 4 (1990) 1591.

    Google Scholar 

  8. Li, Z., Chen, X., Davidson, E., Zwang, O., Mendis, C., Ring, C.S., Roush, W.R., Fegley, G., Li, R., Rosenthal, P.J., Lee, G.K., Kenyon, G.L., Kuntz, I.D. and Cohen, F.E., Chem. Biol., 1 (1994) 31.

    Google Scholar 

  9. Toyoda, T., Brobey, R.K.B., Sano G., Horii, T., Tomioka, N. and Itai, A., Biochem. Biophys. Res. Commun., 235 (1997) 515.

    Google Scholar 

  10. Bernstein, F.C., Koetzle, T.F., Williams, G.J.B., Meyer, E.F., Brice, M.D., Rodgers, J.R., Kennard, O., Shimanouchi, T. and Tasumi, M., J. Mol. Biol., 112 (1977) 535.

    Google Scholar 

  11. Needleman, S.B. and Wunsch, C.D., J. Mol. Biol., 48 (1970) 443.

    Google Scholar 

  12. Martin, A.C.R., NW, unpublished data.

  13. Felsestein, J., Cladistics 5, 164.

  14. Sali, A. and Blundell, T.L., J. Mol. Biol., 234 (1993) 779.

    Google Scholar 

  15. Laskowski, R.A., MacArthur, M.W., Moss, D.S. and Thornton, J.M., J. Appl. Crystallogr., 26 (1993) 283.

    Google Scholar 

  16. Taylor, W.R., J. Mol. Evol., 28 (1988) 161.

    Google Scholar 

  17. CAMELEON, Oxford Molecular, Oxford, U.K.

  18. McLachlan, A.D., Acta Crystallogr., A38 (1982) 871.

    Google Scholar 

  19. Martin, A.C.R., ProFit, unpublished data.

  20. MACROMODEL, Colombia University, New York, NY, U.S.A.

  21. QUANTA, Molecular Simulations, Burlington, MA, U.S.A.

  22. Nicholls, A., Bharadwaj, R. and Honig, B., Biophys. J., 64 (1993) A166.

    Google Scholar 

  23. Sayle, R, RASMOL, Glaxo Wellcome.

  24. Lee, B. and Richards, F.M., J. Mol. Biol., 55 (1971) 379.

    Google Scholar 

  25. Hubbard, S., ACCESS, EMBL.

  26. Laskowski, R., J. Mol. Graph., 13 (1995) 323.

    Google Scholar 

  27. Morris, A.L., MacArthur, M.W., Hutchinson, E.G. and Thornton, J.M., Proteins, 12 (1992) 345.

    Google Scholar 

  28. Ramachandran, G.N., Ramakrishnan, C. and Sasisekharan, V., J. Mol. Biol., 7 (1963) 95.

    Google Scholar 

  29. Martin, A.C.R., MacArthur, M.W. and Thornton, J.M., Proteins Struct. Funct. Genet., in press.

  30. Oefner, C., D'Archy, A. and Winkler, F.K., Eur. J. Biochem., 174 (1988) 377.

    Google Scholar 

  31. Bolin, J.T., Filman, D.J., Matthews, D.A., Hamlin, R.C. and Kraut, J., J. Biol. Chem., 257 (1982) 13650.

    Google Scholar 

  32. Champness, J.N., Stammers, D.K. and Beddell, C.R., FEBS Lett., 199 (1986) 61.

    Google Scholar 

  33. Champness, J.N., Achari, A., Ballantine, S.P., Bryant, P.K., Delves, C.J. and Stammers, D.K., Structure, 2 (1994) 915.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zuccotto, F., Martin, A.C., Laskowski, R.A. et al. Dihydrofolate reductase: A potential drug target in trypanosomes and leishmania. J Comput Aided Mol Des 12, 241–257 (1998). https://doi.org/10.1023/A:1016085005275

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016085005275

Navigation