Skip to main content
Log in

Monitoring the Formation of Kernel-Based Topographic Maps with Application to Hierarchical Clustering of Music Signals

  • Published:
Journal of VLSI signal processing systems for signal, image and video technology Aims and scope Submit manuscript

Abstract

When using topographic maps for clustering purposes, which is now being considered in the data mining community, it is crucial that the maps are free of topological defects. Otherwise, a contiguous cluster could become split into separate clusters. We introduce a new algorithm for monitoring the degree of topology preservation of kernel-based maps during learning. The algorithm is applied to a real-world example concerned with the identification of 3 musical instruments and the notes played by them, in an unsupervised manner, by means of a hierarchical clustering analysis, starting from the music signal's spectrogram.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Ritter, T. Martinetz, and K. Schulten, Neural Computation and Self-Organizing Maps: An Introduction, Reading, MA: Addison-Wesley, 1992.

    MATH  Google Scholar 

  2. T. Kohonen, Self-Organizing Maps, Heidelberg: Springer, 1995.

    Book  Google Scholar 

  3. M.M. Van Hulle, Faithful Representations and Topographic Maps: From Distortion-to Information-Based Self-Organization, New York: Wiley, 2000.

    MATH  Google Scholar 

  4. G.J. Deboeck and T. Kohonen, Visual Explorations in Finance with Self-Organizing Maps, Heidelberg: Springer, 1998.

    Book  MATH  Google Scholar 

  5. M. Cottrell, P. Gaubert, P. Letremy, and P. Rousset, “Analyzing and Representing Multidimensional Quantitative and Qualitative Data: Demographic Study of the Rhône Valley. The Domestic Consumption of the Canadian Families,” in Kohonen Maps, Proc. WSOM99, Helsinki, E. Oja and S. Kaski (Eds.), 1999, pp. 1-14.

  6. K. Lagus and S. Kaski, “Keyword Selection Method for Characterizing Text Document Maps,” in Proc. ICANN99, 9th Int. Conf. on Artificial Neural Networks, IEE: London, vol. 1, 1999, pp. 371-376.

    Chapter  Google Scholar 

  7. T. Kohonen, “Self-Organized Formation of Topologically Correct Feature Maps,” Biol. Cybern., vol. 43, 1982, pp. 59-69.

    Article  MathSciNet  MATH  Google Scholar 

  8. T. Kohonen, Self-Organization and Associative Memory, Heidelberg: Springer, 1984.

    MATH  Google Scholar 

  9. M. Cottrell and J.C. Fort, “Etude d'un processus d'auto-organization,” Ann. Inst. Henri Poincaré, vol. 23, 1987, pp. 1-20.

    MathSciNet  MATH  Google Scholar 

  10. E. Erwin, K. Obermayer, and K. Schulten, “Self-Organizing Maps: Ordering, Convergence Properties and Energy Functions,” Biol. Cybern., vol. 67, 1992, pp. 47-55.

    Article  Google Scholar 

  11. T. Geszti, Physical Models of Neural Networks, Singapore: World Scientific Press, 1990.

    Book  MATH  Google Scholar 

  12. H. Ritter, “Asymptotic Level Density for a Class of Vector Quantization Processes,” IEEE Trans. Neural Networks, vol. 2,no. 1, 1991, pp. 173-175.

    Article  MathSciNet  Google Scholar 

  13. D.R. Dersch and P. Tavan, “Asymptotic Level Density in Topological Feature Maps,” IEEE Trans. Neural Networks, vol. 6, 1995, pp. 230-236.

    Article  MATH  Google Scholar 

  14. H.-U. Bauer and K.R. Pawelzik, “Quantifying the Neighborhood Preservation of Self-Organizing Feature Maps,” IEEE Trans. Neural Networks, vol. 3, 1992, pp. 570-579.

    Article  Google Scholar 

  15. T. Villmann, R. Der, M. Herrmann, and T.M. Martinetz, “Topology Preservation in Self-Organizing Feature Maps: Exact Definition and Measurement,” IEEE Trans. Neural Networks, vol. 8,no 2, 1997, pp. 256-266.

    Article  Google Scholar 

  16. T. Graepel, M. Burger, and K. Obermayer, “Phase Transitions in Stochastic Self-Organizing Maps,” Physical Rev. E, vol. 56,no. 4, 1997, pp. 3876-3890.

    Google Scholar 

  17. J. Sum, C.-S. Leung, L.-W. Chan, and L. Xu, “Yet Another Algorithm which can Generate Topography Map,” IEEE Trans. Neural Networks, vol. 8,no. 5, 1997, pp. 1204-1207.

    Article  Google Scholar 

  18. C.M. Bishop, M. Svensén, and C.K.I. Williams, “GTM: The Generative Topographic Mapping,” Neural Computat., vol. 10, 1998, pp. 215-234.

    Article  Google Scholar 

  19. M.M. Van Hulle, “Kernel-Based Equiprobabilistic Topographic Map Formation,” Neural Computat., vol. 10,no. 7, 1998, pp. 1847-1871.

    Article  Google Scholar 

  20. J.J. Koenderink, “Simultaneous Order in Nervous Nets from A Functional Standpoint,” Biol. Cybern., vol. 50, 1984, pp. 35-41.

    Article  MathSciNet  MATH  Google Scholar 

  21. V.T. Ruoppila, T. Sorsa, and H.N. Koivo, “Recursive Least-Squares Approach to Self-Organizing Maps,” in Proc. IEEE Int. Conf. on Neural Networks, San Francisco, 1993, pp. 1480-1485.

  22. T. Hastie and W. Stuetzle, “Principal Curves,” J. Am. Statist. Assoc., vol. 84, 1989, pp. 502-516.

    Article  MathSciNet  MATH  Google Scholar 

  23. S.P. Luttrell, “Derivation of a Class of Training Algorithms,” IEEE Trans. Neural Networks, vol. 1, 1990, pp. 229-232.

    Article  Google Scholar 

  24. B.W. Silverman, Density Estimation for Statistics and Data Analysis, London: Chapman and Hall, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Hulle, M.M., Gautama, T. Monitoring the Formation of Kernel-Based Topographic Maps with Application to Hierarchical Clustering of Music Signals. The Journal of VLSI Signal Processing-Systems for Signal, Image, and Video Technology 32, 119–134 (2002). https://doi.org/10.1023/A:1016323603757

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016323603757

Navigation