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Abstract. The distribution of the remaining service time upon reaching some target level in an M/G/1
queue is of theoretical as well as practical interest. In general, this distribution depends on the initial level
as well as on the target level, say, B. Two initial levels are of particular interest, namely, level “1” (i.e.,
upon arrival to an empty system) and level “B — 17 (i.e., upon departure at the target level).

In this paper, we consider a busy cycle and show that the remaining service time distribution, upon
reaching a high level B due to an arrival, converges to a limiting distribution for B — oo. We determine
this asymptotic distribution upon the “first hit” (i.e., starting with an arrival to an empty system) and upon
“subsequent hits” (i.e., starting with a departure at the target) into a high target level B. The form of the
limiting (asymptotic) distribution of the remaining service time depends on whether the system is stable
or not. The asymptotic analysis in this paper also enables us to obtain good analytical approximations of
interesting quantities associated with rare events, such as overflow probabilities.
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1. Introduction

In this paper, we study the distribution of the remaining service time upon reaching a
high level (typically corresponding to full buffer) due to a customer arrival inan M/G/1
queueing system. This problem was originally motivated by research on the efficient
simulation of consecutive loss in such queueing systems [3]; other applications include
an approximate calculation of consecutive-loss probabilities (see section 8.3), and im-
proving RESTART simulation (see [6]).

* Corresponding author.
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Consider an M/G/1/B queue without service interruptions. Initially, assume that
it is empty, i.e., there are neither customers waiting nor in service. After some time,
the queue may become full, i.e., there are a total of B customers in it, one of which
is being served. We are interested in the distribution of the remaining service time of
the customer being served at the moment full buffer is reached. After the full-buffer
state is left, the queue will sooner or later either become empty (marking the end of
the busy cycle), or reach full buffer again during the same busy cycle; more full-buffer
periods may follow in the same busy cycle. Because of the memoryless arrival process,
the second and later full-buffer hits are stochastically equivalent, so we will refer to
them as subsequent hits in this paper. The first full-buffer hit in a busy cycle is in
general different from subsequent full-buffer hits, and will be referred to as the first
hit.

A huge amount of literature exists on the study of the single-server queue with
all its variants; however, little is related to this problem. The closest we found was a
discussion of the distribution of idle periods in a stable GI/M/1 queue in [4, chap-
ter 11.5.10]. The stable GI/M /1 queue is the dual of the unstable M/G/1 queue, so
those idle periods correspond to the remaining service times for “subsequent” hits to
full buffer in an unstable M/G/1 queue. Our analysis is more comprehensive, as it
treats the stable as well as the unstable M/G/1 queue, and also the “first” as well as
“subsequent” hits. In [4, chapter II1.6.3], there is a discussion of a related subject:
the stationary joint distribution of the number of customers and the past service time
in an M/G/1 queue. In [1] the equilibrium distributions of the past and remaining
service times upon arrival to a given level in an M /G/1 queue are calculated; equilib-
rium here implies that no distinction between first and subsequent hits is made: they are
“mixed” according to the frequency with which they occur. Finally, in [5] the expected
value of the remaining service time upon arrival to a given level in G/G/1 queues is
studied.

We start by introducing some notation in section 2. Next, we derive some results
for a hypothetical “doubly-unbounded” M/G/1 queue in section 3. These results are
used in section 4 to find approximate results (accurate for large B) for the real bounded
M/G/1/B queue. Those results allow us to calculate the distributions of past and re-
maining service times in section 5. However, this analysis does not hold for systems
where the average service time equals the average inter-arrival time; to derive results for
this case, we use a limit procedure in section 6. As a by-product of the analysis in this
paper, we can also obtain an (asymptotically tight) approximation for the probability
of reaching full buffer in a busy cycle, as demonstrated in section 7. Section § illus-
trates the accuracy of our results by comparing them with results from exact numerical
analysis and simulation. We present a summary of the results together with conclusions
in section 9. Note: the results in this paper are only valid if a technical condition is
satisfied (see (4)); this excludes cases where the service time distribution has a heavy
tail.
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2. Notation

Throughout this paper, we will use some notational conventions which are introduced
here. First, three generic random variables are defined:

e X is the (total) service time,
e Y is past service time upon hitting full buffer,

e Z is the remaining service time upon hitting full buffer.

Note that the distributions of Y and Z can be defective (in cases where there is a nonzero
probability that full buffer is not reached in a given busy cycle); the defect will be rep-
resented by a probability mass at +00. We will also consider the distributions of ¥ and
Z conditional on reaching full buffer, and denote these by Y |fb and Z|fb, respectively;
these are nondefective, of course.

For probability distributions the following notation is used, using the random vari-
able W as an example:

e fw(-) is the probability density function,

e Fy (+) is the distribution function,

e Fy () is the complementary distribution function: Fy(w) =1 — Fy(w),

° I?W(-) is the Laplace—Stieltjes transform of Fy (-): fw (s) = fooo e ST dFy ().

We use the symbol P(FE) to denote the probability of the event E, and EW to denote the
expected value of a random variable W.

The arrival process is Poisson; its arrival rate is denoted by A, and the system load
is denoted by p, with p = AE(X).

Finally, the symbol for approximate equality (%) in this paper is understood to
imply equality in the limit of infinite buffer size B;i.e., the limit for B — oo (sometimes
i — o00) of the quotient of the left-hand side and the right-hand side is 1.

3. The doubly-unbounded M/G/1 queue

In this section, we study the “doubly-unbounded” M/G/1 queue. This hypothetical
system is identical to the usual M/G/1 queue with infinite buffer, except for one detail:
if the buffer becomes empty, the service process continues, so the buffer content (number
of customers in the system) can become negative; in fact, we allow it to become infinitely
negative. Of course, this has no physical interpretation, but it is useful as a step towards
studying the bounded M /G /1/B system in the next section.

For this doubly-unbounded queue, we consider the state of the system at the be-
ginning of service epochs. Because of the memoryless arrival process, these instants
together form an (embedded) Markov chain. Let N, (with —oo < N, < 00) denote the
buffer content at the nth embedded point, i.e., at the beginning of the nth service period
n=1).
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We define g; as the probability of exactly j arrivals during one service interval.
Therefore,

N 4
(As) s
qj =/ — € S dFx(s).
0 J:

Next, we define ri(") as the probability that N, = i, assuming that the first service starts
in state 0. Furthermore, we define r; as the expected number of times the Markov chain
visits state i. Clearly,

oo
ri = Zri(").
n=1

Note that although r; is the expected number of visits during an infinite interval, it is
(in general) a finite number, because the system will eventually drift to either —oo (if
p <1)or+4oo (if p > 1).

It is easily seen that r"”

i

must satisfy the following recursion for n > 1:

o
ri(n) = Z qui(f;—}-)l’ 6]
j=0
with boundary condition at n = 1:
2

m def. | 1 ifi =0,
r, = Ii:() = .
0 otherwise,

because we start at level 0. Suppose one were to start in state m instead of 0, which
corresponds to replacing I;—¢ by I;—,, in the above equation. Since the system is doubly-
unbounded, the resulting solution / would just be a translated copy of the original solu-
tion, i.e., r/ = ri_.

We now define V (z) as the z-transform of g;; it can be expressed in terms of the
Laplace—Stieltjes transform F 'y (+) as follows:

[e¢)
V(@)=Y z/q; = Fx( — 12). 3)
j=0
Below, we will also need the solutions of the equation
V(K) =K. (€))

It is easily seen that V (z) is a convex function, that V(1) = 1 (so 1 is a solution to (4)),
and that V(1) = p. Because of these facts, (4) can have at most one other solution,
which must be greater than 1 if p < 1, and less than 1 if p > 1. For our analysis, we
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Table 1
Properties of K| and K>, solutions of V(K) = K.
Case Ky V(K1) Ky V/(K»)
p <1 1 0 K >1 > 1
p>1 K <1 <1 1 P

assume that this second solution of (4) does indeed exist,! and we denote it by K (# 1).
Again because of convexity, V'(K) must be greater than 1 if p < 1, and less than 1 if
p > 1. We denote the two solutions of (4) by K| and K,, where 0 < K; < Kj5; table 1
summarizes their properties.
In appendix A we prove the following theorem:

Theorem 1. Given the recursion (1) with initial condition (2), the sum r; = Z;il i(")
(which can be interpreted as the expected number of visits to state i of the embedded
Markov chain of the doubly-unbounded system) has the following properties:

K .
rp=——2L1  fori <0, (3)
1 - V'(K))
and
lim K! 1 (6)
m ri = s
im0 2T VI(Ka) — 1

where 0 < K| < K, are the two solutions of V(K) = K.

Note that (6) can also be written as

Ky fori >0 @)
ri ~ ————  fori .
V(K> — 1

4. The bounded M/G/1 queue

Let us now turn to the “real” system, the bounded M/G/1/B queue. Because of the
Poisson arrival process, we can again define an embedded Markov chain with embedding
points at the beginning of service epochs. At those embedded points, the state variable
of interest is the number of customers in the system. Starting in state A (i.e., with A
customers in the system, and at the beginning of a service period), we study the evolution
of the embedded Markov chain until absorption, which happens in either of two ways:

I'For p < 1, such a solution K > 1 obviously only exists if the Laplace transform F 'y (+) exists for negative
values of its argument. If the tail of the probability distribution of the service time X decays less than
exponentially fast, this is a problem. In particular, K does not exist for distributions with a heavy tail, so
the results in this paper are not applicable in such cases.



60 P.T. DE BOER ET AL.

e Full buffer: if during one service, so many arrivals occur that there would be B or
more customers in the system just before the completion of this service, full buffer is
reached.

e Empty system: if there is only one customer left in the system, and during his service
no others arrive, the system would be empty at the completion of this service.

We will now proceed to determine the expected number of times E; the embedded
Markov chain visits state i, starting from level A and ending in one of the above two
absorbing states.

In the previous section, we have determined r; for the doubly-unbounded queue
starting in state 0. Those results can be used to obtain E; as follows: if one would just
use the 7; results (shifted by A, to accommodate the fact that we start in state A instead
of 0), one would overestimate E;. In order to compensate for this error, we compare
the expected number of times state i is visited in the bounded system (E;) and in the
unbounded system (E; = r;_4):

e First, we have a contribution which is the same for both E; and E;, corresponding to
the evolution up to absorption (i.e., full buffer or empty system).

e Second, if the systems reach level 0 before level B, the bounded system stops (empty
system), whereas the unbounded system continues, giving some additional contribu-
tion to E;. This is exactly as large as the contribution that would be produced by start-
ing from state 0, which we know is given by r;. In order to cancel this contribution,
we need to determine the probability « that the unbounded system indeed reaches
level O before level B. Then the correction term for E; is clearly given by —ar;.

e Third, if the systems reach level B before level 0, the bounded system stops (full
buffer), whereas the unbounded system continues, giving an additional contribution
to E (for i < B) only if it down-crosses into state B — 1 later on. This contribution
is exactly as large as the contribution that would be produced by starting from state
B — 1, which is given by r;_p,;. In order to cancel this contribution, we need to
determine the probability g that the unbounded system down-crosses into level B — 1
before reaching level 0. Then the correction term is given by —Br;_g1.

Note that if p > 1, the system may not return to level B — 1 after having passed
level B; in this case § is not equal to 1 — «. On the other hand, if p < 1, then
B=1—-a.

Figure 1 shows four typical sample paths of the number of customers in the buffer
as a function of time in the unbounded system. The filled circles represent the embed-
ding points of the embedded Markov chain. The lines at levels O and B represent the
absorption of the bounded system at empty system and full buffer, respectively. The dot-
ted parts of the paths are the parts that must be compensated for by the above procedure.
Note the difference between what happens to paths that reach level B and to paths that
reach level 0. In the former case, compensation is necessary only if the buffer content
returns to level B — 1 (which may never happen if the arrival rate is higher than the
service rate, i.e., p > 1).
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level

B-1 l ----- :

A

time

Figure 1. Illustration of typical sample paths in the doubly-unbounded queue. In the bounded queue, the
dotted parts of the sample paths must be cancelled.

From the above, it follows that E; is given by r;_, (that is, the expected number
of visits to level i starting from level A in the doubly-unbounded system), minus the
contribution due to sample paths beyond absorption at level O (i.e., «r;) and level B (i.e.,

Bri—p+1):
Ei =ri_a—ar; — Bri_p41. (8)

The value of the starting level A is determined by whether first or subsequent hits are
being considered. The values of « and 8 can be determined by applying the appropriate
boundary conditions, as will be shown in the sequel.

4.1. Firsthit: A =1

In the case of first hit, we start in state 1, thus A = 1. In the bounded system, the
embedded Markov chain cannot reach state O or B — 1 because of absorption (which
would occur before or upon entering either state). As we also do not start in either of
these states, we know that £y = 0 and Ep_; = 0. By inserting this into (8), we find the
conditions for @ and B:

0=Ey=r_1 —arg— Br_pqi )
and

0=Ep_ 1 =rpo—arg_1 — Pro. (10)
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Substituting for r; from (5) and (7) we get the following two equations:
Ki—a—-pK'=0
and
Ky " V(Kr—a) B
Vi(Ky) — 1 1 —V(Ky)
By substituting from (5) and (7) into (8), and then using the above equation to elimi-

nate 8, we can write E; for 1 < i < B as follows:

K2—i+l Kz_l ﬂ K[—H—B—l
R —o —
Vi(Ky) — 1 V(K — 1 1 - V'(Ky)
KK o) KB RSPV (K, — )
VI(Ky) — 1 VI(Kz) — 1
_ KK o)
Vi(Ky) — 1

Writing this properly as a limit gives us:

i

(KZB—i—l _ KlB_i_l).

Theorem 2. The expected number of visits E_; to state B — j of the M/G/1/B em-
bedded Markov chain, starting from state 1, has the following asymptotic behaviour for
large B:
. E B—j K 22—
Bhn;o —(B—D) i1 N T VUK -1
—~o K, (Ky~ —K{™) (K2)

(1D

For the moment, we do not need the value of « and defer its calculation to section 7.
4.2. Subsequent hits: A= B — 1

In the case of subsequent hits, we start in state B — 1, thus A = B — 1. In the bounded
system, the embedded Markov chain cannot reach this state again (because of absorp-
tion), so the total number of visits to this state must be 1, i.e., Eg_; = 1. Furthermore,
since state 0 is an absorbing state, it is considered unreachable, so Ey = 0. By inserting
this into (8), we find the equations for determining o and S:

| =Eg_1=r9—arg_1—Pro
and

O0=Ey=r_py1 —arg— Br_pyi1.
Substituting for r; from (5) and (7) in the above, we get

K;®7Y B 1 |
o— —B)——————— =~
VI(Ky) —1 1—-V'(Ky)
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and
—a+ (1=K =0
Solving for & and B yields
a=(1-pKl! (12)
and
1 KE-1g;BD 1
~ -2 + :
1-p VI(Ky) — 1 1 —V'(Ky)

By substitution into (8), we find for 1 <« i < B

(13)

Kl—i+B—l KlB—le—i
E o~ _1ZVED T V/(Kp-—1
i~ ) KBk, B0
|
1-V'(K) V' (Ky)—1

Note that because K;/K, < 1 for any p # 1, the second terms of both the numerator
and the denominator vanish for large B and large i, which yields:

Theorem 3. The expected number of visits Ep_; to state B — j of the M/G/1/B em-
bedded Markov chain, starting from state B — 1, has the following asymptotic behaviour
for large B:

E .
lim —= =1, (14)
B—o0 Klj_
which for p < 1 reduces to
Bh—>n;oEB_j =1. (15)

Remark. Here we give a less rigorous, but more intuitive explanation of (15).

Consider the embedded Markov chain of the bounded system at service beginning
epochs, in the limit for B — oco. The probability of going from state m to state m — 1 is
simply equal to the probability of no arrivals during a service period, which we hence-
forth denote by y. Starting in state m, define E,, to be the expected number of visits
to state m before reaching any state above m. Clearly, E,, > 1, since the starting in
state m is also counted. Furthermore, for infinitely high levels E,, is independent of m,
so E,, is equal to some constant E. Since we are considering subsequent hits, E,, (as
defined earlier) is the expected number of visits to state m, starting from state B — 1 until
absorption due to a full buffer or an empty system. One can easily see that it must satisfy
the recursion E,, = yEmHEm, which for sufficiently large m reduces to

Em ~ CEm+l
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with C = y E. Since the starting state B — 1 is never visited again until absorption,
Egp_1 = 1is aboundary condition for the above recursion. It follows that

E,~CE™ 1 forl<«m<B-1.

To determine C, we use the following two arguments. Since the embedded Markov
chain eventually reaches an absorbing state at full buffer or empty system, E,, must be
bounded for all m and B (with m < B), which is possible only if C < 1. On the
other hand, since p < 1, there is a nonzero probability that the embedded Markov chain
eventually reaches state 0. Therefore, E,, must not vanish for low values of m even at
large B, which is possible only if C > 1. Obviously, the only value of C which satisfies
both conditions is C = 1. Consequently, E,, = 1,forl <K m < B — 1.

5. Past and remaining service time distributions

Denote by X,, the duration of the service that starts at the nth embedded point (n > 1).
As for the doubly-unbounded system, N, is the state (number of customers) of the sys-
tem at the nth embedded point. Without loss of generality, we assume that after ab-
sorption (due to either full buffer or empty system) the embedded Markov chain enters
state 0 and stays there, i.e., N, becomes 0. Define S, to be the time, starting from the nth
embedded point, until full buffer would be reached in the absence of any further service
completions. Clearly, S, has an Erlang—(B — N,,) distribution, whose density for a given
N, = i we denote by g;(s); thus

()\.S)B_i_l
B_i—1"

Write the past service time distribution as a sum over a set of disjoint events, which
together cover all ways the event Y < y can happen:

—As

gi(s) = fs,(s | Ny = i) = A

oo B-1
Fy()=PY <y) =) Y PS, <yAS <X, AN, =1i).

n=1 i=1
Note that if S, < X, then n is the last embedded point before reaching full buffer, in
which case Y = §,,. Furthermore, the second summation is over the nonabsorbing states
1 <i < B — 1, thus restricting the first summation to embedded points until absorption.
Next, conditioning on N, =i gives

oo B-1
Fy(y) =) Y P(Sy <y A Sy < Xy | Ny =i) PN, = ).

n=1 i=1

Using the independence of S, and X,,, and Zoo P(N,, =1i) = E;, we find:

n=1

B-1 o0 o0 y
Fr(y)=)_E / f Ii<y Ii<x dFx (x)gi (s) ds = / Fx(s)H(s) ds,
i—=1 0 0

0
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where H (s) is defined as

B-1 B-2 (hs)
_ . L —As .
H(s) = ;g ()E; = 2 ; e M Ep . (16)
By differentiation, one finds the probability density of Y
dFy(y) =
fr) = == = HOFx (). (17)

which holds only if Fx(x) is continuous at x = y. At a discontinuity of Fx(-), fy does
not exist.

Similarly we can write for the remaining service time distribution upon reaching
full buffer

oo B-1

Pz<Z<o0)=) Y P(X,— S8, >2z|N,=i)P(N, =1i)

n=1 i=1

B-1 o0 o0
=Y E / f I~ dFx(x)gi(s) ds
i=1 0 Jo

:/ Fx(z + s)H(s) ds.
0

Differentiation yields the probability density:

dP(Z > z) d [*—
Q== ——/ Fx()H(t —z)dt
Z dz J,
=FX(Z)H(O)+/_ Fx()dH(t — 2)

= Fx(2)H(0) — Fx(2)H(0) — / H(t —z)dFx (1)
z
= [ Ha-sarao. )
z
Just like fy, also f7 does not exist at discontinuities of Fx(").

5.1. First hit

For the first hit and p # 1, E; is given by (11), and using (16) we find the asymptotic
expression for H (s):

B-2

KB V0K — ) [ 522 (AsKo)
H ~ 2 —As _
(s) V(K —1 ; T )

(AsK)) e_M>

il

=
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N K;(B_l))\-(KZ _ a) ()\,SKz) —)»S ()\.SKl)i s
T ViKY — 1 Z; Z T

i=0

K PTOMEK, —a)
S V(K-
According to (17), we find the probability density of the past service time upon

reaching full buffer by multiplying H (y) by Fx(y). For p < 1 we have K; = 1, so this
can be simplified to

(ek(Kz—l)s . eA(Kl—l)s).

KB V0K, — @)

fr(y) ~ = Vi) < 1 (FmY — 1) Fx(y),
and for p > 1, we have K, = 1, yielding
Al —a) .
fr(y) = ﬁ( — etk 1)“‘)1'71)(()1).

The above distributions are, in general, defective. If only the conditional distribution of
the remaining service times is of interest (i.e., conditional on reaching full buffer), the
above expressions and (18) can easily be normalized, leading to:

Theorem 4. The probability densities of the past and remaining service times in an
M/G/1/B queue, conditional on reaching full buffer, and starting from empty system,
have the following asymptotic form:

. A - i
pim, frm®) = 7 (5 = ) (19)
and
. A
i fzm@ =1 / (MDD — 1) dFx (1), (20)
Z

with K = Kyifp<land K =K ifp > 1.
5.2. Subsequent hits

For subsequent hits and p # 1, E; is given by (14). As in the previous section, H (s) can
be found using (16), yielding

H(S) ~ )Le)n(Kl—l)S’
so according to (17) the past service time density is

fr() & a®=DYFy(y), (21)

and the remaining service time density is

fZ(Z) ~ )»/ eA(K1—1)(t—z) dFX(t). (22)
z



THE REMAINING SERVICE TIME UPON REACHING A HIGH LEVEL 67

Note that for p > 1, these distributions are not defective. For p < 1 we have K; = 1,
which reduces the above expressions to

fr() ~AFx(y), f2(2) ~ AFx(2).

These are defective distributions. Their total probability is easily shown to be p, allowing
us to calculate the densities conditional on reaching full buffer.

Theorem 5. The probability densities of the past and remaining service times in an
M /G /1/B queue, conditional on reaching full buffer, and starting from full buffer, have
the following asymptotic form:

A —
. —Fx(y) for p < 1,
I}LH;O fY|fb(y) =3P B

rer K=y Py () forp > 1

and

A
—Fx(2) for p < 1,

Bh_)Ir;<> fzip(2) = %0
A/ M Ki-De-DqF (1) forp > 1.
Z

6. Thelimit p — 1

For p = 1, equation (4) has only one solution (K and K, approach 1 as p approaches 1).
Since the analysis so far assumes two distinct solutions of (4), the obtained results may
not hold for p = 1. However, we show that the limits of these results as p 1 1 and as
p | 1 exist and are identical, so we can assume them to be the result for p = 1.

6.1. First hit
In order to calculate the limit for the first hit, we need to examine the behaviour of K for

p near 1. Consider the function

V(z) —z
g(p,z2) = 1—z2
1—»p forz =1,

forz # 1,

where V (z) is given in (3). The function g(p, z) as defined above is continuous at 7 = 1,
because lim,_,; g(p, z) = 1 — p (using L’Hospital’s rule).

Clearly, for p # 1, the solution K of the equation g(p, K) = 0, is the same K # 1
which is defined in section 3 as a solution of (4). Note that for p — 1, also K — 1.
Calculation shows that for all p

ag(p, 2) VE(X?) ag(p,2)
aZ = —-— and

=1 2 dp z=1

=—1.
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Then the implicit function theorem applied to g(p, z) at z = 1 and p = 1 implies that

2

dk — dg(p.2)/op|
T E(X?)

m — =
p—~1dp 0g(p,2)/0z

z=1

Using L’Hospital’s rule, we get the following limit:

K-1
lim L(el(lf—l)y 1) =1l A(d/dp)(ek( Y 1)
p—>11—p p—>1 (d/dp)(1 — p)
d 2y
=—-A— (MK -1
d,o( ( )y)

L EX?)

p=

which we substitute into (19) to find the conditional probability density of the past ser-
vice time for the first hit:

2y —
lim ~ ——F .
pare’ fY|fb(y) E(Xz) x(y)
Similarly, the limit of the conditional remaining service time distribution for the first hit
(as given by (20)) is

. 2 OO
,4171—>ml fzim(2) = W/; (t —z)dFx(1).

6.2. Subsequent hits

To get the past service time distribution for subsequent hits when p = 1, we need to
calculate the limit of (21) and (22) for p — 1. These limits are trivial, since these
functions turn out to be continuous at p = 1. So all results derived in section 5.2 are
also valid for p = 1.

7. Approximation for full-buffer probability

In section 5, we found expressions for the asymptotic distributions of the past and re-
maining service times upon reaching a high level (e.g., full buffer in the bounded sys-
tem). It was noted that these distributions are defective; i.e., the total probability of these
distributions is less than 1. This defect of course represents the fact that the system does
not always reach full buffer.

In section 4 we defined « to be the probability that the bounded system hits level O
before reaching full buffer. As any path must either be absorbed at O or at B, we can
conclude that the probability of reaching full buffer (i.e., absorption at B) is given by
1 — «, which we calculate in the following.
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7.1. First hit

Eliminating g8 from (9) and (10) in section 4.1 gives:

K, P V(K —)  KPTV(E —w)
V(K> —1 1 —V'(Ky)

Forboth p <1 (K = K;)and p > 1 (K = K}), this is

K-®-D(K — ) N l -«
VI(K)—1 1—p’

SO
~ K~ DK —1)
T (VK = D/ —p) — KB

which for large B approaches

l -«

K(K-DU=p) 5
| — o~ Vi) —1 K forp <1, 23)

1-K for p > 1.

Remark. Relationship with large deviation results:

For p < 1, the decay rate of the full-buffer probability in (23) is given by log K,
where K is determined from (4). For verification, we will now show that this is equal to
the decay rate obtained using large deviation theory.

According to [7], the large-deviations calculation of the decay rate of the full-
buffer probability starts by finding the nontrivial solution 6* of the equation Fx(—0%) =
(A +6%)/A. Then the decay rate is given by log K, with K’ = (1 +6*)/A. Using the
latter equality to rewrite the former in terms of K’, we get Fy(A — AK’) = K'. This is
equivalent to (4), so K’ = K.

Finally, it is interesting to note that V'(K) can easily be shown to be the traf-
fic intensity (i.e., average arrival rate divided by average service rate) in the so-called
“O*-conjugate” system, in which the inter-arrival and service time distributions are expo-
nentially twisted with the parameters 6* and —6*, respectively, [7]. This has applications
in simulation speed-up techniques based on importance sampling.

7.2. Subsequent hits

For calculating the full-buffer probability for subsequent hits, we start from equations
(12) and (13). By substituting the latter into the former, we obtain:

B-1
Kl

B—1 —(B-1)
_K K n 1
V/(K2)—1 1-V/(Ky)

o~
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This can be simplified by considering the cases p < 1 and p > 1 separately. First the
case p < 1, which implies that K; = 1 and K = Kj:
1
l—a%l—wzl), (24)
TVI(EK)—1 T—p
where the second step uses the fact that B is large and K > 1. For the case p > 1, which
implies that K = K and K, = 1, we find:
1 -
1—a%1—m%1—(1—V/(K))KB N (25)
T o—1 1-V'(K)
where the second step uses the fact that B is large and K < 1. From this, one sees that
the full-buffer probability 1 — o ~ 1, which is not surprising, since we start from just

below full buffer in a system with a higher arrival rate than service rate (p > 1).

8. Numerical validations and an application

In the previous sections, we have derived several asymptotic results which are valid for
infinitely high levels in M /G /1 queues. For sufficiently high levels, the results may still
be used as approximations. In general, it is difficult to calculate error bounds for these
approximations. However, we note that many of the approximations involve neglecting
terms of the form K2 (if K < 1) or K~ 8 (if K > 1). For such a term to be very small,
B must be very large and/or K must be far from 1. The value of K depends both on
the form of the service time distribution Fx(-) and on p. If p approaches 1, K also
approaches 1. Consequently, we can expect the approximation to be good if B is large
and p is not close to 1.

8.1. Example: M/D/1/B

In order to illustrate the validity of the approximations, we first consider a simple
M/D/1/B queue. We assume the deterministic service time to be 1, thus E(X) = 1, and
p = A. This leaves two parameters to vary, namely, p (traffic intensity) and B (buffer
size).

First, we will test our approximations for the full-buffer probability, presented in
section 7. For this queue, the true value of the full-buffer probability can also be com-
puted numerically. To validate our approximations, table 2 shows both the approximate
and the true values of the probability of reaching full buffer, starting from an empty sys-
tem (i.e., first hit) and starting from level B — 1 (i.e., subsequent hits). As expected, the
approximation is good for large B and for p not close to 1.

The accuracy of the approximations for the remaining service time distribution
upon first and subsequent full-buffer hits is illustrated in figure 2. (Note in this example
that because of the deterministic service time of 1, the remaining service time cannot ex-
ceed 1.) As a reference, simulation results are shown (with solid lines); these of course
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Table 2

71

Comparison of approximation and true values for the probability of reaching full buffer in an

M/D/1/B queue.

Full buffer 0 B Approximation Exact Difference (%)
First hit 0.8 5 8.327-1072 9.851-1072 15
10 9.659 - 10~3 9.835.1073 1.8
20 1.2996 - 10~4 1.2999 . 104 0.024
40 2.3526- 1078 235261078 0.000004
0.95 5 0.06891 0.1933 64
10 0.04144 0.06759 39
20 0.01498 0.01742 14
40 0.001959 0.001995 1.8
1.05 5 0.09370 0.2700 65
10 0.09370 0.1560 40
20 0.09370 0.1101 15
40 0.09370 0.09570 2.1
1.2 5 0.3137 0.3900 20
10 0.3137 0.3233 3.0
20 0.3137 0.3139 0.069
40 0.3137 0.3137 0.000035
Subsequent hit ~ 0.95 5 0.95 0.8597 11
10 0.95 0.9184 3.4
20 0.95 0.9419 0.9
40 0.95 0.9491 0.09
1.05 5 0.9674 0.9060 6.8
10 0.9800 0.9668 14
20 0.9925 0.9912 0.13
40 0.9990 0.9989 0.002

have some small statistical errors, at most 0.004 with 95% confidence. The analytical
approximations (plotted with dashed lines) are given by the expressions shown in the
figure, which follow directly from the analysis in section 5. Clearly, the approximate an-
alytical distributions agree quite well with the simulation results, especially considering
the fact that we have a relatively small B and p close to 1.

8.2. Example: M/H,/1/B

As an example with nondeterministic service time, we consider an M /H,/1/B queue.
We choose the hyperexponential service time distribution such that the service rate is
either 2 (with probability 1/2), or 2/3 (with probability 1/2); thus E(X) = 1 and p = A.

Let us first test the approximation for the full-buffer probability. Table 3 shows
the results from our approximation, as well as results from a numerical computation for
comparison. Clearly, for p not close to 1, our approximation is quite good. A comparison
with table 2 suggests that for the same p, the approximations are better for the M/D/1/B



72 P.T. DE BOER ET AL.

1 T T T T
— Simulation
Fym(z) | ----- Approximation
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Figure 2. Remaining service time distributions in an M /D/1/10 queue.

system than for the M/H,/1/B system. Presumably, this is due to the larger variance of
the service time in the latter system.

For the M/H,/1/B queue, figure 3 shows the remaining service time distribution
obtained from our analytical approximations and from simulations. Again, the agree-
ment between our approximations and the simulation results is evident.

8.3. Application: estimation of consecutive cell loss probabilities inan M/G/1/B
queue

As an application example, we consider the calculation of consecutive-cell-loss (CCL)
probabilities in M/G/1/B queues. This has applications in the estimation of the
Quality-of-Service (QoS) provided by ATM (Asynchronous Transfer Mode) telecom-
munication systems. The word “cell” in CCL refers to the packets of data with which an
ATM system transports information; for the purpose of the present paper, they are just
customers arriving to the queue. The n-CCL probability, denoted by y,,, is defined as
the probability that during one busy cycle, at least once a group of n consecutive arrivals
(cells) are all lost (due to buffer overflow). The estimation of y,, has been studied before
in [3], using simulation.

In order to simplify the calculation of y,,, start by noting that all n cells that are lost
consecutively in the n-CCL event, must arrive during a single full-buffer period, since
between two full-buffer periods at least one arrival is accepted. This allows us to write
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Table 3
Comparison of approximation and true values for the probability of reaching full buffer in
an M /H,/1/B queue.

Case o B Approximation Exact Difference (%)

First hit 04 10 0.0005005 0.0005007 0.054
20 3.098 - 1077 3.098 - 1077 0.00

06 10 0.00717 0.00728 1.5
20 1.213-107% 1.213-1074 0.024

0.8 10 0.03051 0.03618 16
20 5.145.1073 5.284.1073 2.6
12 10 0.1363 0.1744 22

20 0.1363 0.1436 5.1

1.6 10 0.3175 0.3238 1.9

20 0.3175 0.3177 0.05

20 10 0.4342 0.4355 0.3

20 0.4342 0.4343 0.00

Subsequent hit 0.4 10 0.4000 0.3997 0.07
20 0.4000 0.4000 0.00

06 10 0.6000 0.5942 0.97
20 0.6000 0.5999 0.016

08 10 0.8000 0.7629 49

20 0.8000 0.7946 0.68

12 10 0.9563 0.9441 1.3
20 0.9899 0.9894 0.053

1.6 10 0.9885 0.9882 0.03

20 0.9997 0.9997 0.00

20 10 0.9972 0.9972 0.00

20 1.0000 1.0000 0.00

¥, as follows:
Vo =VYPin + ——————

1_¢(1 _pn),

where the following definitions have been used:

73

(26)

e y = the probability of reaching full-buffer in a busy cycle (i.e., reaching level B,
after starting from level O and before reaching 0 again).

e ¢ = the probability of reaching yet another full-buffer period in the same busy cycle

(i.e., reaching level B, after starting from level B — 1 and before hitting level 0).

e py, = the probability of n or more arrivals during the first full-buffer period in a busy

cycle.

e p, = the probability of n or more arrivals during a subsequent full-buffer period.

Note that these probabilities are well-defined due to the fact that the arrival process
is memoryless, and the fact that the second and later full-buffer periods are stochastically

equivalent.
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Figure 3. Remaining service time distributions in an M/H,/1/10 queue.

Two of the four probabilities involved, namely, y and ¢, are simply the probabil-
ities of reaching first and subsequent full-buffer periods, respectively, which can (for
large B) be approximated by 1 — « as calculated in section 7 (equations (23) and (24)).
The other two, p1, and p,, are the probabilities that at least n (Poisson) arrivals occur
during a first and a subsequent full-buffer period, respectively. If the distributions of
those durations are known, these two probabilities can be estimated using a straightfor-
ward integration:

e} 00 A i

Pin= /O e—“;(;) 4G, (x), @7)
) . o (kx)i

pnzfo e ; g dG(x), (28)

where G (-) and G (-) are the distribution functions of the duration of first and subsequent
full-buffer periods, respectively. If the overflow level B is high enough, G(-) and G(-)
can be approximated by the asymptotic distributions that we have derived in the present
paper (theorems 4 and 5).

As an example, consider an M/D/1/B queue, with arrival rate 0.8 and determin-
istic service time d = 1. The approximate values for y and ¢ can be read from table 2.
The duration of the first full-buffer period asymptotically has a density dG;(x)/dx of
the form (e*430840-% _ 1) while the distribution G(x) of the duration of subsequent
full-buffer periods asymptotically is uniform on [0, 1]. By numerical evaluation of the
integrals in (27) and (28), approximate values of p;, and p, can be calculated. Finally,
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Table 4
Analytic approximation of n-CCL probability for
M/D/1/B queues, with A = 0.8 and d = 1.

B n yn (anal. appr.) ¥n (exact)
5 1 5.412 . 1072 6.018 - 1072
4 7.239.10~4 7.246 - 1074

16 1.330- 10717 1.329.10~17

64 1.174 - 10798 1.175-10798
10 1 6.278 - 1073 6.352-1073
4 8.388-107° 8.398 - 107

16 1.542.10718 1.542-10718

64 1.362- 10799 1.363-10799
20 1 8.447 .10 8.448 . 107
4 1.130-107° 1.130-107°

16 2.075 - 10720 2.075- 10720

64 1.832 . 107101 1.834 - 107101

the four probabilities are substituted into (26) to obtain the n-CCL probability. The
results are shown in table 4, for several values of B and ».

For this relatively simple problem, it is also possible to calculate the n-CCL proba-
bility exactly, by carefully considering an embedded Markov chain; see [2]. The result-
ing values are also listed in table 4.

Clearly, the agreement between the analytical approximation and the exact results
is very good; in fact, it is much better than should be expected. For example, consider
B = 5: at such a low buffer size the approximations from the present paper are generally
rather bad, and indeed table 2 lists an error of about 15% for the approximation of y used
here. Since y, is directly proportional to y (according to (26)), a 15% error in y should
also contribute a 15% error to y,. Atn = 1, y, indeed has an error of this order (11%),
but at n = 4, 16 and 64, the error in Y, is just 0.1%. It seems as if the large error in the
approximation of y is compensated for by errors in the approximations of ¢, dG; (-) and
dG(-). Correlations between these four errors are of course to be expected, since they
all come from one approximation method. However, it is surprising that they cancel so
well; further analysis of this may be of interest.

9. Summary and concluding remarks

In this paper, we have derived analytical approximations for the probability densities
of the past and remaining service time upon reaching a high level, e.g., full buffer, in
M /G/1 queues. Table 5 summarizes the main results for these distributions, conditional
on reaching full buffer. As a by-product, we also obtained approximations for the prob-
ability of reaching full buffer (for the first and subsequent hits) in a busy cycle; those
are given in (23)—(25). However, the results in this paper are only valid if a solution,
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Table 5
Probability densities of past and remaining service times upon reaching a high level in M/G/1
queues.
Case Past service time density Remaining service time density
Srim () fzim(2)
: A A(K—1) T A% E=D=-2)
First p#1 —(e Y—1DFx () — (e Y —1)dFx(t)
. 1—p 1-p/J;
hit
| 2V Fx( [ a-aarw
= — N —5 -z
p E(x2)’ XY E(x2)J; ¥
1 = 1 —
Subs. <1 —F ——F
ubs o EX) x () EX) x (2)
hit
oo
p>1 AerK=DyFy () A/ eMK1=DU=2) gFy (1)
Zz

Note: K is defined as the solution not equal to 1 of equation (4). For some distributions such a
solution does not exist, and the above results are not valid.

unequal to 1, of (4) exists; in particular, this excludes cases where the distribution of the
service time has a heavy tail.

Validations of the approximations are carried out by means of comparisons with
true values obtained from exact numerical results and simulations. The approximations
are shown to be most accurate for high levels and p not too close to 1, although the
approximate distributions in table 5 remain surprisingly accurate for p near 1.

An extension of our results to queueing systems other than M /G /1 would be of
much interest. Our present analysis is based on an embedded Markov chain formula-
tion, which cannot be applied to most GI/G/1 systems; for such systems, a different
approach needs to be devised. The only other category of queueing systems which does
lend itself to an embedded Markov chain analysis, is GI/M /1, for which a study of the
remaining inter-arrival time at service completion epochs would be of interest.

Appendix A. Solving the doubly-unbounded system

In this appendix, we present a proof of theorem 1. For definitions and properties of N,
g, V(), K and K>, see section 3.
Define the following double-sided z-transform of the distribution of N,:

o0

R(ﬂ)(z) — Z "l-(n)Zi.

i=—00
From (2) we get
RV(z) =1,
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and from (1) we have (for 0 < |z] < K3)

V(Z)R(n D),

R(ﬂ) (z) =
as can be seen either by expanding the summations, or by noting that N, is just the sum
of N,_; and another independent random number with the generating function V (z)/z.
Next, we easily find:

R™(z) = RV (s )<V(Z)) <@)H
Z

Now define R(z) to be the double-sided z-transform of r;, to find:

o0 oo 0 o0

o0 n—1

i=—o00 i=—o0 n=1 n=1 n=1
(A1)

The change of the order of summation above is possible on the ring” {z: K| < |z| < K>}
in the complex plane. So, (A.1) is valid on that ring.

Note that R(z) itself is only defined on the ring; however, the right-hand side of
(A.1) is also analytical outside the ring (except of course at K; and K3), so it is the
(unique) analytical continuation of R(z).

Behaviour of r; for i < 0. We have already shown that |V (z)| < |z| on the ring
{z: K1 < |z] < K3}. By Rouché’s theorem (see, e.g., [8]), this means that V(z) — z
has exactly as many zeros on the disc {|z|] < K>} as z does, while the latter of course
has exactly one zero (at 0). We already know that V (z) — z has a zero at K, which is
on the disc. So that must be its only zero. Consequently, z = K, is the only pole of
R(z)/z =1/(z — V(2)) on the disc. Now calculate the residue of this pole:

Res (& K1> = lim (z — K)) ( ) = lim(y — DK, R(K1y)
Z z— Ky y—1 Kly

~ lim (y 1)K1 ) K, 1
— = Ilim = ,
>—>1K1y—V(K1y) -1 K — K VI(Kyy)  1-V/(Ky)

2 Note that the last summation (a simple geometric sum) converges on the ring because there |V (z)| < |z].
This follows from observing that:

e Because of the convexity of V (z) and the fact that V(K{) = K| and V(Kjp) = K, we have V(z) < z
for any (real and positive) z for which K| < z < K».

e Write z, which is in general a complex number, as x + iy. With the definition (3) of V (z) in terms of
a Laplace transform of a positive function, one easily verifies that |V (z)| = |V (x +1iy)| < |V (x])] <
[V (x +iyDl.
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where L’Hospital’s rule was used in the fourth step. Knowing the only pole’s residue,
we can split R(z)/z as follows (for K; < |z] < K>3):

RQ) ~—, 1 1 o 1/K, Ki/z
z —?MZ TISViR) - K _l;ri“z TIoViR) T-Kijz

/K, A/ z\
‘Z T TRy “VIKD Z (E)

The reason the first term ) _;° r/, 2z’ contains no negative powers of z, is that this term
results from removing the only pole R(z) has on |z| < K3, so this term must be analytic
on this disc, and therefore can be written as a Taylor series. Multiply the above by z to
find

= /i I/K - : i 1 : :
RO =3 rd ey (m) Z TR 2 (1%)

from which (5) directly follows.

Limit behaviour of r; for large i. Using the final value theorem (Abelian theorem,
see [8]) for z-transforms and applying L’Hospital’s rule yield the following limit:

(1 -2)K»z
-1 Kyz — V(K32)

_ lim (1 -2)Kr — Kyz 1

—1 Ky — Ko V/(Kaz) — VI(Kp) — 17

hm Kzr, = hm(l —2)R(Kyz2) = 11

thus proving (6).
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