Skip to main content
Log in

A Rigorous Global Optimization Algorithm for Problems with Ordinary Differential Equations

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

The optimization of systems which are described by ordinary differential equations (ODEs) is often complicated by the presence of nonconvexities. A deterministic spatial branch and bound global optimization algorithm is presented in this paper for systems with ODEs in the constraints. Upper bounds for the global optimum are produced using the sequential approach for the solution of the dynamic optimization problem. The required convex relaxation of the algebraic functions is carried out using well-known global optimization techniques. A convex relaxation of the time dependent information is obtained using the concept of differential inequalities in order to construct bounds on the space of solutions of parameter dependent ODEs as well as on their second-order sensitivities. This information is then incorporated in the convex lower bounding NLP problem. The global optimization algorithm is illustrated by applying it to four case studies. These include parameter estimation problems and simple optimal control problems. The application of different underestimation schemes and branching strategies is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, E.: 1980, On methods for the construction of the boundaries of sets of solutions for differential equations or finite-dimensional approximations with input sets. In: G. Alefeld and R. D. Grigorieff (eds.): Fundamentals of numerical computation, Computing Supplement 2. Berlin: Springer, pp. 1–16.

    Google Scholar 

  • Adjiman, C. S., I. P. Androulakis, and C. A. Floudas: 1998a, A global optimization method, αBB, for general twice-differentiable constrained NLPs¶ II. Implementation and computational results. Comput. Chem. Eng. 22(9), 1159–1179.

    Google Scholar 

  • Adjiman, C. S., S. Dallwig, C. A. Floudas, and A. Neumaier: 1998b, A global optimization method, αBB, for general twice-differentiable constrained NLPs¶ I. Theoretical advances. Comput. Chem. Eng. 22(9), 1137–1158.

    Google Scholar 

  • Adjiman, C. S. and C. A. Floudas: 1996, Rigorous convex underestimators for general twicedifferentiable problems. J. Global Opt. 9, 23–40.

    Google Scholar 

  • Allen, M. P. and D. J. Tildesley: 1987, Computer simulation of liquids. Oxford: Clarendon Press.

    Google Scholar 

  • Androulakis, I. P., C. D. Maranas, and C. A. Floudas: 1995, αBB: A global optimization method for general constrained nonconvex problems. J. Global Opt. 7, 337–363.

    Google Scholar 

  • Banga, J. R. and W. D. Seider: 1996, Global optimization of chemical processes using stochastic algorithms. In: State of the art in global optimization, Series in nonconvex optimization and its applications. Dordrecht: Kluwer Academic Publishers, pp. 563–583.

    Google Scholar 

  • Banks, R. B.: 1994, Growth and diffusion phenomena. Mathematical frameworks and applications. Springer, Berlin.

    Google Scholar 

  • Berz, M., K. Makino, and J. Hoefkens: 2001, Verified integration of dynamics in the solar system. Nonlinear Analysis: Theory, Methods and Applications 47, 179–190.

    Google Scholar 

  • Biegler, L. T.: 1984, Solution of dynamic optimization problems by successive quadratic programming and orthogonal collocation. Comput. Chem. Eng. 8(3/4), 243–248.

    Google Scholar 

  • Boender, C. G. E. and H. E. Romeijn: 1995, Stochastic methods. In: R. Horst and P. M. Pardalos (eds.): Handbook of global optimization, Series in nonconvex optimization and its applications. Dordrecht: Kluwer Academic Publishers, pp. 829–869.

    Google Scholar 

  • Bojkov, B. and R. Luus: 1993, Evaluation of the parameters used in iterative dynamic programming. Can. J. Chem. Eng. 71, 451–459.

    Google Scholar 

  • Carrasco, E. F. and J. R. Banga: 1997, Dynamic optimization of batch reactors using adaptive stochastic algorithms. Ind. Eng. Chem. Res. 36(6), 2252–2261.

    Google Scholar 

  • Coleman, T., M. A. Branch, and A. Grace: 1999, Optimization toolbox. For use with MATLAB. User's guide, Ver. 2. The MathWorks, Inc.

  • Corliss, G. F.: 1995, Guaranteed error bounds for ordinary differential equations. In: J. Levesley, W. A. Light, and M. Marletta (eds.): Theory of numerics in ordinary and partial differential equations. Oxford: Oxford Univ. Press, pp. 1–75.

    Google Scholar 

  • Cuthrell, J. E. and L. T. Biegler: 1987, On the optimisation of differential-algebraic process systems. AIChE J. 33(8), 1257–1270.

    Google Scholar 

  • Dadebo, S. A. and K. B. McAuley: 1995, Dynamic optimization of constrained chemical engineering problems using dynamic programming. Comput. Chem. Eng. 19(5), 513–525.

    Google Scholar 

  • Esposito, W. and C. Floudas: 2000a, Deterministic global optimization in nonlinear optimal control problems. J. Global Opt. 17(1/4), 97–126.

    Google Scholar 

  • Esposito, W. R. and C. A. Floudas: 2000b, Global optimization for the parameter estimation of differential-algebraic systems. Ind. Eng. Chem. Res. 39, 1291–1310.

    Google Scholar 

  • Esposito, W. R. and C. A. Floudas: 2000c, Global optimization of nonconvex problems with differential-algebraic constraints. In: S. Pierucci (ed.): European Symposium on Computer Aided Process Engineering ¶10. pp. 73–78, Elsevier.

  • Floudas, C. A.: 1999, Deterministic global optimization: Theory, methods and applications, Series in nonconvex optimization and its applications. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Floudas, C. A., P. M. Pardalos, C. S. Adjiman, W. R. Esposito, Z. H. Gümüs, S. T. Harding, J. L. Klepeis, C. A. Meyer, and C. A. Schweiger: 1999, Handbook of test problems in local and global optimization, Series in nonconvex optimization and its applications. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Goh, C. J. and K. L. Teo: 1988, Control parameterization: a unified approach to optimal control problems with general constraints. Automatica 24(1), 3–18.

    Google Scholar 

  • Horst, R. and H. Tuy: 1996, Global Optimization. Deterministic approaches. Berlin: Springer-Verlag, 3rd edition.

    Google Scholar 

  • Jackson, L.: 1975, Interval arithmetic error-bounding algorithms. SIAM J. Numer. Anal. 12(2), 223–238.

    Google Scholar 

  • Krückeberg, F.: 1969, Ordinary differential equations. In: E. Hansen (ed.): Topics in interval analysis. Oxford: Clarendon Press, pp. 91–97.

    Google Scholar 

  • Kühn, W.: 1998, Rigorously computed orbits of dynamical systems without the wrapping effect. Computing 61, 47–67.

    Google Scholar 

  • Lakshmikantham, V. and S. Leela: 1969, Differential and integral inequalities. Theory and applications, Vol. 55-I of Series in mathematics in science and engineering. New York: Academic Press.

    Google Scholar 

  • Logsdon, J. S. and L. T. Biegler: 1989, Accurate solution of differential algebraic optimization problems. Ind. Eng. Chem. Res. 28(11), 1628–1639.

    Google Scholar 

  • Lohner, R. J.: 1987, Enclosing the solutions of ordinary initial and boundary problems. In: E. W. Kaucher, U. W. Kulisch, and C. Ullrich (eds.): Computer arithmetic: Scientific computation and programming languages, Series in Computer Science. Stuttgart: Wiley-Teubner, pp. 255–286.

    Google Scholar 

  • Luus, R.: 1990a, Application of dynamic programming to high-dimensional nonlinear optimal control problems. Int. J. Control 52(1), 239–250.

    Google Scholar 

  • Luus, R.: 1990b, Optimal control by dynamic programming using systematic reduction in grid size. Int. J. Control 51(5), 995–1013.

    Google Scholar 

  • Luus, R.: 1993, Piecewise linear continuous optimal control by iterative dynamic programming. Ind. Eng. Chem. Res. 32, 859–865.

    Google Scholar 

  • Luus, R. and B. Bojkov: 1994, Global optimization of the bifunctional catalyst problem. Can. J. Chem. Eng. 72, 160–163.

    Google Scholar 

  • Luus, R. and D. E. Cormack: 1972, Multiplicity of solutions resulting from the use of variational methods in optimal control problems. Can. J. Chem. Eng. 50, 309–311.

    Google Scholar 

  • Luus, R. and O. Rosen: 1991, Application of iterative dynamic programming to final state constrained optimal control problems. Ind. Eng. Chem. Res. 30(7), 1525–1530.

    Google Scholar 

  • Luus, R., J. Dittrich, and F. J. Keil: 1992, Multiplicity of solutions in the optimization of a bifunctional catalyst blend in a tubular reactor. Can. J. Chem. Eng. 70, 780–785.

    Google Scholar 

  • Maranas, C. D. and C. A. Floudas: 1994, Global minimum potential energy conformations of small molecules. J. Global Opt. 4, 135–170.

    Google Scholar 

  • McCormick, G. P.: 1976, Computability of global solutions to factorable nonconvex programs: Part I·Convex underestimating problems. Mathematical Programming 10, 147–175.

    Google Scholar 

  • Moore, R. E.: 1966, Interval analysis. Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  • Moore, R. E.: 1978, Bounding sets in function spaces with applications to nonlinear operator equations. SIAM Review 20(3), 492–512.

    Google Scholar 

  • Moore, R. E.: 1979, Methods and applications of interval analysis. Philadelphia, PA: SIAM.

    Google Scholar 

  • Moore, R. E.: 1984, A survey of interval methods for differential equations. In: Proceedings of 23rd conference on decision and control (Las Vegas). pp. 1529–1535.

  • Nedialkov, N. S., K. R. Jackson, and G. F. Corliss: 1999, Validated solutions of initial value problems for ordinary differential equations. Appl. Math. Comput. 105(1), 21–68.

    Google Scholar 

  • Neumaier, A.: 1993, The wrapping effect, ellipsoid arithmetic, stability and confidence regions. In: R. A. et al. (ed.): Validation Numerics, Vol. 9 of Computing Supplementum. Wien: Springer, pp. 175–190.

    Google Scholar 

  • Neumaier, A.: 1994, Global, rigorous and realistic bounds for the solution of dissipative differential equations. Part I: Theory. Computing 52, 315–336.

    Google Scholar 

  • Nickel, K. L.: 1978, Ein Zusammenhang zwischen Aufgaben monotoner Art und Intervall-Mathematik. In: R. Bulirsch and R. D. Grigorieff (eds.): Numerical treatment of differential equations, Lecture Notes in Computer Science No 631. Berlin: Springer, pp. 121–132.

    Google Scholar 

  • Nickel, K. L.: 1983, Bounds for the set of solutions of functional-differential equations. Annales Polonici Mathematici 42, 241–257. MRC Technical summary report No 1782, University of Winsconsin, Madison (1977).

    Google Scholar 

  • Nickel, K. L.: 1985, How to fight the wrapping effect. In: K. L. Nickel (ed.): Interval Mathematics, Lecture Notes in Computer Science No 212. Berlin: Springer, pp. 121–132.

    Google Scholar 

  • Nickel, K. L.: 1986, Using interval methods for numerical solution of ODE's. ZAMM 66(11), 513–523.

    Google Scholar 

  • Oh, S. H. and R. Luus: 1977, Use of orthogonal collocation methods in optimal control problems. Int. J. Control 26(5), 657–673.

    Google Scholar 

  • Pollard, G. P. and R. W. H. Sargent: 1970, Off line computation of optimum controls for a plate distillation column. Automatica 6, 59–76.

    Google Scholar 

  • Pontryagin, L. S.: 1962, Ordinary differential equations. London: Pergamon Press.

    Google Scholar 

  • Renfro, J. G., A. M. Morshedi, and O. A. Asbjornsen: 1987, Simultaneous optimization and solution of systems described by differential/algebraic equations. Comput. Chem. Eng. 11(5), 503–517. A RIGOROUS GLOBAL OPTIMIZATION ALGORITHM FOR PROBLEMS WITH ODES 33

    Google Scholar 

  • Rihm, R.: 1994, On a class of enclosure methods for initial value problems. Computing 53, 369–377.

    Google Scholar 

  • Rosen, O. and R. Luus: 1992, Global optimization approach to nonlinear optimal control. J. Opt. Th. Appl. 73(3), 547–562.

    Google Scholar 

  • Rump, S. M.: 1999a, Fast and parallel interval arithmetic. BIT 39(3), 534–554.

    Google Scholar 

  • Rump, S. M.: 1999b, INTLAB· Interval laboratory. In: T. Csendes (ed.): Developments in reliable computing. Dordrecht: Kluwer Academic Publishers, pp. 77–104.

    Google Scholar 

  • Sargent, R. W. H.: 2000, Optimal control. J. Comput. Appl. Math. 124(1/2), 361–371.

    Google Scholar 

  • Sargent, R.W. H. and G. R. Sullivan: 1978, The development of an efficient optimal control package. In: J. Stoer (ed.): Proc. 8th IFIP Conf. Optimisation Tech. Pt. 2. Springer, Berlin: pp. 158–168.

    Google Scholar 

  • Shampine, L. F. and M. W. Reichelt: 1997, The MATLAB ODE suite. SIAM J. Sci. Comput. 18(1), 1–22.

    Google Scholar 

  • Smith, E. M. B. and C. C. Pantelides: 1996, Global optimisation of general process models. In: I. E. Grossmann (ed.): Global optimization in engineering design, Series in nonconvex optimization and its applications. Dordrecht: Kluwer Academic Publishers, Ch. 12, pp. 355–386.

    Google Scholar 

  • Smith, J. M.: 1981, Chemical engineering kinetics. London: McGraw-Hill, 3rd edition.

    Google Scholar 

  • Stewart, N. F.: 1971, A heuristic to reduce the wrapping effect in the numerical solution of x′ = f (t, x). BIT 11, 328–337.

    Google Scholar 

  • The MathWorks, Inc.: 1999, Using MATLAB.

  • Tjoa, I. B. and L. T. Biegler: 1991, Simultaneous solution and optimization strategies for parameter estimation of differential-algebraic equation systems. Ind. Eng. Chem. Res. 30, 376–385.

    Google Scholar 

  • Tsang, T. H., D. M. Himmelblau, and T. F. Edgar: 1975, Optimal control via collocation and nonlinear programming. Int. J. Control 21(5), 763–768.

    Google Scholar 

  • Vassiliadis, V. S., R. W. H. Sargent, and C. C. Pantelides: 1994a, Solution of a class of multistage dynamic optimization problems. 1. Problems without path constraints. Ind. Eng. Chem. Res. 33(9), 2111–2122.

    Google Scholar 

  • Vassiliadis, V. S., R. W. H. Sargent, and C. C. Pantelides: 1994b, Solution of a class of multistage dynamic optimization problems. 2. Problems with path constraints. Ind. Eng. Chem. Res. 33(9), 2123–2133.

    Google Scholar 

  • Villadsen, J. V. and W. E. Stewart: 1967, Solution of boundary-value problems by orthogonal collocation. Chem. Eng. Sci. 22, 1483–1501.

    Google Scholar 

  • Walter, W.: 1970, Differential and integral inequalities. Berlin: Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claire S. Adjiman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papamichail, I., Adjiman, C.S. A Rigorous Global Optimization Algorithm for Problems with Ordinary Differential Equations. Journal of Global Optimization 24, 1–33 (2002). https://doi.org/10.1023/A:1016259507911

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016259507911

Navigation