Skip to main content
Log in

Convergence of Finite Element Approximations and Multilevel Linearization for Ginzburg–Landau Model of d-Wave Superconductors

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we consider the finite element approximations of a recently proposed Ginzburg–Landau-type model for d-wave superconductors. In contrast to the conventional Ginzburg–Landau model the scalar complex valued order-parameter is replaced by a multicomponent complex order-parameter and the free energy is modified according to the d-wave paring symmetry. Convergence and optimal error estimates and some superconvergent estimates for the derivatives are derived. Furthermore, we propose a multilevel linearization procedure to solve the nonlinear systems. It is proved that the optimal error estimates and superconvergence for the derivatives are preserved by the multilevel linearization algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Bank, Analysis of a multilevel iterative method for nonlinear finite element equations, Math. Comp. 39 (1982) 453-465.

    Google Scholar 

  2. F. Bornemann and P. Deuflhard, The Cascadic multigrid method for elliptic problems, Numer. Math. 75 (1996) 135-152.

    Google Scholar 

  3. F. Brezzi, J. Rappaz and P. Raviart, Finite-dimensional approximation of nonlinear problems. Part I: Branches of nonsingular solutions, Numer. Math. 36 (1980) 1-25.

    Google Scholar 

  4. S. Chapman, Q. Du, M. Gunzburger, and J. Peterson, Simplified Ginzburg-Landau models for superconductivity valid for high kappa and high fields, Adv. in Appl. Math. 5 (1995) 193-218.

    Google Scholar 

  5. S. Chapman, S. Howison, and J. Ockendon, Macroscopic models of superconductivity, SIAM Review 34 (1992) 529-560.

    Google Scholar 

  6. C. Chen and Y. Huang, High Accuracy Theory of Finite Element Methods (Hunan Science and Technology Press, 1995).

  7. Z. Chen and K.-H. Hoffmann, Numerical studies of a nonstationary Ginzburg-Landau model for superconductivity, Adv. Math. Sci. Appl. 5 (1994) 363-389.

    Google Scholar 

  8. M. Crouziex and J. Pappaz, On Numerical Approximation in Bifurcation Theory (Masson, Paris, 1989).

    Google Scholar 

  9. C.N. Dawson, M.F. Wheeler and C.S. Woodward, A two-grid finite difference scheme for nonlinear parabolic equations, SIAM J. Numer. Anal. 35 (1998) 435-452.

    Google Scholar 

  10. Q. Du, Global existence and uniqueness of solutions of the time-dependent Ginzburg-Landau model for superconductivity, Appl. Anal. 53(1/2) (1994) 1-17.

    Google Scholar 

  11. Q. Du, Discrete gauge invariant approximations of a time dependent Ginzburg-Landau model for superconductivity, Math. Comp. 67(223) (1998) 965-986.

    Google Scholar 

  12. Q. Du, Studies of a Ginzburg-Landau model for d-wave superconductors, SIAMJ. Appl.Math. 59(4) (1999) 1225-1250.

    Google Scholar 

  13. Q. Du and P. Gray, High-kappa limits of the time-dependent Ginzburg-Landau model, SIAM J. Appl. Math. 56 (1996) 1060-1093.

    Google Scholar 

  14. Q. Du, M. Gunzburger and J. Peterson, Analysis and approximation of Ginzburg-Landau models for superconductivity, SIAM Review 34 (1992) 54-81.

    Google Scholar 

  15. Q. Du, M. Gunzburger and J. Peterson, Solving the Ginzburg-Landau equations by finite element methods, Phys. Rev. B 46 (1992) 9027-9034.

    Google Scholar 

  16. Q. Du, M. Gunzburger and J. Peterson, Computational simulation of type-II superconductivity including pinning phenomena, Phys. Rev. B 51 (1995) 16194-16203.

    Google Scholar 

  17. Q. Du, and F.-H. Lin, Ginzburg-Landau vortices: dynamics, pinning and hysteresis, SIAM J. Math. Anal. 28 (1997) 1265-1293.

    Google Scholar 

  18. N. Enomoto, M. Ichioka and K. Machida, Ginzburg-Landau theory for d-wave pairing and fourfold symmetric vortex core structure, J. Phys. Soc. Japan 66 (1997) (204).

  19. D. Feder and C. Kallin, Microscopic derivation of the Ginzburg-Landau equations for a d-wave superconductor, Phys. Rev. B 55 (1997) 559-574.

    Google Scholar 

  20. M. Franz, C. Kallin, P. Soininen, A. Berlinsky and A. Fetter, Vortex state in a d-wave superconductor, Phys. Rev. B 53 (1996) 5795-5814.

    Google Scholar 

  21. L. Freitag, M. Jones and P. Plassmann, New techniques for parallel simulation of high temperature superconductors, MCS preprint, Argonne National Lab. (1994).

  22. V. Ginzburg and L. Landau, On the theory of superconductivity, Zh. Eksperiment. Teoret. Fiz. 20 (1950) 1064-1082; English translation: Men of Physics: L.D. Landau, I, ed. D. ter Haar (Pergamon, Oxford, 1965) pp. 138-167.

    Google Scholar 

  23. L. Gor'kov, Microscopic derivation of the Ginzburg-Landau equations in the theory of superconductivity, Zh. Eksperiment. Teoret. Fiz. 36 (1959) 1918-1923; English translation: Soviet Phys. JETP 9 (1959) 1364-1367.

    Google Scholar 

  24. W.D. Gropp, H.G. Kaper, G.K. Leaf, D.M. Levine, M.P. Palumbo and V.M.Vinokur, Numerical simulation of vortex dynamics in type-II superconductors, J. Comput. Phys. 123 (1996) 254-266.

    Google Scholar 

  25. Q. Han and L. Zhang, Ginzburg-Landau theory and vortex structure for a d + s-wave superconductor with orthorhombic distortion, Phys. Rev. B 56 (1997) 11942-11951.

    Google Scholar 

  26. R. Heeb, A. Otterlo, M. Sigrist and G. Blatter, Vortices in d-wave superconductors, Phys. Rev. B 54 (1996) 9385-9398.

    Google Scholar 

  27. P. Hirschfeld and W. Putikka, Theory of thermal conductivity in YBa2Cu3O7−δ, Phys. Rev. Lett 77 (1996) 3909-3912.

    Google Scholar 

  28. Y. Huang and Y. Chen, A multilevel iterate correction method for solving nonlinear singular problems, Natural Science J. of Xiangtan Univ. 16(1) (1994) 23-26.

    Google Scholar 

  29. Y. Huang, Z. Shi, T. Tang and W. Xue, Cascadic multigrid iteration for linear and nonlinear elliptic problems, submitted to Math. Comp.

  30. R. Joynt, Upward curvature of H c2 in high-T c superconductors: Possible evidence for s + d pairing, Phys. Rev. B 41 (1990) 4271-4277.

    Google Scholar 

  31. W. Kim and C. Ting, Ginzburg-Landau equations for a d-wave superconductor with paramagnetic impurities, Preprint, TcSUH, (1997).

  32. N. Kopnin and G. Volovik, Singularity of the vortex density of states in d-wave superconductors, JETP Lett. 64 (1996) 690.

    Google Scholar 

  33. C. Kuebert and P. Hirschfeld, Vortex contribution to specific hear of dirty d-wave superconductors: Breakdown of scaling, Solid State Comm. 105 (1998) 459.

    Google Scholar 

  34. W. Layton and W. Lenferink, Two-level Picard and modified Picard methods for the Navier-Stokes equations, Appl. Math. Comput. 69 (1995) 263-274.

    Google Scholar 

  35. F.-H. Lin, Solutions of Ginzburg-Landau equations and critical points of the renormalized energy, Ann. Ist. H. Poincaré, Analyse non Linéaire 12 (1995) 599-622.

    Google Scholar 

  36. F.-H. Lin, Some dynamic properties of Ginzburg-Landau vortices, Comm. Pure Appl. Math. 49 (1996) 323-359.

    Google Scholar 

  37. F. Liu, M. Mondello and N. Goldenfeld, Kinetics of the superconducting transition, Phys. Rev. Lett. 66 (1991) 3071-3074.

    Google Scholar 

  38. K. Maki and M. Beal-Monod, Ginzburg-Landau equation and upper critical field in anisotropic (d + s)-wave superconductivity, Phys. Rev. B 55 (1997) 11730.

    Google Scholar 

  39. M. Marion and J. Xu, Error estimates on a new nonlinear Galerkin method based on two-grid finite elements, SIAM J. Numer. Anal. 32 (1995) 1170-1184.

    Google Scholar 

  40. M. Mu and Y. Huang, An alternating Crank-Nicolson method for decoupling the Ginzburg-Landau equations, SIAM J. Numer. Anal. 35(5) (1998) 1740-1761.

    Google Scholar 

  41. R. Rannacher, On the finite element approximation of general boundary value problems in nonlinear elasticity, Calcolo 17 (1980) 175-193.

    Google Scholar 

  42. R. Rannacher, On the convergence of the Newton-Raphson method for strongly nonlinear finite element equations, in: Nonlinear Computational Mechanics, eds. P. Wriggers and W. Wagner (Springer, Berlin, 1991).

    Google Scholar 

  43. Y. Ren, J. Xu and C. Ting, Ginzburg-Landau equations and vortex structure of a d x2−y2 superconductor, Phys. Rev. Lett. 74 (1995) 3680.

    Google Scholar 

  44. Y. Ren, J. Xu, and C. Ting, Ginzburg-Landau equations for mixed s + d symmetry superconductors, Phys. Rev. B 53 (1996) 2249-2252.

    Google Scholar 

  45. M. Tinkham, Introduction to Superconductivity (McGraw-Hill, New York, 1996).

    Google Scholar 

  46. C. Tsuei et. al., Pairing symmetry in single-layer tetragonal Tl 2 Ba 2 CuO 6+δ superconductors, Science 271 (1996) 329-332.

    Google Scholar 

  47. T. Utnes, Two-grid finite element formulations of the incompressible Navier-Stokes equations, Comm. Numer. Methods Engrg. 34 (1997) 675-684.

    Google Scholar 

  48. G.Vainikko, Galerkin's perturbation method and the general theory of approximation for nonlinear equations, USSR Comp. Math. Phys. 7 (1967) 1-41.

    Google Scholar 

  49. D. Van Harlingen, RMP Colloquium: Phase-sensitive tests of the symmetry of the pairing state in the high-temperature superconductors-Evidence for d x 2 −y 2symmetry, Rev. Mod. Phys. 67 (1995) 515.

    Google Scholar 

  50. G. Volovik, Fermionic entropy of the vortex state in d-wave superconductors, JETP Lett. 65 (1997) 491.

    Google Scholar 

  51. Q. Wang and Z.D. Wang, Vortex state and dynamics of a d-wave superconductor: Finite-element analysis, Phys. Rev. B 55 (1997) 11756-11765.

    Google Scholar 

  52. Z.D. Wang and Q. Wang, Simulating the time-dependent d x 2 −y 2 Ginzburg-Landau equations using the finite-element method, Phys. Rev. B 54 (1996) 15645-15648.

    Google Scholar 

  53. K.Witsch, Projektive Newton-Verfahren und Adwendungen auf nicht lineare Randwertaufgaben, Numer. Math. 31 (1978/1979) 209-230.

    Google Scholar 

  54. J. Xu, A novel two-grid method for semilinear equations, SIAM J. Sci. Comput. 15 (1994) 231-237.

    Google Scholar 

  55. J. Xu, Two-grid discretization techniques for linear and nonlinear PDEs, SIAM J. Numer. Anal. 33 (1996) 1759-1777.

    Google Scholar 

  56. J. Xu, Y. Ren and C. Ting, Structures of single vortex and vortex lattice in a d-wave superconductor, Phys. Rev. B 53 (1996) 2991-2993.

    Google Scholar 

  57. J. Xu and A. Zhou, Local and parallel finite element algorithms based on two-grid discretizations, Math. Comp. 69 (2000) 881-909.

    Google Scholar 

  58. W. Xu, Y. Ren and C. Ting, Ginzburg-Landau equations for a mixed s + d symmetry superconductors with nonmagnetic impurities, Phys. Rev. B 53 (1996).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Y., Xue, W. Convergence of Finite Element Approximations and Multilevel Linearization for Ginzburg–Landau Model of d-Wave Superconductors. Advances in Computational Mathematics 17, 309–330 (2002). https://doi.org/10.1023/A:1016293508648

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016293508648

Navigation