Skip to main content
Log in

A Fully Implicit Parallel Ocean Model Using MUMPS

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

The formulation, implementation and performance of a new fully implicit parallel model of the ocean circulation is presented. Within this model, steady states can be traced in one of the control parameters. In addition, transient flows can be computed using relatively (compared to traditional ocean models) large time steps such that long integration times can be reached. The discretized equations of the ocean model are solved by the Newton-Raphson technique and the emerging linear systems are solved by a (MPI) version of the MUltifrontal Massively Parallel Solver. The performance of the code on an SGI Origin 2000 platform is presented here using typical results for a sector ocean flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Amestoy, I. Duff, and J.-Y. L'Excellent. MUMPS MUltifrontal Massively Parallel Solver, Version 2.0. Technical Report TR/PA/98/02. CERFACS, 42 Ave G. Coriolis, 31057 Toulouse Cedex, France, 1998.

    Google Scholar 

  2. W. S. Broecker. The great ocean conveyor. Oceanography, 4: 79–89, 1991.

    Google Scholar 

  3. H. A. Dijkstra, M. J. Molemaker, A. van der Ploeg, and E. F. F. Botta. An efficient code to compute nonparallel flows and their linear stability. Comp. Fluids, 24: 415–434, 1995.

    Article  Google Scholar 

  4. H. A. Dijkstra, H. Oksuzoglu, F. W. Wubs, and E. F. F. Botta. A fully implicit model of the three-dimensional thermohaline ocean circulation. J. Comp. Physics, 176: 685–715, 2001.

    Google Scholar 

  5. I. S. Duff, E. Erisman, and J. K. Reid. Direct Methods for Sparse Matrices, Clarendon Press, Oxford, U.K., 1986.

    Google Scholar 

  6. S. Frickenhaus. Overview of parallel sparse solvers. www.awi-bremerhaven.de/InfoCenter/IT/WorkingGroups/SciComp/SSolversUG.html, 2000.

  7. A. Gupta, F. Gustavson, M. Joshi, G. Karypis, and V. Kumar. PSPASES: An efficient and scalable parallel sparse direct solver. www-users.cs.umn.edu/mjoshi/pspases/, 1999.

  8. R. L. Haney. Surface thermal boundary conditions for ocean circulation models. J. Phys. Oceanography, 4: 241–248, 1971.

    Google Scholar 

  9. H. B. Keller. Numerical solution of bifurcation andnonlinear eigenvalue problems. In P. H. Rabinowitz, ed., Applications of Bifurcation Theory, pp. 359–384. Academic Press, New York, 1977.

    Google Scholar 

  10. S. Manabe and R. J. Stouffer. Century-scale effects of increased CO2 on the ocean-atmosphere system. Nature, 364: 215–220, 1993.

    Article  Google Scholar 

  11. J. Pedlosky. Geophysical Fluid Dynamics, pp. 315–325. Springer-Verlag, New York, 1987.

    Google Scholar 

  12. R. Peyret and T. S Taylor. Computational Methods for Fluid Flow. Springer, New York, 1983.

    Google Scholar 

  13. F. L. Yin and E. S. Sarachik. An efficient convective adjustment scheme for ocean general circulation models. J. Phys. Oceanography, 24: 1425–1430, 1994.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Kloe, J., van der Steen, A., Öksüzoğlu, H. et al. A Fully Implicit Parallel Ocean Model Using MUMPS. J Supercomput 23, 167–183 (2002). https://doi.org/10.1023/A:1016548411878

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016548411878

Navigation