Skip to main content
Log in

Constructive techniques for approximating collocation linear systems

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

A high order discretization by spectral collocation methods of the elliptic problem

$$\begin{gathered} \left\{ \begin{gathered} A_{A,b} u \equiv - \nabla [A(x)\nabla u(x)] + b(x)u(x) = c(x){\text{ on}}\;\Omega \; = ( - 1,1)^2 \hfill \\ u\left| {\partial \Omega \equiv 0,} \right. \hfill \\ \end{gathered} \right. \hfill \\ \hfill \\ \end{gathered} $$

is considered where A(x)=a(x)I 2, x=(x [1],x [2]) and I 2 denotes the 2×2 identity matrix, giving rise to a sequence of dense linear systems that are optimally preconditioned by using the sparse Finite Difference (FD) matrix-sequence {A n } n over the nonuniform grid sequence defined via the collocation points [11]. Here we propose a preconditioning strategy for {A n } n based on the “approximate factorization” idea. More specifically, the preconditioning sequence {P n } n is constructed by using two basic structures: a FD discretization of (1) with A(x)=I 2 over the collocation points, which is interpreted as a FD discretization over an equidistant grid of a suitable separable problem, and a diagonal matrix which adds the informative content expressed by the weight function a(x). The main result is the proof that the sequence {P n −1 A n } n is spectrally clustered at unity so that the solution of the nonseparable problem (1) is reduced to the solution of a separable one, this being computationally more attractive [2,3]. Several numerical experiments confirm the goodness of the discussed proposal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Axelsson and M. Neytcheva, The algebraic multilevel iteration methods-theory and applications, in: Proc. of the 2nd Internat. Coll. on Numerical Analysis, ed. D. Bainov, Plovdiv, Bulgaria, August 1993, pp. 13–23.

  2. R. Bank, Marching algorithms for elliptic boundary value problems. II: The variable coefficient case, SIAM J. Numer. Anal. 14(5) (1977) 950–970.

    Google Scholar 

  3. R. Bank and D. Rose, Marching algorithms for elliptic boundary value problems. I: The constant coefficient case, SIAM J. Numer. Anal. 14(5) (1977) 792–829.

    Google Scholar 

  4. G. Bencheva, Comparative analysis of Marching algorithms for separable elliptic problems, in: 2nd Workshop on Numerical Analysis Applications, Rousse, Bulgaria, June 2000, to appear.

  5. C. Canuto, M.Y. Hussaini, A. Quarteroni and T.A. Zang, Spectral Methods in Fluid Dynamics (Springer, New York, 1988).

    Google Scholar 

  6. G. Fiorentino and S. Serra, Multigrid methods for symmetric positive definite block Toeplitz matrices with nonnegative generating functions, SIAM J. Sci. Comput. 17 (1996) 1068–1081.

    Google Scholar 

  7. G. Golub and C. Van Loan, Matrix Computations (Johns Hopkins Univ. Press, Baltimore, MD, 1983).

    Google Scholar 

  8. D. Gottlieb and S.A. Orzag, Numerical Analysis of Spectral Methods: Theory and Applications (SIAM, Philadelphia, PA, 1977).

    Google Scholar 

  9. P. Haldenwang, G. Labrosse, S. Abboudi and M. DeVille, Chebyshev 3-D and 2-D pseudospectral solvers for the Helmholtz equation, J. Comput. Phys. 55 (1984) 115–128.

    Google Scholar 

  10. H. Kim, S. Kim and Y. Lee, Finite difference preconditioning cubic spline collocation method of elliptic equations, Numer. Math. 77 (1997) 83–103.

    Google Scholar 

  11. S. Kim and S. Parter, Preconditioning Chebyshev spectral collocation method by finite-differences operators, SIAM J. Numer. Anal. 34 (1997) 939–958.

    Google Scholar 

  12. E.H. Moore, General Analysis-Part I (Amer. Phil. Soc., Philadelphia, PA, 1935).

    Google Scholar 

  13. R. Penrose, A generalized inverse for matrices, Proc. Cambridge Phil. Soc. 51 (1955) 406–413.

    Google Scholar 

  14. Y. Saad and M.H. Schultz, GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Statist. Comput. 7 (1986) 856–869.

    Google Scholar 

  15. S. Serra, Preconditioning strategies for asymptotically ill-conditioned block Toeplitz systems, BIT 34 (1994) 579–594.

    Google Scholar 

  16. S. Serra, The rate of convergence of Toeplitz-based PCG methods for second order nonlinear boundary value problems, Numer. Math. 81(3) (1999) 461–495.

    Google Scholar 

  17. S. Serra-Capizzano and C. Tablino-Possio, Spectral and structural analysis of high order finite difference matrices discretizing elliptic operators, Linear Algebra Appl. 293 (1999) 85–131.

    Google Scholar 

  18. S. Serra-Capizzano and C. Tablino-Possio, High order finite difference schemes and Toeplitz based preconditioners for elliptic problems, Electron. Trans. Numer. Anal. 11 (2000) 55–84.

    Google Scholar 

  19. S. Serra-Capizzano and C. Tablino-Possio, Superlinear preconditioning of optimal preconditioners for collocation linear systems, Technical Report 3–99, Dip. Scienza dei Materiali, Università di Milano, Bicocca (1999).

    Google Scholar 

  20. S. Serra-Capizzano and C. Tablino-Possio, Preconditioning strategies for 2D finite difference matrix sequences, Technical Report 2–99, Dip. Scienza dei Materiali, Università di Milano, Bicocca (1999).

    Google Scholar 

  21. S. Serra-Capizzano and C. Tablino-Possio, Preliminary remarks on preconditioning strategies for 2D collocation linear systems, in: Proc. of WLSSC, eds. M. Griebel, S. Margenor and P. Yalamov, Sozopol, Bulgaria, June 1999, pp. 94–101.

    Google Scholar 

  22. S. Serra-Capizzano and P. Tilli, From partial differential equations to generalized locally Toeplitz sequences, Technical Report 12–99, Dip. Informatica, Università di Pisa (1999).

  23. E. Tyrtyshnikov, A unifying approach to some old and new theorems on distribution and clustering, Linear Algebra Appl. 232 (1996) 1–43.

    Google Scholar 

  24. E. Tyrtyshnikov, Mosaic-skeleton approximations, Calcolo 33 (1996) 47–57.

    Google Scholar 

  25. R.S. Varga, Matrix Iterative Analysis (Prentice-Hall, Englewood Cliffs, NJ, 1962).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serra-Capizzano, S., Tablino-Possio, C. Constructive techniques for approximating collocation linear systems. Numerical Algorithms 25, 323–339 (2000). https://doi.org/10.1023/A:1016621409981

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016621409981

Navigation