;:‘ Machine Learning, 45, 301-329, 2001
' © 2001 Kluwer Academic Publishers. Manufactured in The Netherlands.

Relative Loss Bounds for Multidimensional
Regression Problems*

J. KIVINENT jyrki.kivinen@faceng.anu.edu.au
Department of Engineering, Australian National University, Canberra, ACT 0200, Australia

M. K. WARMUTH** manfred@cse.ucsc.edu
Department of Computer Science, University of California, Santa Cruz, CA 95064, USA

Editor: Peter Bartlett

Abstract. We study on-line generalized linear regression with multidimensional outputs, i.e., neural networks
with multiple output nodes but no hidden nodes. We allow at the final layer transfer functions such as the softmax
function that need to consider the linear activations to all the output neurons. The weight vectors used to produce the
linear activations are represented indirectly by maintaining separate parameter vectors. We get the weight vector
by applying a particular parameterization function to the parameter vector. Updating the parameter vectors upon
seeing new examples is done additively, as in the usual gradient descent update. However, by using a nonlinear
parameterization function between the parameter vectors and the weight vectors, we can make the resulting update
of the weight vector quite different from a true gradient descent update. To analyse such updates, we define a notion
of a matching loss function and apply it both to the transfer function and to the parameterization function. The loss
function that matches the transfer function is used to measure the goodness of the predictions of the algorithm.
The loss function that matches the parameterization function can be used both as a measure of divergence between
models in motivating the update rule of the algorithm and as a measure of progress in analyzing its relative
performance compared to an arbitrary fixed model. As a result, we have a unified treatment that generalizes earlier
results for the gradient descent and exponentiated gradient algorithms to multidimensional outputs, including
multiclass logistic regression.

Keywords: on-line prediction, relative loss bounds, generalized linear regression, Bregman divergences

1. Introduction

In a regression problem, we have a sequence of n-dimensional real valued inputs x, € R"
and for each input x, a k-dimensional real-valued desired output y, € R*. Our goal is to
find a mapping f : R" — R¥ that at least approximately models the dependency between
x; and y,. In other words, if we write y, = f(x,) for the prediction our model f makes given
the input x,, we want y, ~ y, for all 7. The most basic class of functions f to consider is the

*A preliminary version appeared in Advances in Neural Information Processing Systems 10, pp. 287-293, MIT
Press, Cambridge, MA, 1998.

fSupported by University of Helsinki, the Academy of Finland, and the European Commission under Working
Group NeuroCOLT2, No. EP27150.

**Supported by NSF grants CCR 9700201 and 9821087.

302 J. KIVINEN AND M. K. WARMUTH

class of linear functions, which in the case of one-dimensional outputs (k = 1) means our
problem is to find a suitable weight vector w € R" and then predict with y, = w - x,. In the
case of multidimensional outputs, we actually have a matrix Q € R of parameters and
¥, = Qx,. The goodness of the prediction y is quantitatively measured in terms of a loss
function. The square loss, givenby >, Oy — $1./)%/2, is a popular choice that is suitable
In many situations.

In generalized linear regression (McCullagh & Nelder, 1989) we fix a transfer function
¢ and apply it on top of a linear model. Thus, with one-dimensional outputs we would have
¥, = ¢(w - x,). Here ¢ is usually a continuous increasing function from R to R, such as the
logistic function that maps zto 1 /(1 + e~*). What we call here transfer function is the inverse
of what is usually called the link function (McCullagh & Nelder, 1989; Warmuth & Jagota,
1997). Considering transfer functions instead of link functions simplifies technicalities with
multidimensional outputs, when we need to consider noninvertible transfer functions.

It is still possible to use the square loss, but this can lead to problems. In particular, when
we apply the logistic transfer function and try to find a weight vector w that minimizes the
square loss over £n examples (x;, y;), we may have up to £" local minima (Auer, Herbster, &
Warmuth, 1995; Budinich, 1993). Hence, some other choice of loss function might be more
useful. With one-dimensional outputs and a strictly increasing continuous ¢, it is possible
to define a matching loss function Ly which has the property that the empirical loss

[4
> Ly p(w-x)) ()
t=1

is a convex function of the weight vector w and thus, in particular, has one single minimum
(Auer, Herbster, & Warmuth, 1995; Helmbold, Kivinen, & Warmuth, 1999). For exam-
ple, the matching loss function for the logistic transfer function is the relative entropy (a
generalization of the logarithmic loss for continuous-valued outcomes).

The main theme of this paper is the generalization of the notion of the matching loss
function for multidimensional outputs. With k-dimensional outputs, the n-dimensional
input vector x, is first multiplied by a k x n weight matrix 2, which gives us the
k-dimensional linear activation a, = Qx,. We then pass the linear activation through a
transfer function ¢, which now is a mapping from R* to R¥. This gives the prediction
¥y, = ¢(a,) (see figure 1).

We now wish to define the matching loss for the multidimensional transfer function
o R¥ — R¥. Recall that in the one-dimensional case, we assumed the transfer function
to be differentiable and strictly increasing. In the multidimensional case, we assume that
¢ is continuously differentiable, has a potential function Py (i.e. we can write ¢ = V Py),
and this potential function Py is strictly convex. Notice that in the one-dimensional case,
the potential function (i.e., integral function) of any strictly increasing function ¢ is strictly
convex, so this naturally generalizes our assumptions from the one-dimensional case. We
shall later consider the case in which Py is convex but not strictly convex, which requires
some additional technicalities.

Since ¢ is the gradient of a strictly convex function, it is one-to-one. Hence, for any
desired output y, there is a unique desired linear activation a such thaty = ¢(a). Similarly,

BOUNDS FOR MULTIDIMENSIONAL REGRESSION 303

output

ﬂt = ¢(at) N N N
Yt,1 Yt,2 Ytk

transfer function ¢ @

linear activation
at = th

weight matrix

0= (e)

input x;

Tt,1 Zt,2 Zt,3 Zt4 Tt,n

Figure 1. Obtaining the prediction y, from the input x; via the weights €2 and transfer function ¢.

given a prediction y, we can uniquely determine the linear activation @ such thaty = ¢(a).
We now define the matching loss L4 for ¢ by

Ly(y,y) = Py(@) — Py(a) — (@ —a) - p(a). 2

These matching loss functions are also known as Bregman divergences (Bregman, 1967).
From (2) we directly get the basic property

ViLly(d(@), p@) = ¢(a) — ¢(a). 3)

Our assumptions about ¢ imply that Ly is a reasonable loss function in the sense that
Ly(y,y) = 0 for y in the range of ¢, and L(y,y) > 0 when y # y. However, L is in
general not symmetrical, and does not satisfy the triangle inequality. Therefore, we prefer
the term “Bregman divergence” over “Bregman distance” that is also commonly used in
literature.

The simplest example is the matching loss for the identity transfer function. For the
identity function ¢(a) = a, the potential function is given by Py(a) = ||a||%/2, and the
matching loss is the squared Euclidean distance Ly (y,3) = |ly — _)3||% /2. In this case going
to multiple output dimensions does not really add anything new to the problem, as the linear

304 J. KIVINEN AND M. K. WARMUTH

regression problem with k-dimensional outputs decomposes into k independent problems
with one-dimensional output.
The softmax function o, given by

exp(a;)

- “4)
31 exp(a;)

oi(@) =

gives a more interesting example of a common transfer function with matching loss. Notice
that the range of o is {y € R¥ | Zl;zl y; =1land y; > Oforall j}. The softmax function
generalizes the logistic function to the multidimensional case. Now each variable a; also
affects outputs o; (@) with i # j through the normalization factor in the denominator. The
softmax function has a convex potential function given by P,(a) = ln(le‘.z1 exp(a;)).
However, P, is not strictly convex, and its gradient o is not one-to-one. However, with
¢ = o it turns out that for given y and y in the range of ¢, the right-had side of (2) has the
same value for any choices of a and @ such that ¢p(a) = y and ¢(@) = y. Hence, (2) defines
a unique matching loss also for the softmax function. This matching loss is the well-known
relative entropy

k
A Y

Lo(y,5) =) yjInzl.)
j=1 Yj

In general, the loss L4 (¢(a), ¢(a)) can be interpreted as the relative entropy between two
distributions from the exponential family with cumulant function P and natural parameters
a and a, respectively (Amari, 1985). Similar loss functions have been also used in other
work on generalized linear models (McCullagh & Nelder, 1989; Fahrmeir & Tutz, 1991).
These statistical interpretations of the loss function and relative loss bounds are discussed by
Azoury and Warmuth (1999); here we need only some very basic properties of the matching
loss.

Generalizing the notion of matching loss from one-dimensional to multidimensional
outputs allows us to similarly generalize loss bounds shown earlier for one-dimensional
generalized linear regression (Helmbold, Kivinen, & Warmuth, 1999). Even more inter-
estingly, it turns out that matching loss functions can be applied not only as a measure of
loss among predictions, but also as measures of divergence among parameter vectors of
learning algorithms. This provides a unifying framework for earlier research in which the
squared Euclidean distance (Cesa-Bianchi, Long, & Warmuth, 1996) and relative entropy
(Kivinen & Warmuth, 1997) have been considered separately as divergence measures appli-
cable to different algorithms. To see how matching loss functions are applied as divergence
measures, we first need to understand the basic setting of on-line learning.

We start with the most basic case, linear regression with one-dimensional outputs. In the
most typical learning setting, often called batch learning, the learning algorithm is given
as input the whole set of examples (x,, y,),# = 1, ..., £, and then required to find a weight
vector w such that the total squared loss Y, (y; — w - x,)?/2 is minimized. This particular
batch learning problem is of course well studied, but even in this simple case the situation
immediately becomes more interesting when we move from batch to on-line learning. An

BOUNDS FOR MULTIDIMENSIONAL REGRESSION 305

on-line learning algorithm starts with some fixed initial weight vector wi, say w; = 0.
Then, at each time step r = 1, ..., £, it gets as input the single example (x;, y;) and uses
some simple update rule to produce a new weight vector w;; from its old weight vector
w, and the recent example (x;, y,). On-line learning algorithms are useful if the training
examples only become available one at a time and the algorithm needs to be able to improve
its weights to take more examples into account, or sometimes simply because considering
all the examples at once causes computational problems.

The most familiar update rule for linear regression is the Least Mean Squares (LMS), or
Widrow-Hoff, rule

Wl = wy — N(wy X — Y1) Xy (6)

where n > 0 is a learning rate parameter. Note that (6) can be interpreted as a gradient
descent step for w in minimizing the loss (y; — w - x,)?/2. This is easily generalized
to a nonlinear transfer function ¢. We see from (3) that the gradient of the matching loss
L4 (y, ¢ (w-x)) with respect to the weight vector w is given by (¥ — y)x where § = ¢ (w-x).
Hence, the gradient descent update step is given by

Wip1 = wr — 03 —) X, (7

The update (7) implies a certain linearity: w,;y; = w; + le‘:l cjx; for some scalar
coefficients c;. In other words, the total change w,,; — w; in the weight vector is always
in the span of the input vectors already seen. A simple corollary to this is that if we use
the zero start vector w; = 0, then rotating the input vectors (i.e., replacing each x; by Ax;
where A is a fixed orthonormal matrix) leaves the dot products w; - x,, and hence the actual
outputs ¢ (w; - x;), unchanged. Note that the gradient descent algorithm has this property
regardless of what loss function is used.

This observation has some interesting implications when the dimensionality n of the
input space is very large. Such situations arise for instance with support vector machines
(Boser, Guyon, & Vapnik, 1992), when one maps the inputs into a high-dimensional feature
space via a nonlinear mapping, thus hoping to reduce a nonlinear problem into a linear one.
It is well known that for learning linear functions in n dimensions one needs, in general, at
least n examples. For large n this may be impractical, so we need to make some additional
restrictions to guarantee learning from a reasonable amount of data. In the context of support
vector machines, it has been noted that the actual mappings used to transform the inputs into
the high-dimensional feature space can cause the effective dimensionality of the resulting
linear learning problem to be significantly lower than the actual dimensionality of the feature
space (Guo et al., 1999). Another possible explanation for the fact that learning is possible
in quite high-dimensional spaces could be that often a quite large proportion of the input
variables are irrelevant, i.e., there is a weight vector w with most components zero that
achieves a small empirical loss. However, the property of having most components zero is
obviously not maintained if the input vectors are rotated. Therefore, the preceding argument
shows that gradient descent cannot take advantage of this situation. (See Kivinen, Warmuth,
& Auer, 1997 for more discussion.) This leads us to consider alternatives in which the weight
vector w, has a nonlinear dependence on the input vectors.

306 J. KIVINEN AND M. K. WARMUTH

As an alternative to the gradient descent update (7), some recent work has considered the
exponentiated gradient (EG) update (Kivinen & Warmuth, 1997)

Wry1,i = Wyi exp(—n(r — Y)X1.i)/ Zs)

where Z, = Y7 | wr;exp(—n(J; — y)x;;) is a normalization factor. (Standard reduc-
tions can be used to extend this to weights with arbitrary sign and to unnormalized weights
(Kivinen & Warmuth, 1997).) Theoretical analysis and experiments on artificial data
(Kivinen & Warmuth, 1997; Helmbold, Kivinen, & Warmuth, 1999; Kivinen, Warmuth,
& Auer, 1997) suggest that the exponentiated gradient update indeed works well when
there is a large number of irrelevant input variables.

In the present paper, we show how the gradient descent and exponentiated gradient
algorithms can be seen as special cases of the general additive algorithm. To do this, we
first introduce a new n-dimensional parameter vector @, which we update according to the
rule

0,11 =0, —n0: — y)x:.)

Then, we use a parameterization function 1 : R* — R” to give the actual weight vector as
w; = ¥ (6,). We now see that the gradient descent update (7) results from (9) simply with
the identity function as the parameterization function. The exponentiated gradient update
(8) is obtained by using 1 = o where o is the softmax function given in (4).

The general additive algorithm, described above for one-dimensional outputs, generalizes
naturally to the case of k > 1 output dimensions. Thus, one of the results of this paper is to
see how the results of Helmbold, Kivinen, and Warmuth (1999) for matching loss functions
in the one-dimensional case generalize to the multidimensional case. With multidimensional
outputs, we have k separate parameter vectors 8, ; (j = 1, ..., k) attime ¢, which constitute
the rows of a parameter matrix ®, € R**". The weight matrix €, € R¥*" is obtained by
applying the parameterization function 1) : R* — R”" to each row of ®, separately (see
figure 2). We write this as ; = 1(0,). The prediction y, € R* is given by y, = ¢(Q,x,),
where ¢ : R* — R is the transfer function (see figure 1). For j = 1, ..., k, the jth row

jth row w; = ¢(8;)

of weight matrix wj,1 wj2 WJ‘,S‘ wj,4. Win
parameterization function 1) P

jth row 6;

of parameter matrix © 051 o ;.2 ® 9j,3‘ 054 ® Oj,".

Figure 2. Obtaining the weights €2 from the parameters ® via the parameterization function).

BOUNDS FOR MULTIDIMENSIONAL REGRESSION 307
0, ; of the parameter matrix is updated according to the rule

0,11, =0, ; =0 — Vi) % (10)

where J; ; and y; ; are the jth component of the prediction of the algorithm and the desired
output.

We can now finally see how matching loss functions relate to the general additive update
(9), or more generally (10). Thus, consider substituting ¢¢ = 1) in the formula (2) for
the matching loss. Our preceding examples of parameterization functions 0, the identity
function and softmax, were such that the matching loss is well-defined, so in these cases
this gives a function L, such that Ly (w, w) = 0 and Ly (w, w’) > 0 for w # w’. We can
therefore interpret L., as a measure of divergence between weight vectors. It turns out that
this measure of divergence is particularly suitable for analysing the general additive update
(9). In the analysis, the measure of divergence L, is used for two different purposes. First, it
turns out that the update (9) can be motivated as an approximate solution to a minimization
problem. In this minimization problem, the basic idea is to choose w;; S0 as to minimize
the loss if the rth example (x,,y,) were to occur again at trial + 1. However, we add
Ly(w;41, w;) to the minimization problem as a regularizer to avoid too drastic updates
based on a single example. The second use for L, is as a measure of progress in proving
relative loss bounds for the general additive algorithm in an on-line prediction framework.
In these bounds, and their proofs, we use the matching loss to measure the progress of the
weight vector in each update. The techniques used in the motivation and loss bound proofs
are generalizations of the techniques used earlier (Kivinen & Warmuth, 1997; Helmbold,
Kivinen, & Warmuth, 1999) in the special cases of the gradient descent algorithm (with
the squared Euclidean distance as the divergence function) and the exponentiated gradient
algorithm (with the relative entropy as the divergence function). However, the previous
work treated only one-dimensional outputs.

In work parallel to this, the general additive update (9) in the context of linear classifica-
tion, i.e., with a thresholded transfer function, has recently been developed and analyzed by
Grove, Littlestone, and Schuurmans (1997) with methods and results very similar to ours;
see also Gentile and Littlestone (1999). Gentile and Warmuth (1999) have shown how the
notion of matching loss can be generalized to thresholded transfer functions. This relates
the Perceptron algorithm to gradient descent and Winnow to the exponentiated gradient
algorithm. Cesa-Bianchi (1999) has used somewhat different methods to obtain bounds
also in cases in which the loss function does not match the transfer function. Warmuth and
Jagota (1997) view (9) as an Euler discretization of a system of partial differential equa-
tions and investigate the behavior of the relative loss bounds as the discretization parameter
approaches zero.

In Section 2 we review some basic properties of matching loss functions and give some
examples. Section 3 discusses the general additive algorithm for on-line prediction in more
detail and gives the motivation of the update (10) in terms of a minimization problem.
The general nature of relative on-line loss bounds, and the particular results we have for
the general additive algorithm, are explained in Section 4.

308 J. KIVINEN AND M. K. WARMUTH

2. Matching loss functions

Our notion of matching loss is essentially what is known as a Bregman divergence (Bregman,
1967). In statistics, similar loss functions have been used by Amari (1985) and others
(McCullagh & Nelder, 1989; Fahrmeir & Tutz, 1991). In this paper we do not make use of
the probabilistic interpretations. For the sake of completeness, we derive directly the few
basic properties we need. For a discussion of our line of research in the context of statistics
see Azoury and Warmuth (1999).

Consider first the one-dimensional case, with a differentiable transfer function¢ : R — R
such that ¢’(a) > 0 for all a. For this case, the matching loss (Auer, Herbster, & Warmuth,
1995) is defined by

¢
Ly(y,y) = / (p(r) —y) dr, an
¢)

where we have used the fact that ¢ is invertible. Figure 3 gives a graphical representation.

Since ¢ is continuously differentiable with strictly positive derivative, it has an inverse
¢! that also has a strictly positive derivative. We can then use (11) to define another loss
function Ly-1. Itis instructive here to briefly consider the connection between Ly and L-1.

Figure 3. The matching loss given in (11) for one-dimensional output (witha = ¢~ (y) and @ = ¢~ ($)).

BOUNDS FOR MULTIDIMENSIONAL REGRESSION 309

Starting from the definition (11), we get

¢~
Lo(y.) = f @) — y) dr
o1 (y)

=/’ (z—y) @) (2)dz (12)
:
y y
= (z—y)cb_'(z)—/ ¢ () dz (13)
y y
,
=[6@ — ¢ () dz. (14)
;

where (12) follows from the variable substitution » = ¢~'(z) and (13) from integration by
parts. Comparing this with (11), we notice that the right-hand side of (14) is actually the
same as Ly-1 (¢~ 1(3), 97" (y)). We have obtained the duality relation

Ly(y.y) = Ly-1(a,a) 15)

where y = ¢(a) and y = ¢(a). Notice how the order of the arguments has changed. To
visualize (15), compare figure 3 with figure 4, which gives the graphical representation of
L4-1(a, a). Figure 4 is obtained by reflecting figure 3 with respect to the line z = r in the
rz plane.

The relation (15) is interesting for us, because it shows that we can measure loss either
in terms of the desired and actual outputs y and y or in terms of the desired and actual
linear activations a and a, and in both cases we can use the matching loss function. In
the multidimensional case it will turn out that we also want to allow noninvertible transfer
functions. Therefore, we define

Ag(a. a) =/ (@(r) = p(a))dr.

The idea is that even if ¢ were not invertible, we could use A to measure the loss in terms
of the linear activations. The notation has been chosen so that if ¢~ does exist, then Ay
and L, are the same function. This follows from (15).

To see the simplest way of generalizing (11) into multiple dimensions we write it as
Ly(¢(a), p(a)) = Py(a) — Py(a) — (@ — a)p(a) where P, is an integral function of
¢. As ¢'(a) > O for all g, the integral function P, is strictly convex. Let now ¢ be a
function from R* to R¥, and assume that it has a potential function Py (i.e., ¢ = VPy
for some Py :RF — R) and that this potential function Py is convex. Analogous with the
one-dimensional case, L4 is now said to be the matching loss function for ¢ if it satisfies

Ly(¢(a), (@) = Py(a) — Py(a) — (@ —a) - ¢(a) (16)

for all @,a € R*. Thus, the loss Ly(¢p(a), Pp(@)) is the error we make if we approxi-
mate Py (@) by its first-order Taylor polynomial around a. Matching loss functions have

310 J. KIVINEN AND M. K. WARMUTH

- r=¢7(2)

Figure 4. The matching loss for the inverted transfer function.

earlier appeared in optimization literature (Bregman, 1967), where they are known as
Bregman divergences. To obtain a formula more obviously analogous with (11) we can
write

Lo((@), $(@)) = / (&) — d(@) - dr

where the integral is a path integral the value of which must be independent of the actual
path chosen between a and a.

Before considering when a loss function L that satisfies (16) exists, let us estab-
lish some basic notation and compute the derivatives of Lg(¢(a), ¢(a)). For a function
f : R¥ — R* we denote by Df the Jacobian of f. That is, [Df (@)];j = dfi(@)/da;. Simi-
larly, for G : R¥ — R we use DG for the Hessian of G, so [D*G (a)];; = 3*G(a)/(3a;da;).
Assuming that Py is twice differentiable, our convexity assumption means that the Hes-
sian D? Py(a), i.e., the Jacobian D¢ (a), is positive semidefinite for all a. (Remember also
that any Hessian, and therefore the Jacobian of any function with a potential function, is
symmetrical.)

BOUNDS FOR MULTIDIMENSIONAL REGRESSION 311

By differentiating (16) with respect to a we see directly that (3) holds for the matching
loss function we just defined. Differentiating with respect to a gives us

VaL(@(@), (@) = —VaPy(@) + (@ — @) 'Dp(a) + $(a)
=D¢(a)(a —a)

since ¢ = V Py and D¢ is symmetrical. In the important special case that ¢ has a differ-
entiable inverse ¢!, we can use the chain rule and the fact D¢~ (y) = (D¢p(a))~! for
y = ¢(a) to further obtain

ViLo(3,9) = ¢~ () — o'). (17)

Comparing (17) with (3) gives a hint about an important relation between the matching
losses for ¢ and ¢~'. Similar to the one-dimensional case (15), we can prove a general
duality (Amari, 1985; Azoury & Warmuth, 1999)

Ls(3.5) = Ly (@.a) (18)

fory = ¢(a) and § = ¢(a). Notice that since the Jacobians of ¢ and ¢! are assumed
to be positive definite, differentiating (3) now shows that L o (@, a) is convex in a and
differentiating (17) shows that Ly (y,y) is convex in y. See Azoury and Warmuth (1999)
and Warmuth and Jagota (1997) for how this is useful in analyzing on-line algorithms.

We now consider briefly whether (16) does define a unique loss function L. Let us
define a notation for the right hand side of (16) by

Ag(@,a) = Py(a) — Pyla) — (@ —a) - p(a). 19)

Notice that the order of the arguments on the left hand side is changed from (16). This
notation has the advantage that, by (18), for an invertible ¢ we now have Ay = L o
We call A, the matching divergence function for ¢. For the value Lg(y, y) to be uniquely
defined by (16) for all y and § in the range of ¢, we must now have Ay (@, a) = Ay(@', a')
when ¢(a@) = ¢(@') and p(a) = p(a’). We also need to check that the loss function satisfies
Ly(y.y) > Ofory # y.In practice, it is usually easy to check whether L 4 is well defined for
whatever ¢ we wish to consider. This should become clear from the following examples. For
completeness, we have included in Appendix A a discussion on some sufficient conditions
under which L is uniquely defined.

Example 1. Let ¢ be a linear function given by ¢(a) = Aa where the matrix A € R**¥ is
symmetrical and positive semidefinite. Because A is symmetrical, we have ¢ = V Py, where
Py(a) = a" Aa/2, and because A is positive semidefinite, P, is convex. Now (16) gives
directly Ly (y,y) = %(a —a)TA(a — @) wheny = Aa and § = Aa. If A is invertible, we
therefore get Ly (y, y) = %(y —9)TA~(y—y) forally, € R*. Evenif A is notinvertible, we
know that it has a set of orthogonal eigenvectors xy, . . ., x; and corresponding nonnegative
eigenvalues Aj, ..., Ay. Now the range of ¢ is the space spanned by the eigenvectors

312 J. KIVINEN AND M. K. WARMUTH

corresponding to the positive eigenvalues of A. For any y and § in this range V4 we can
write Ly (y,y) = %(y —) TA*(y — §) where A* is any matrix such that A*x; = (1/A;)x;
whenever ; > 0.

In certain situations it is useful to extend L to the domain V, x Vj, where V, is the
closure of V, under the standard topology of R¥. The resulting extended L ¢ should still
be continuous. In the examples we consider such a continuous extension is easily seen to
exists and to be unique.

Example 2. Let o : R* — R* be the softmax function given by (4). It has a potential

function given by P,(a) = In 21;21 exp(a;). We next see that P, is convex. Its Hessian

D?P,, i.e., the Jacobian Da, is given by Do (a);; = d;joi(a) — oi(a)o;(a) where §;; =

1 if i =j and §;; =0 otherwise. Given a vector x € R, let X be a random variable

that has probability o;(a) of taking the value x;. We have x"Do (a)x = Zle o; (a)xi2 —

fo:l ZI;=1 oi(@)x;o;(@)x; = EX? — (EX)? = VarX > 0. Therefore, P, is convex.
Substituting the potential P, now into (19) gives

k k k a;
Ag(@,a) =1n (Ze&) —1In (Ze“’) - Z(&i - a,')zke%.
i=l i=l i=1

j=1€"

From this, we get

k @ @ Py
e et e
AU(&, a) = In (/)
2 : k k ‘ k4
i=1 Zj:l e Zj:l e Zj:l e

k
= Zaj(a) In(o;(a)/o;(@)).
j=1

Notice that A, (@,a) = Ay (@ ,a’) whenever o(@) = o(@) and o(a) = o(a). There-
fore, the matching loss is uniquely defined by (16), and we can write L,(y,y) =
Zf’:l y;In(y;/¥;). The relative entropy is the matching loss function for the softmax
function.

Toallow y; = Oor §; = 0, we adopt the standard convention that 0In 0 = 0In(0/0) = 0,
and y In(y/0) = oo for y > 0.1Itis well known thatfor y;, §; > Oand), y; = >, 9, = 1,
the relative entropy L, (y, y) is nonnegative and zero only fory = y.

Example 3. The softmax function o maps R into the (k — 1)-dimensional set {y €
R | > ;¥ = 1}. This results in the softmax not being invertible. Since invertibility
simplifies some technicalities, it might be desirable to use the function p that maps the
(k — 1)-dimensional space R*~! into the (k — 1) dimensional set {y € [0, 1]*"'| ", y; <1}
according to

et

pi(@) = ————-
i 1+ lezi edi

BOUNDS FOR MULTIDIMENSIONAL REGRESSION 313

This function has a strictly convex potential function P, given by P,(a) = In(1+ ZI;: e%)
and an inverse given by pi_l(y) =Iny;, —In(l — le{;% yi).

To explicitly see the connection to softmax, assume y = o (a). Then also y = o (a’) where
a. = a; — ax. On the other hand, if we write y’ = p(a}, ..., a;,_,), we have y; = y! for
l<i<k—-l,andy,=1-— ZI;;% y}. Thus, by adding some simple transformations we
can replace o by p.

Example 4. Consider the mapping ¢ that normalizes its argument with respect to the
Euclidean norm: ¢(a@) = a/||a||;. The mapping is not well defined at the origin, but otherwise
it can be written as a gradient ¢(a) = V Py (a) where the potential function Py (a) = |la||»
is convex. However, Py is not strictly convex. Moreover, we have

A ~ a ~ N a
Aga,a) = llalz — llal + —-@—a) = |lally — ——-a
lall2 lall2

s0 Ag(ca, a) = cAy(a,a) # Ay(a, a) for ¢ # 1 although ¢(a) = ¢(ca) for all ¢ > 0.
Hence, Ly (y,) is not well defined by (16).

Consider now a situation in which the algorithm predicts with ¢(a;), then sees the
desired output ¢(a3), and updates its hypothesis so that its prediction with the same input
would now be ¢(ay). We can think that the update causes the loss to decrease by the
amount Ag(ai, a3) — Ag(az, a3). The following basic property (Warmuth & Jagota, 1997),
which follows directly from the formulation (19), relates the decrease of loss to the amount
Ag(ay, a;) moved by the prediction. This property of matching divergence is essential in
our proofs.

Proposition 1. For any ¢ with Ay as its matching divergence function we have

Agplar, a3) = Ay(ar, ax) + Ayp(az, a3) + (a1 — a2) - (P(az) — P(a3))
foralla,, ay, and a;.

Proposition 1 can be seen as a kind of generalized triangle inequality, but there is a
correction term (a; — a) - (¢(az) — ¢(az)), which can be positive or negative. Hence,
matching divergence functions do not in general satisfy the triangle inequality.

In our proofs we also need to estimate the amount moved by the parameter vectors in one
update step. The following results shows one way of doing this in terms of the matching
divergence function Ag.

Proposition 2. For arbitrary @ € R* and x € R* there is a value 0 < s < 1 such that for
0’ = 0 + sx we have

1
Ap(0 +x,0) = ExTqu(a’)x.

314 J. KIVINEN AND M. K. WARMUTH

Proof: Recall that Ay(0 +x,0) = Py(0 +x) — Py(0) — V Py(0) - x is the error in the
first-order Taylor approximation for Pg(6 +x) around x = 0. Hence, by Taylor’s Theorem
we can write A (0 +x, 0) = xTD? P,(6')x/2 for some 6’ = 0 + sx with0 < s < 1. Since
the Hessian D? Py is the same as the Jacobian D¢, the claim follows. O

Note that Proposition 2 always gives the bound Ag(0 +x, 0) < Amax ||x||§ /2 where Apax

is the largest eigenvalue of D¢ (r) for any r, but in special cases it may be possible to obtain
significantly sharper bounds.

3. The general additive algorithm

We now introduce and motivate the general additive algorithm in an on-line prediction

framework. We assume that at each rrial t, fort = 1, ..., £, the learning algorithm is given
an input x, € R”, then makes its prediction , € R¥, and finally receives as feedback the
desired outputy, € R*. We call the sequence S = ((x1,y,), ..., (x¢,y,)) atrial sequence.

The goal of the algorithm is to minimize its total loss for aloss function L 4 which we assume
to be the matching loss function for some ¢ : R — R¥. The total loss of an algorithm A
on the trial sequence S is then Lossg(A, §) = Zle Ly, 5,).

Assume now we are given a parameterization function) : R” — R” and a transfer
function ¢ : R* — R that have matching loss functions L., and L, respectively. Our
general additive (GA) algorithm maintains kn real-valued parameters. We denote by ©,
the k x n matrix of the values of these parameters immediately before trial ¢. Further,
we denote by 6, ; the jth row of ©,, and by 9 (©,) the matrix with (8, ;) as its jth
row. The algorithm is given the initial parameter values ® € R¥*", and also a learn-
ing rate n > 0. Figure 5 now gives the general additive algorithm which we denote by
GA(Y, ¢, 0, 1).

As we noticed in the introduction, in the special case that 1) is the identity function, i.e.,
®, = Q;, the update of the GA algorithm is just the usual gradient descent update: Consider
for simplicity the case k = 1, so the parameter and weight matrices ®, and €2, become simply
vectors 8; and w;, respectively. Since (3) implies VgL (y;, (0 -x;)) = (¢ (0 -x;) — yi)xs,

Initialize the parameter matrix as ®; = ©.
Repeat forr =1,...,¢:

Get the input x;.

Compute the weight matrix Q; = 1(0,), i.e., w; j = ¥(0;,;)
where w; j and 6, ; are the jth row of @, and ®,, respectively.
Compute the linear activation @, = Qx;.

Output the prediction y, = ¢(a;).

For j =1, ..., k, update the kth row of the parameter matrix by

0i1,; =61 —nGr.j — y.j)%:. (20)

Figure 5. The general additive algorithm GA (¥, ¢, ®, n).

BOUNDS FOR MULTIDIMENSIONAL REGRESSION 315

we can in this special case write the update (20) as

0,11 =0,—n@O -x)—y)x
=0, —n(VoLy(y:i, $(0 - x,)))o=0,

For other parameterization functions 1), we need to replace 6, -x; in the prediction by w; -x;,
where w; = 1 (0,). Like before, can apply (3) to rewrite the update (20) as

0,1=0,— N(VolLg (i, ¢ (W - X)))w=w, -

Notice that we now take the gradient with respect to the weights w, but use it to update
the parameters 6. Hence, this is not a usual gradient descent update any more. However, if
1) has a matching loss function, the update can be motivated by an optimization problem
given in terms of this loss function. In the rest of this section, we explain this motivation.

Consider a situation in which the algorithm has seen an input x, made its prediction y =
(1 (O)x) based on a parameter matrix ®, and upon receiving the desired outcome y wishes
to use this new information to update its parameter matrix into 0. Thus, S} corresponds to
O, in the notation of figure 5, but we do not yet wish to fix © to that particular choice of
O,41. A natural goal in this situation would be to minimize the loss L4(y, qb(z/)((:))x)) that
would result if the same example were encountered again after the update. However, there
are other considerations as well. The example may have been noisy, and in any case the
algorithm must somehow avoid losing too much of the information it has gained during the
previous trials and stored in form of the old parameter matrix ®. Hence, the algorithm should
not move its parameters too much based on a single example. Here we choose to measure
this movement by the divergence function that matches the parameterization function. This
way of motivating on-line learning algorithms was introduced by Kivinen and Warmuth
(1997).

To first see the idea in its simplest form, assume that both the parameterization function)
and transfer function ¢ are invertible. Write €2 = ¢(0) and € = 1(0). To generalize the
divergence function Ay, originally defined for vectors in R" to matrices in R**" we define
Ay (O, 0) = ZI; Ay(0;,0;) where 6; and 9 are the jth row of ® and 0, respectively.
We measure the amount moved by the welght matrlx by L¢(Q 2), and the loss of using
weights Q on the example (x,y) by Lg(y, ¢(fo)). Recall that for invertible ¢ we can write
Ly = Ay-1, and similarly for ¢p. We thus set as the algorithm’s goal to minimize the sum

UQ) = Ay-1(2, Q) + 1 Ay (y, p(Qx)) (21)

where n > 0 is a learning rate parameter that regulates how fast the algorithm will move
its weight vector. ~ _
By (18), we have A1 (y, (%)) = Ay(Qx, ¢~ (). Hence,

U(Q) = Ay (2, Q) + 1 Ay (Qx, ¢~ ().

316 J. KIVINEN AND M. K. WARMUTH

Notice that since the matching divergence Ay for any ¢ is convex in its first argument, U
is convex and we can minimize it by setting its derivatives to zero. We have

IAp(@, ¢ (y)))
da,
= (@) — P (W) + n(g;(x) — y))x.

Ve, U(Q) = Vi Ay (@, w)) + n(

a=Qx

Hence, the derivatives of U (fZ) are zero when
6; =86, —n(p;(x) —y,)x. (22)

Unfortunately, this does not quite give us a closed form for ©, since © appears on the
right-hand side through § = (). However, it is reasonable to expect that a single update
does not move the weights too much and hence $ ~ Q. Thus, as an approximate solution
to the minimization problem we get

0;=0;—nQ;—y)x. (23)

This is the update used by the general additive algorithm. For our present purposes, consid-
ering the justification of the approximation made in going from (22) to (23) is not central, as
we can directly justify the update rule (23) by the relative loss bounds of Section 4. However,
analyzing the update (22) remains an interesting subject for further study. Another related
subject is updates obtained by taking into the function U to be minimized not only the loss
Ly(y,, P(O)x;) at the present example but the total loss th:l Ly(y;, 1/;((:))xj) over all
previous examples. In the basic case of linear regression, this results in the on-line linear
least squares method. Relative loss bounds for such updates have been obtained by Foster
(1991), Vovk (1998), Azoury and Warmuth (1999), and Forster (1999).

Consider now the more general case in which the transfer and parameterization function
need not be invertible. The most interesting example of this situation is the softmax function.
Often a simple reduction gets one back to the invertible case. For example, consider using the
softmax function as the parameterization function. As we noticed in Example 3, the softmax
function is closely related to an invertible function in a lower dimensional space. If we were
to replace the inputs x € R” by lower dimensional inputs x’ = (x; — x,, ..., X,—1 —X,,) and
use the invertible function p of Example 3 as the parameterization function, then we would
get exactly the same predictions we would get with the softmax parameterization function.
A similar trick would also work for softmax as the transfer function.

Instead of dimensionality reduction, we could also keep all the original dimensions and
introduce an explicit constraint into the minimization problem (21). For example, consider
again the softmax function as the parameterization function. We can leave out the normaliza-
tion and obtain an invertible function v with v, (@) = ¢ . It turns out that the matching loss
function Ly, for this invertible 1 is given by Ly (@, w) = 31_(&; In(@;/w;) + w; — ;)
for @;, w; > 0. Restricted to Y__; @; = }i_; w; =1 this simplifies to the relative en-
tropy. The relative entropy with the explicit constraint was originally used to derive the
exponentiated gradient update (Kivinen & Warmuth, 1997).

BOUNDS FOR MULTIDIMENSIONAL REGRESSION 317

Thus, there are various methods that allow us to avoid noninvertible transfer and pa-
rameterization functions if we so wish. However, instead of going into the details of these
methods, we conclude this section by redoing our derivation of the general additive algo-
rithm (figure 5) without assuming invertibility of ¢ and 1. We thus set as the algorithm’s
goal to minimize the sum

U(©) = Ay(0, B) + nLy(y, p(3p(O)x)) (24)

where 77 > 0 is again a learning rate. Let 8 be the jth row of ® and 6 ;; the ith element of
0;. Write a = Y (©)x. We now have

ILy(y. $@) _ Xk: 3a, ILy(y, $@)
30 ;i =06, 9ap

kL ap(d,) -
— Z M(qﬁp(d) —)

= 90y

(@) -x)
= %T’ﬁx@j(a) —)
S RCH Y.

by —(¢p;@) —y;)
q; PY: J J

Jt

= [Dy(0)x];($; (@ — y)).

(Recall that the existence of a matching divergence for 1) implies that this Jacobian D1 (8)
is symmetrical.) We also have

IAH(O,0) 9A40;,0))
0, 90y

= [Dy(0,)(6; — 0))];.

Hence, the derivative of U (©) with respect to the jth row vector of O is given by
V,U(®) =D9(6,)(0; — 6; +n($,;(@ — y;) X).
Thus, for © such that all the partial derivatives oU (©) / a0 ji are zero we have
0, =0; —n@;@ —ypx+r, (25)
where the residual r; is an arbitrary vector with the property D(0 j)rj = 0. For the
parameterization functions 1) we have used in our examples, it is always the case that
if DY (@)r = 0 holds for some @ then it holds for all 6, in other words, the zero space

of the Jacobian is the same everywhere. (See discussion in the Appendix.) In this case
D) (0)r = 0 implies 1(0) = (0 + r) for all 8, so in (25) we can just set r; to zero (or

318 J. KIVINEN AND M. K. WARMUTH

any other convenient value) without affecting the weights (8 ;) that result. Again, solving
(25) is not straightforward, as 6 ; also appears on the right-hand side via the dependence
@ = 1 (®)x, but assuming that a single update does not move the weights too much, we
can approximate @ by @ = 1(®). Therefore, we replace (25) by

0, =0; —n(g;,@ —y)x,

which gives a good approximation assuming] j is reasonably close to 8;. (Here we have
also chosenr; = 0.)

4. Relative loss bounds

Our goal is to provide for the algorithm’s loss upper bounds that hold for arbitrary trial se-
quences S = ((x1,y,), ..., (x¢,y,)). In particular, we wish to avoid any statistical assump-
tions about the examples (x;, y,). To obtain interesting bounds with minimal assumptions,
we turn to relative loss bounds. We begin this section with a high-level view of what kind
of bounds we are after, proceed to give the actual formal results in Theorem 3, and then
discuss in more detail the interpretation of the parameters that appear in the bounds. The
proof of Theorem 3 concludes the section.

Let us define Lossg (2, S) = Zle Ly (y;, (2x,)) as the loss of the algorithm that
keeps a constant weight matrix €2. Then infg Lossg (€2, S) is the least loss obtainable by a
fixed predictor from the model class we use, and hence a reasonable comparison value to
use in measuring the performance of the general additive algorithm. Thus, we require that
the algorithm’s loss should be small if there is a fixed predictor €2 that has a small loss, but
if all fixed predictors have a large loss we also allow the algorithm to have a large loss.

We can prove relative loss bounds of two slightly different kinds. First, it is possible to
show that with a suitable learning rate, for all trial sequences S and all fixed weight matrices
Q2 the general additive algorithm achieves the loss bound

Lossg(GA, S) < pLossg (2, S) +¢q (26)

for some positive p and ¢g. Here typically p can be taken to be a small numerical constant
(say, p = 2) but g depends on some norms of the inputs x, and the rows of the weight
matrix €2, as well as the transfer function ¢ and the parameterization function 1. The role
of the term ¢ will be discussed in detail later. For now, we just notice that the bound (26)
implies that on the limit of large Loss4(£2), the general additive algorithm is within a small
constant coefficient of the fixed predictor 2.

We can also prove bounds of the form

Lossg(GA, S) < Loss(£2, S) + g1/L0ss¢(£2, S) + g2 27

where ¢ and ¢, are related to the value ¢ in (26). Thus, we see that the loss of the general
additive algorithm is asymptotically the same as the loss of any fixed predictor €2 if we
ignore lower-order terms. The drawback of this stricter bound is that to achieve it, the

BOUNDS FOR MULTIDIMENSIONAL REGRESSION 319

learning rate must be chosen very carefully, and the optimal learning rate actually depends
on Loss (€2, S). Hence, (27) gives an indication of the performance of the algorithm when
it is tuned well, but this bound is less robust against changes in tuning than (26) that is
achieved by a learning rate that does not depend on Lossg(£2, S).

The bounds (26) and (27) show us the asymptotic performance of the general additive
algorithm when Lossg(£2) is large for all 2. Typically, we would expect Lossg (€2, S) to
be roughly linear in the length £ of the trial sequence S. Hence, for long sequences the
lower-order terms are relatively less important. However, for short sequences the lower-
order terms can be quite significant. In particular, they contain the dependence of the loss
on the dimensionality n of the problem. Thus, unless the number of examples is significantly
larger than the dimensionality, we need to analyze the lower-order terms carefully.

The lower-order terms in the bounds (26) and (27) will be given in terms of a product
of three factors. The first factor is the divergence A, (®, ®) where O, is the algorithm’s
initial parameter matrix and © is such that Q = 1 (®). The second factor, which we define
by

by = suplx'Dep(@)x | 6 € R", x € X} (28)

where X = {x|, ..., x,} is the set of input vectors, can be interpreted as the maximum norm
of any input vector in a norm defined by the parameterization function 1. In Example 5
below we show how by . can easily be evaluated when 1) is a linear function or the softmax
function. The third factor cy, defined as

ly — 513
2Ly(y,¥)

c¢=sup{ y,j’eV—¢}, (29)

relates the matching loss function for the transfer function ¢ to the square loss. In Example 6
we evaluate this constant for linear functions, the softmax function, and the one-dimensional
case.

Example 5. Consider bounding the value xTDa (6)x where o is the softmax function (4).
As we saw in Example 2, this value is a variance of a random variable with the range
{x1,...,x,}. Hence, we have by , < maxycy(max;x; — min; xi)2/4 < maXyey ||x||C2>O
where ||x|lc = max;|x;|.

If v is a linear function with () = A6 for a symmetrical positive semidefinite A, we
clearly have by o < Amax MaXxecx ||x||§ where Apmax 1S the largest eigenvalue of A.

Example 6. For the softmax function o given in (4), the matching loss function L, is the
relative entropy, for which it is well known that L, (y,y) > 2|y — jf||%. Hence, we have
Cop = 1/4.

If ¢ is a linear function with ¢(8) = A6, where A is a k by k symmetrical posi-
tive semidefinite matrix, the matching loss function L is given by Ly(y, y) = %(y -7
A*(y —), as explained in Example 1. From this we see that c4 is the largest eigenvalue of
A. (Note the restrictiony, § € Vy.)

320 J. KIVINEN AND M. K. WARMUTH

Finally, consider the special case k = 1, with ¢ : R — R differentiable and strictly
increasing. Let Z be a bound such that 0 < ¢'(z) < Z holds for all z. Then ¢ has a dif-
ferentiable inverse ¢!, and by doing a variable change r = ¢~'(z) in the integration of
(11) we get

a (@)
Ly(¢(a), $(a)) =/ (@(r) — p(a))dr = /() z— @)@ (2)dz.
a d(a

Our assumptions imply (¢p~')(z) > 1/Z for all z. If @ < @, then z — ¢(a) > O for
¢(a) < z < ¢(a), and we can estimate

(@) 1

: (z—¢(a))dz = Z(¢>(fl) — p(@))*.

. 1
Ly(¢(a), 9(a)) = 2/ Y

¢(a
If & < a, then z — ¢ (a) < 0 in the range of the integration, and we get

#(a)

1
) (z=¢@)@) (@) dz = (9@ — (@),

Ls(é(), $(@) = —/ =

¢

Hence, we have ¢y < Z.
The actual loss bounds can now be stated as follows.

Theorem 3. Let 1) :R" — R" and ¢ : R* — R¥ have the matching divergence functions
Ay and Ay, respectively. Consider a trial sequence S = ((x1,y;), ..., (x¢,¥,)) with x; €
X CcR"andy, € V_¢f0rt =1,...,4 Letb > by and ¢ > cy where by y is as in (28)
and cy as in (29). For an arbitrary initial parameter matrix ©, € R**" and the learning
rate n = 1/(2bc) we have

Lossg(GA(®, ¢, ©1, 1), S) < 2Lo0ss¢ (0 (0%), S) + 4bc Ay (O, ©F). (30)

for any parameter matrix ©* € R, Further, assume we have a parameter matrix ®* e
R¥*" such that Lossg (10(0©%), S) < K and Ay(®4, ©*) < R hold for given values K > 0
and R > 0. For the learning rate

V(bcR)? + KbcR — bcR
= Kbc S

we now have
Lossy(GA(®), ¢, ©1, 1), S) < Lossg((0%), §) + 2«/ KbcR + 4bcR. (32)

To understand the bounds of Theorem 3, notice first that the bound (30) is of the form
(26). The bound (32) is of the form (27), assuming the parameter K is chosen such that

BOUNDS FOR MULTIDIMENSIONAL REGRESSION 321

K = O(Lossg(1p(0%), S)). Next we see how the actual constants in the bounds come out
in some example cases.

To keep the discussion simple, let us assume that Loss (1 (©*), §) =0 for some ®, i.e.,
some weight matrix Q* = (0) satisfies y, = Q*x, for all . In bound (32) we can then
take K = 0, and the bound becomes L4(GA, S) < 4bcR. We consider first the constant
¢, which can be chosen based only on the transfer function ¢. As we saw in Example 6,
we can choose ¢ =1 if the transfer function is the identity function, and ¢ =1/4 if it is
the softmax function. The final case we considered in Example 6 was a strictly increasing
one-dimensional transfer function. In this case our choice for ¢ is the maximum value of
the derivative of the transfer function, which can be quite high for some transfer functions.

Consider now the constants b and R. The simplest case is the identity parameterization
function with one-dimensional outputs, so there is just one parameter vector 6;, and the
matching divergence function is half the squared Euclidean distance. If we use the zero
initial vector 8, = 0, we can take R = || 6" |I% /2. By Example 5, the value b can be chosen as
b = max, ||x; ||§. Assuming for concreteness the identity transfer function and ¢ = 1, the final
bound now becomes L4(GA, §) < 2||0*||% max; ||x; ||%. Thus, the bound is essentially the
product of two squared norms, the norm of the correct weight vector 8* and the maximum
norm of the instances. In the multidimensional case, the bound will have the sum of the
squared norms of all the rows of the correct weight matrix ®*.

As another example, consider the softmax parameterization function ¢ = o. We need to
assume that the correct weight matrix Q* is in the range of o, i.e., all its entries are positive
and each row sums to 1. We start again with the one-dimensional case. By Example 5,
we can take b = max, ||x,||§o. The matching divergence A, is now the relative entropy.
To see a crude upper bound for it, choose again zero initial parameters 8; = 0, so w; =
(1/n, ..., 1/n). For any parameter vector 8* € R" and the corresponding weight vector
w = o(0), we then have

Wi

Ay(01.60) =) w;ln

im1 @1,i

= Za),- Inw; +1nn
i=1

< Inn.

In this case we can thus take R = Inn, so the final bound (for identity transfer function
with ¢ = 1) becomes L4(GA, S) < 4max; |lx; ||§O In n. For the multidimensional case we
get an additional factor of &, since we need to replace the relative entropy for one weight
vector with the sum of relative entropies for all the rows in the weight matrix.

The assumption that * is in the range of o is of course quite restricting. This restriction
can be circumvented by a standard reduction. We replace each x, = (x;1,...,x,,) € R"
byx;, = (Ux;p,....Uxp, —Uxpp, ..., —Uxpy) € R?" for a suitable constant U > 0.
Then for any vector w € R” with ||w||; < U there is a vector w’ € [0, 1]" such that we
have w - x; = w’ - x| for all x, and additionally Y ", »/ = 1. Assuming now that we know
an upper bound U > ||w*||; for the 1-norm of the correct weight vector w*, it is easy to

322 J. KIVINEN AND M. K. WARMUTH

see that an algorithm GA' that works as GA but transforms each inputs x, into x| as above
achieves the loss bound L,(GA', S) < 4U 2 max;, ||x,||f,O In(2n). Hence, again the bound
has the squared product of two norms.

As we have seen, the GA algorithm with the identity parameterization function corre-
sponds to the gradient descent algorithm. The GA algorithm with the softmax parameteri-
zation function corresponds to the exponentiated gradient algorithm (Kivinen & Warmuth,
1997). Earlier work (Kivinen & Warmuth, 1997; Helmbold, Kivinen, & Warmuth, 1999) has
considered the gradient descent and exponentiated gradient algorithms for one-dimensional
outputs and shown loss bounds with the same products of dual norms that appear here. See
those earlier papers for a discussion of the implications of such bounds and some simulation
results.

Loss bounds with products of norms also appear in classification with linear threshold
functions, which can be related to regression with a matching loss function via the hinge
loss (Gentile & Warmuth, 1999). The Perceptron algorithm for classification is analogous
to the gradient descent algorithm for regression: the loss bound depends on the product of
the 2-norm of the instances and the 2-norm of the correct weight vector. The normalized
Winnow algorithm (Littlestone, 1989) is analogous to the exponentiated gradient algorithm:
the loss bound depends on the product of the co-norm of the instances and the 1-norm of
the correct weight vector. Grove, Littlestone, and Schuurmans (1997) have generalized this
by giving for each p > 2 a classification algorithm that has a loss bound in terms of on the
p-norm of the instances and the g-norm of the correct weight vector, where 1/p+1/qg = 1.
This result for general norm pairs has also been extended to linear regression (Gentile &
Littlestone, 1999).

We now turn to proving Theorem 3. The following key lemma is a straightforward
generalization of a result of Warmuth and Jagota (1997).

Lemma 4. Let O, denote the parameter matrix of GA(1, ¢, ®1, n) after trial t on a
trial sequence S. For an arbitrary parameter matrix ®* € R¥" we now have

Lossy(GA(1), ¢, ©1, 1), S) < Lossg(1(0%), 5)
1
+ ;(Atb(@lv ©%) — Ay(Opy1, O7))

1 &
+5 Y Ap(©11,0)). (33)
=1
Proof: We consider a trial sequence S_: (1,915 -, (¢, y,)) withy, € Vg fort =
I, ..., £. For the more general case y, € V,, the claim follows by continuity.

Let now 07 and 6, ; be the jth row of ©®* and ®,, respectively. By Proposition 1, we can
write

Ay(Oy, ©F) — Ay(O41, OF)

k
= (A0}, 07 — Ay(Br41,7. 67))
=1

J

BOUNDS FOR MULTIDIMENSIONAL REGRESSION 323

k
== (Ap(B41,0:,) + (PO,)) —(O)) - (0,11, — 6,.)))
j=1

k
== (Ap®Bri1,00) + 10 j — $i)W(B:) - X0 — (67 - x,))

j=1
= _(A1/)(®I+17 ®I) + 770’; _5’1) : (&t _a;k))7

where a, = 1 (©,)x; is the vector of the linear activations at time 7, and similarly a =
P(O")x;.

To bound the loss Ly (y;, y,), where now y, = ¢(@,), in terms of Ly (y,, ¢(a;)), we note
that L4 (y, ¢(a)) is convex in a and hence bounded from below by its first order Taylor
expansion. Hence, by applying (3) to write the Taylor expansion we get

Ly(y,, ¢(a;k)) > Ly, o@,)) + (p(a;) =y (a;k —a).

Combining this with the expression given above for Ay (©;, ©%) — Ay (0,11, ©F) yields

A * 1 *
Lo(y;. @) < Loy, ¢(a;)) + ;(Ad)(@tv e%)
—Ay(Or41, %) + Ay(Or41, ©1)),
from which (33) follows directly by a summation over ¢. O

Suitable bounds applied to the divergences Ay (®,41, ©;) in (33) give the following
bound.

Lemma 5. Let1):R" — R" and ¢ :R* — R¥ have the matching divergence functions
Ay and Ag, respectively. Consider a trial sequence S = ((x1,y1), ..., (X¢,y,)) with
x; e X CR" andy, € V_¢fort =1,...,0 Letb > by and c > cy where by y is as in
(28) and c as in (29). For any initial parameter matrix ©1 € R¥" and learning rate n we
have

Lossy (1 (©%), S) N Ay (O, ©%)

L GA b 9 @ k 9 S S
0ss4(GA(%, @, O1, 1), S) T~ ben y— ben?

(34)

for all parameter matrices ®* € R,
Proof: Forj=1,...,k write R; ={(1—-5)0, ;+50,11; | 0 <s < 1}. By Proposition 2

and our assumptions about the functions 1) and ¢ we have

k
Ay(Or11,0) =Y Ay(0r41,.6:))

Jj=1

k
1
= ; 5 {&%’j‘((erﬂ,j - 9,‘j)TD¢(6)(0,+1’j — 0:,]‘))

324 J. KIVINEN AND M. K. WARMUTH

A

1 a .
5 Sup (x/DP(O)x:) n* Y _ e — 513
OcRN j=1

by, R
= Twnz(yt _yt)2

< braycen Lo, 5,
Now (34) follows directly from (33) by omitting the negative term — Ay (O, ©%). O
We are now ready to prove our main theorem.

Proof of Theorem 3. Substituting n = 1/(2bc) into (34) gives (30). To obtain (32) we
first notice that for K > Lossg(10(0%), S) and R > Ay (0, ©%) (34) implies

Lossy(GA(®), ¢, ©1, 1), S) < Lossg(1p(0%), §) + Kh(ben, beR/K)

where h(r,z) = r/(1 —r) + z/(r — r?). A simple but tedious calculation shows that
h(v72 4+ 7 —z,2) <24/7+ 4z, 50 (31) implies (32). O

We close the technical part of the paper by briefly considering alternative methods for
bounding the term Zle Ay (Os41, ;) in (33). Here we consider only the case k =1 with
one-dimensional outputs; some of these ideas also generalize to the multi-dimensional
case. First we see how the methods used by Cesa-Bianchi (1999) to deal with non-matching
loss functions relate to our present framework. Fix now a strictly increasing differentiable
transfer function ¢ : R — R, and let L be a twice differentiable function on V x Vj such
that L(y, ¢(a)) is convex in a. In the case of linear regression, with the identity function as
the transfer function ¢, this property holds for any convex loss function, and Cesa-Bianchi
(1999) has shown that it also is holds for the Hellinger loss with the logistic function as the
transfer function.

Note that if L = L, the change 6,,; — 8, = n(y, — ¥/)x, in the parameter vector of
the GA algorithm at trial ¢ can by (3) be written as nV,,L(y;, ¢ (w - x;)) with the gradient
evaluated at w = 1)(6,). Thus, with the matching loss L = L4 we obtain the update of the
GA algorithm as a special case of the update

0111 =0; —n(VoL(y, p(w 'xt)))u:'zp(et)' (35)

We denote the algorithm with the more general update (35) by GA,. Notice that if 1)
is the identity function, we get the gradient descent, and for 1) the softmax, we get the
exponentiated gradient algorithm. _

We also define Lossy, 4(w, S) = Zf:l L(y:, ¢(w - x;)), and Loss, 4(A, S) for a pre-
diction algorithm A similarly. The only special property of the loss function L needed
in the proof of Lemma 4 was that fact that L4(y, ¢(a)) is convex in a. Hence, Lemma 4
remains true if we replace GA by GA and Lossg by Loss; 4 where L satisfies the convexity
condition given above.

BOUNDS FOR MULTIDIMENSIONAL REGRESSION 325

To see how bounds such as those given by Cesa-Bianchi (1999) can be obtained from
Lemma 4, we derive for the terms A (6,1, 8;) bounds somewhat different from those
of the proof of Lemma 5. As V,L(y;, ¢(w - x;)) = (L(y;, ¢(a))/0a) ., X1> applying
Proposition 2 to the update (35) yields

1, (L(y, p(@)\’
Ap(Ors1,0) = ~ 1 (y—¢) xTDep(0)x,
2 da a=p(0,)x,

for some 6. If we now assume a bound |[0L(y;, ¢ (a))/da| < Z for the derivative of the
loss function combined with the transfer function, we get Ay (0,41, 8;) < nzZsz,d, /2, S0
Lemma 4 implies

Loss. ¢ (GAL(Y, &, O1, 1),)

1 1
<Loss. 4((0%), S) + ;A,/,(Gl, 0%) + 5znzsz,w.

Choosing n = /2A4 (01, 0%)/lbx / Z gives

LOSSL,¢(GAL(1/J7 ¢a ®]) 77), S)
<Lossp 4 (P (0%), S) + Z /2 Ay (61, 0%)bx 4.

If we now bound b as shown in Example 5 for the identity and softmax functions, we
get essentially the the basic bound given by Cesa-Bianchi (1999) for the gradient descent
and exponentiated gradient algorithms. Note that here the linear dependence on ~/K of
(32), where K is an estimated loss for the best fixed predictor, is replaced by a linear
dependence on /¢, where £ is the length of the sequence. Thus, if the best fixed predictor
incurs on the average a constant loss per trial, the two bounds give the same asymptotic
order for the additional loss Loss(GA, S) — Loss(2*, S). Cesa-Bianchi also shows how the
V€ dependence can be replaced by a v/K dependence if the loss function satisfies somewhat
different assumptions.

As another alternative method, assume that (y; — y,)z < 4Y? for some Y > 0. This is the
case if, for example, we always have |y;| < Y and |J,| < Y. Even if we assume a bounded
range for the desired outcomes y,, which is reasonable in many situations, this does not
immediately guarantee a similar bound for the predictions J, of the GA algorithm. However,
consider modifying the algorithm by defining y, = ¢ (¥0(6;) - x;) and then predicting with

-Y ify, < Y
Vp=3% f-Y=<y <Y
Y ifY <y

This modified prediction is also used in the update, so we still have 8,1 = 6, +n(y; — y;)x;.
Let us denote the modified algorithm by GAY . Then following the proof of Lemma 5, we

326 J. KIVINEN AND M. K. WARMUTH

can show for the GA? algorithm the bound
Ayp(Br41,6:) < 2bxyn’Y?,

assuming |y;| < Y. Since the proof of Lemma 4 is also valid for the modified algorithm
GAY, we obtain

Lossy (GAY (0, ¢, ©1, 1), 5)

1
<Lossy((0%), S) + ;Aw(el, 0%) 4+ 26nY by 4.

Choosing n = /Ay (01, 0%)/2Lby /Y gives

Loss, 4(GA" (1, ¢, ©1, 1), S)
<Lossz ¢(4(0%), S) + 2Y /2LA (01, 0%)by 4,

again with a linear dependence on /¢ for Y a constant.

Appendix A: Existence of matching loss

We consider briefly some sufficient conditions under which (16) defines a unique loss
function L. For the value Ly(y,y) to be uniquely defined by (16) for all y and § in the
range of ¢, we must have A, (@,a) = Ay (@', a’) when ¢(a) = ¢(@) and ¢(a) = P(@).
We also need to check that the loss function satisfies Ly(y,y) > 0 fory # y.

Consider first the case in which the potential function Py is strictly convex, i.e., for all
a and a we have Py((1 — s)a + sa) < (1 — s)Py(a) + sPy(a) for 0 < s < 1. Then the
gradient ¢ is one-to-one, so the value Ly(y,) is uniquely defined by (16) for all y and y.
Further, from the characterization of the matching loss as the error in the first-order Taylor
approximation for Py, it is clear that the loss L (y, y) is strictly positive for y # 3.

We now consider the possibility that Py is convex but not strictly convex. We also make
one additional assumption. Let Zy (@) be the zero space of the Hessian D? Py(a),ie.,

Zy(@) = {x | D’ Py(a)x = 0).

We are next going to show that for a loss satisfying (16) to exists, it is sufficient to make
the additional assumption that the zero space Zy(a) of the Hessian is the same for all a.
In other words, our assumption is that if for a given x we have D? Pg(a)x = 0 for some a
then actually D> Py (a’)x = 0 for all . Intuitively, this means that there is a fixed set of
directions along which Py is linear, and along any other direction Py is strictly convex. We
are going to prove that under this assumption, ¢(@) = ¢(@’) and ¢p(a) = ¢p(a’) implies
Ap(@,a) = Ap(@',a).

Consider first vectors @ and a’ for which ¢(a) = ¢(a’) holds. Hence, the gradient of Py
is the same at @ and a’, so by convexity, Py must be linear on the line between @ and a’. In

BOUNDS FOR MULTIDIMENSIONAL REGRESSION 327

particular, Py(a’) — Py(a) = ¢(a) - (@' — a). By direct substitution into (19) we now see
that Ay(a, @) = Ay(@, a’) holds for all a.

Assume now ¢(a) = ¢(a’). As above, this implies that the first order Taylor approxima-
tion for P around a gives the the value Py (a@’) exactly, so Ad,(&/, a) = 0. This also means
that the error term, given by (@ — a)"D*P4((1 — s)a + sa')(@ — &) for some 0 < s < 1,
must be zero. Recall that the Eigenvectors of any symmetrical k x k real matrix span R¥, and
Eigenvectors corresponding to different Eigenvalues are orthogonal. Take now an arbitrary
vector x and write it as a linear combination of Eigenvectors of D? Py(a). Since we assume
all the corresponding Eigenvalues to be nonnegative, using this representation shows us that
x"D?Py(a')x = 0 implies D> Pg(a’)x = 0. Thus, we see that @' — a € Zy((1 —)@ + sa@’)
and, by our additional assumption, @’ —a € Z(a) for all a. This implies that the component
of the gradient ¢(a) in the direction of @’ — @ is constant with respect to a:

Va(@ — @) - ¢(@)) = (@ — @)"Dg(a) = 0.
Hence, we get

Ap@,a) — Ay(a,a) = Py(@) — Py@) + ¢(a) - (@ — @)
= Py(@) — Py(@) + ¢@) - @—a’)
= Ap@,a) =0.

Thus, we have proved that if the zero space Z (a) of the Hessian is the same for all a, then
(@)= ¢(@') and p(a) = ¢(a’) implies Ay(@, a) = Ay (@', a'). Hence, (16) defines a unique
value Lg(y,y) for all y and ¥ in the range of ¢. Since Py is convex, Ly (y,¥y) > 0 always
holds. We still wish to show that L (y, y) =0 implies y =3. Thus, assume A, (@, a) =0.
We have argued above that now the dot product (@' — @) - ¢(a) has the same value for all a.
Forany x € R*, we have Py(x+a—a') = Py(x)+(@—a') - ¢(a) forsomea=x+s@—a’),
0 < s < 1. Since we assume the dot product @-a- @(a) to be constant with respect to a,
we can simply write Pg(x +a — @') = Py(x) + c(@, a@’) for some c that does not depend on
x. By considering x in the neighborhood of @' we easily see that V Py (@) = V Py (@), i.e.,
@)= op@).

Example 7. Consider the softmax function from Example 2. As we saw there, the Hessian
D?P, has the property that for any x € R¥ the value x"D? P, (a)x is the variance of a

random variable X with range {x, ..., x;}. Further, X takes each value x; with a nonzero
probability. Therefore, x"D?P,(a)x = 0 if and only ifx = (c, ..., c¢) for some constant c.
As we have argued above, this implies that D? P, (a)x is zero if and only if x = (c, ..., ¢)

for some constant c. Hence, the zero space Z4(a) of the Hessian is the same for all a, so
the matching loss is uniquely defined.

Example 8. Consider the normalization mapping ¢(a) = a/|la|, from Example 4. The
potential is given by Pg(a) = |lal|>. The zero space of the Hessian is given by

Zs(@) = {sa | s € R}

328 J. KIVINEN AND M. K. WARMUTH

and is not constant with respect to a. This is consistent with our finding in Example 4 that
the matching loss is not well-defined.

Acknowledgments

The authors thank Albert Atserias, Katy Azoury, Chris Bishop, Nicolo Cesa-Bianchi, David
Helmbold, and Nick Littlestone for helpful discussions.

References

Amari, S. (1985). Differential Geometrical Methods in Statistics. Berlin: Springer.

Auer, P., Herbster, M., & Warmuth, M. K. (1995). Exponentially many local minima for single neurons. Advances
in Neural Information Processing Systems (vol. 8, pp. 316-317). Cambridge, MA: MIT Press.

Azoury, K. & Warmuth, M. K. (1999). Relative loss bounds for on-line density estimation with the exponential
family of distributions. In Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence
(pp- 31-40). San Francisco, CA: Morgan Kaufmann.

Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992). A training algorithm for optimal margin classifiers. In
Proceedings of the Fifth Annual Workshop on Computational Learning Theory (pp. 144-152). New York:
ACM.

Bregman, L. M. (1967). The relaxation method of finding the common point of convex sets and its applications
to the solution of problems in convex programming. USSR Computational Mathematics and Mathematical
Physics, 7, 200-217.

Budinich, M. (1993). Some notes on perceptron learning. Journal of Physics A: Mathematical and General, 26,
4237-4247.

Cesa-Bianchi, N. (1999). Analysis of two gradient-based algorithms for on-line regression. Journal of Computer
and System Sciences, 59, 392-411.

Cesa-Bianchi, N., Long, P. M., & Warmuth, M. K. (1996). Worst-case quadratic loss bounds for prediction using
linear functions and gradient descent. IEEE Transactions on Neural Networks, 7, 604-619.

Fahrmeir, L. & Tutz, G. (1991). Multivariate Statistical Modelling Based on Generalized Linear Models. New
York: Springer.

Forster, J. (1999). On relative loss bounds in generalized linear regression. In Proceedings of the 12th International
Symposium on Fundamentals of Computation Theory (pp. 269-280). Berlin: Springer.

Foster, D. P. (1991). Prediction in the worst case. The Annals of Statistics, 19, 1084—1090.

Gentile, C. & Littlestone, N. (1999). The robustness of the p-norm algorithms. In Proceedings of the Twelfth
Annual Conference on Computational Learning Theory (pp. 1-11). New York: ACM.

Gentile, C. & Warmuth, M. K. (1999). Linear hinge loss and average margin. Advances in Neural Information
Processing Systems (vol. 11, pp. 225-231). Cambridge, MA: MIT Press.

Grove, A.J., Littlestone, N., & Schuurmans, D. (1997). General convergence results for linear discriminant updates.
In Proceedings of the Tenth Annual Conference on Computational Learning Theory (pp. 171-183). New York:
ACM.

Guo, Y., Bartlett, P. L., Shawe-Taylor, J., & Williamson, R. C. (1999). Covering numbers for support vector
machines. In Proceedings of the Twelfth Annual Conference on Computational Learning Theory (pp. 267-277).
New York: ACM.

Helmbold, D. P, Kivinen, J., & Warmuth, M. K. (1999). Relative loss bounds for single neurons. /[EEE Transactions
on Neural Networks, 10, 1291-1304.

Kivinen, J. & Warmuth, M. K. (1997). Additive versus exponentiated gradient updates for linear prediction.
Information and Computation, 132, 1-64.

Kivinen, J., Warmuth, M. K., & Auer, P. (1997). The perceptron algorithm vs. winnow: Linear vs. logarithmic
mistake bounds when few input variables are relevant. Artificial Intelligence, 97, 325-343.

BOUNDS FOR MULTIDIMENSIONAL REGRESSION 329

Littlestone, N. (1989). Mistake bounds and logarithmic linear-threshold learning algorithms. Ph.D. Thesis, Tech-
nical Report UCSC-CRL-89-11, University of California, Santa Cruz.

McCullagh, P. & Nelder, J. A. (1989). Generalized Linear Models. New York: Chapman & Hall.

Vovk, V. (1998). Competitive on-line linear regression. Advances in Neural Information Processing Systems
(vol. 10, pp. 364-370). Cambridge, MA: MIT Press.

Warmuth, M. K. & Jagota, A. K. (1997). Continuous versus discrete-time nonlinear gradient descent: Relative
loss bounds and convergence. Unpublished manuscript.

Received November 1, 1999
Revised —

Accepted October 1, 2000

Final manuscript October 5, 2000

