Skip to main content
Log in

Gradient recovery type a posteriori error estimate for finite element approximation on non-uniform meshes

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we derive gradient recovery type a posteriori error estimate for the finite element approximation of elliptic equations. We show that a posteriori error estimate provide both upper and lower bounds for the discretization error on the non-uniform meshes. Moreover, it is proved that a posteriori error estimate is also asymptotically exact on the uniform meshes if the solution is smooth enough. The numerical results demonstrating the theoretical results are also presented in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Ainsworth and J.T. Oden, A posteriori error estimators in finite element analysis, Comput.Methods Appl. Mech. Engrg. 142 (1997) 1-88.

    Google Scholar 

  2. I. Babuska and A.D. Miller, A feedback finite element method with a posteriori error estimation Part 1, Comput. Methods Appl. Mech. Engrg. 61 (1987) 1-40.

    Google Scholar 

  3. I. Babuska, O.C. Zienkiewicz, J. Gago and E.R. de A. Oliveira (eds.), Accuracy Estimates and Adaptive Refinements in Finite Element Computations(Wiley, New York, 1986).

    Google Scholar 

  4. R.E. Bank and A. Weiser, Some a posteriori error estimators for elliptic partial differential equations, Math. Comp. 44 (1985) 283-301.

    Google Scholar 

  5. T. Blacker and T. Belychko, Superconvergent path recovery with equilibrium and conjoint interpolant enhancernents, Internat. J. Numer. Methods Engrg. 37 (1994) 517-536.

    Google Scholar 

  6. C. Carstensen, Weighted Clément-type interpolation and a posteriori analysis for FEM, Technical Report 97-19, Universität Kiel (1997); Modél Math. Anal. Numér. (to appear).

  7. C. Carstensen and S.A. Funken, A posteriori error control in low-order finite element discretizations of incompressible stationary flow problem, Technical Report 99-5, Universität Kiel (1999).

  8. C. Chen and Y. Huang, High Accuracy Theory of Finite Element Methods(Hunan Science Press, Hunan, China, 1995) (in Chinese).

    Google Scholar 

  9. P.G. Ciarlet, The Finite Element Method for Elliptic Problems(North-Holland, Amsterdam, 1978).

    Google Scholar 

  10. P. Clément, Approximation by finite element functions using local regularization, RAIRO Anal. Numér 9 (1975) 77-84.

    Google Scholar 

  11. K. Eriksson, D. Estep, P. Hansbo and C. Johnson, Introduction to adaptive methods for differential equations, Acta Numerica 4 (1995) 105-158.

    Google Scholar 

  12. C. Johnson, Adaptive finite element methods for diffusion and convection problems, Comput. Methods Appl. Mech. Engrg. 82 (1990) 301-322.

    Google Scholar 

  13. M. Krizek and P. Neitaanmaki, On superconvergence techniques, Acta Appl. Math. 9 (1987) 175-198.

    Google Scholar 

  14. M. Krizek, P. Neitaanmaki and R. Stenberg (eds.), Finite Element Methods: Superconvergence, Postprocessing, and A Posteriori Estimates, Lectures Notes in Pure and Applied Mathematics, Vol. 196 (Marcel Dekker, New York, 1998).

    Google Scholar 

  15. B. Li and Z. Zhang, Analysis of a class of superconvergence patch recovery techniques for linear and bilinear finite elements, Numer. Methods Partial Differential Equations 15 (1997) 151-167.

    Google Scholar 

  16. Q. Lin and N. Yan, Construction and Analysis of High Efficient Finite Element(Hebei Univ. Press, 1996) (in Chinese).

  17. Q. Lin and A. Zhou, Some arguments for recovering the finite element error of hyperbolic problems, Acta Math. Sci. 11 (1991) 471-476.

    Google Scholar 

  18. Q. Lin and A. Zhou, Notes on superconvergence and its related topics, J. Comput. Math. 11 (1993) 211-214.

    Google Scholar 

  19. R.H. Nochetto, Pointwise a posteriori error estimates for elliptic problems on highly graded meshes, Math. Comp. 38 (1995) 437-442.

    Google Scholar 

  20. L.A. Oganesyan and L.A. Rukhovetz, Study of the rate of convergence of variational diffrence scheme for second order elliptic equation in two-dimensional field with a smooth boundary, U.S.S.R. Comput. Math. Math. Phys. 9 (1969) 158-183.

    Google Scholar 

  21. R. Verfürth, A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques(Wiley/Teubner, New York/Leipzig, 1996).

    Google Scholar 

  22. L.B. Wahlbin, Superconvergence in Galerkin Finite Element Methods, Lecture Notes in Mathematics, Vol. 1605 (Springer, Berlin, 1995).

    Google Scholar 

  23. M.F. Wheeler and J.R. Whiteman, Superconvergence recovery of gradients on subdomains from piecewise linear finite element approximations, Numer. Methods Partial Differential Equations 3 (1987) 65-82.

    Google Scholar 

  24. J. Xu and A. Zhou, Local and parallel finite element algorithms based on two-grid discretizations, Math. Comp., in press. L. Du, N. Yan / Gradient recovery type a posteriori error193

  25. Z. Zhang and J.Z. Zhu, Analysis of the superconvergent patch recovery technique and a posteriori error estimator in the finite element method (I), Comput. Methods Appl. Mech. Engrg. 123 (1995) 173-187.

    Google Scholar 

  26. Z. Zhang and H.D. Victory Jr., Mathematical analysis of Zienkiewicz-Zhu's derivative patch recovery technique for quadrilateral finite elements, Numer. Methods Partial Differential Equations 12 (1996) 507-524.

    Google Scholar 

  27. Q. Zhu and Q. Lin, Superconvergence Theory of the Finite Element Method(Hunan Science Press, Hunan, China, 1989) (in Chinese).

    Google Scholar 

  28. O.C. Zienkiewicz and J.Z. Zhu, The supercovergent patch recovery and a posteriori error estimates, Internat. J. Numer. Methods Engrg. 33 (1992) 1331-1382.

    Google Scholar 

  29. O.C. Zienkiewicz and J.Z. Zhu, The superconvergence patch recovery (SPR) and adaptive finite element refinement, Comput. Methods Appl. Mech. Engrg. 101 (1992) 207-224.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, L., Yan, N. Gradient recovery type a posteriori error estimate for finite element approximation on non-uniform meshes. Advances in Computational Mathematics 14, 175–193 (2001). https://doi.org/10.1023/A:1016676917360

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016676917360

Navigation