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Abstract. Many information systems are used in a problem solving context. Examples are travel
planning systems, catalogs in electronic commerce, or agenda planning systems. They can be
made more useful by integrating problem-solving capabilities into the information systems. This
poses the challenge of scaleability: when hundreds of users access a server at the same time, it is
important to avoid excessive computational load.

We present the concept of SmartClients: lightweight problem-solving agents based on constraint
satisfaction which can carry out the computation- and communication-intensive tasks on the user’s
computer. We present an example of an air travel planning system based on this technology.
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1. Introduction

The world today is full of information systems which make huge quantities of in-
formation available. A good example is the travel domain, where information sys-
tems accessible through the Internet provide information about schedules, fares and
availability of almost any means of transport throughout the world.

The first generation of information systems provided simple database access fa-
cilities such as SQL which allow a user to access specific information. The current
generation provides some intelligence for locating the right information, for example
by searching for flights at a certain fare or with certain schedule constraints.

However, most information systems are ultimately used not to just provide in-
formation, but to solve problems. Thus, we believe that the next generation of
intelligent information systems should provide explicit support for the problem-
solving activities that a user carries out with them. For example, a travel informa-



tion system should help the user plan an entire trip according to constraints and
preferences, and not just give information about certain airline schedules.

One dimension of this new generation will be the integration of various informa-
tion systems into a uniform framework using agents. Such integration is apparent
for example in shopping robots such as Jango [6], or in the integrated travel in-
formation system designed by Siemens as a demonstration within the FIPA [3]
consortium.

Another dimension will be to provide explicit problem-solving capabilities: help
with configuring a complete solution, possibly consisting of many parts. For exam-
ple, a travel planning system would configure an entire trip with matching outgoing
and return flights, ground connections, etc. An insurance planner could configure a
suitable insurance package from offers of different companies with different parame-
ters. Such problem solvers will be essential to help people deal with the complexity
of the information provided by the servers.

Scaleability is a major point in this kind of application since web servers often
have to deal with hundreds of users at the same time. Linden proposes in [8] a
framework for planning air travel using constraints which has a lot of similarities
with our work, but all processing takes place on the server and is thus not scaleable.

The paper is organized as follows. The next section describes briefly our tech-
nology called SmartClient and an example of how to apply this technology to the
travel domain. Section 3 describes the use of Constraint Satisfaction Problems for
SmartClients and the main architecture of our technology. In section 5 we de-
scribe a prototype called the Air Travel Planning System which uses SmartClient
concepts. Concluding remarks can be found in section 5.

2. Motivation

SmartClient technology is based on constraint satisfaction techniques. In this sec-
tion we briefly introduce the basis of Constraint Satisfaction Problems (CSPs) and
present the SmartClient concept. Next, we describe how to apply SmartClient to
the travel domain and to more general networked information systems.

2.1.  Constraint Satisfaction Problems

Constraint Satisfaction Problems (CSPs) are ubiquitous in applications like config-
uration [12, 11], planning [14], resource allocation [2, 13], scheduling [4] and many
others. A CSP is specified by a set of variables and constraints among them. A solu-
tion to a CSP is a set of value assignments to all variables such that all constraints
are satisfied. There can be either many, 1 or no solutions to a given problem.
The main advantages of constraint based programming for this application are the
following;:

e It offers a general framework for stating many real world problems in a succinct
and compact way.

e Solutions can be found using simple and formal algorithms.



e There are numerous methods for resolving conflicts, visualizing solutions, char-
acterizing the solution space, and transforming CSP into other forms.

A finite, discrete Constraint Satisfaction Problem (CSP) is defined by a tuple P =
(X,D,C) where X = {X,...,X,} is a finite set of variables, each associated
with a domain of discrete values D = {D1,...,D,}, and a set of constraints C' =
{C1,...,C;}. Each constraint C; is expressed by a relation R; on some subset of
variables. This subset of variables is called the connection of the constraint and
denoted by con(C;). The relation R; over the connection of a constraint C; is
defined by R; C Dj; X ... x Dy and denotes the tuples that satisfy C;. The arity
of a constraint C' is the size of its connection.
A large body of techniques exists for efficiently solving CSPs ([17]).

2.2.  SmartClients

An important issue which has to be faced in information systems is scaleability: the
ability to support large numbers of simultaneous users. Client-server computing
allows such scaleability by distributing the computational load to the client com-
puters. The concept of thin clients has extended client-server computing to much
larger systems, in particular the Internet.

Traditional wisdom would say that in order to make a client intelligent, it will
have to include a lot of complex code and data, i.e. be a very fat client. The
point of this paper is to show that constraint satisfaction allows us to have smart
(intelligent) clients that are also smart (thin), by marrying two characteristics:

e constraint satisfaction provides search algorithms which are both very simple
and compact to implement, and at the same time implement complex behaviors
with reasonable efficiency, and

e constraints allow representing complex information in a compact form.

As a result, SmartClients are efficient autonomous problem-solvers which at the
same time are small enough to be sent through a network in a short time.

Such problem-solvers are particularly useful for catalog-type systems, where user
has to select from a range of possibilities: this set can be represented as a constraint
satisfaction problem and solved by incremental constraint posting. However, one
can imagine similar SmartClients for designing and planning applications.

2.83.  Travel Planning

Arranging a trip when we have to meet a variety of people in different places
involves numerous constraints from many different information servers: people’s
agendas, airline schedules, server for fares, etc. Let us consider for the moment
only constraints for a single server, the airline schedules server.

In the current state of affairs, schedule information can only be obtained by queries
made by travel agents or Web servers for particular routes, dates and times. Thus



finding the optimal plan would require separate queries for every part of every
alternative itinerary. Since each query implies response times on the order of 1
minute, this makes travel planning very tedious. The prototypical Air Travel Plan-
ning (ATP) system is a kind of personal assistant designed to facilitate arranging
this kind of trips using the concept of smart agents. The prototype is described in
detail in Section 4.

Consider the following example of a travel planning problem:

I live in Bern, Switzerland, and would like to visit colleagues in Princeton
(New Jersey), and London. I would like to spend at least two days in each
place, and will need to travel in the first two weeks of February.

Of course, I also have some preferences about airlines, departure times, transfer
airports and so on, but these constraints are too complicated to state in a first
query.

Since I live in Bern, I can leave from any of three Swiss airports (Zurich, Basel,
Geneva, abbreviated as ZRH, BSL, GVA). Also, for Princeton I can fly to two New
York airports (JFK, EWR) or to Philadelphia (PHL), and there are three airports
in London to consider (LGW, LHR, LCY). Finding the best plan for my trip involves
checking all combinations of flights between these airports on the dates which are
specified in the main query. Thus, a system considering all the possibilities from
the example described above will access the flight information for the initial query
as follows:

1. 1%t leg from Bern to Princeton: flights from ZRH/BSL/GVA to JFK/EWR/PHL on
the dates from 1%t to 10" February,

2. 2" leg from Princeton to London: flights from JFK/EWR/PHL to LGW/LHR/LCY
on the dates from 4" to 12t February, and

3. 3 leg from London to Bern: flights from LGW/LHR/LCY to ZRH/BSL/GVA on the
dates from 6°¢ to 14" February.

Considering only direct flights, there are in fact more than 4 million solutions for
this problem. An intelligent tool would be of great help to manipulate this large
set.

There are two important questions about efficiency in this kind of information
systems:

1. How many server accesses are required ?
2. How much information has to be sent from the server to the client ?

Let us analyze these two questions in the traditional flight information systems
and in our smart-agent based system. In Table 1 we show the approximated answers
to the example describe above using conventional approach versus SmartClient
agents.



Table 1. Conventional systems vs. SmartClient systems. The data of the table
is calculated considering that the user is interested in all possible combinations of
flights that match the initial query of the example mentioned before.

Conventional Information Systems Smart Client Agents

Server access 447039 1
Size of 1 transfer 60Kb 500 Kb
Size of total transfers 26.82 Gb 500 Kb

2.3.1. Conventional approach. Let us consider planning such a trip using the
systems currently available on the WWW. One type of system, most commonly of-
fered by airlines themselves, simply allows the user to inspect flights or connections
for one particular leg at a time. On a multi-leg trip such as this one, this would
require the customer to carefully note down all solutions for the different legs and
finally put together a solution by hand - not a very satisfactory way of planning
such a trip.

Fortunately, tools such as Travelocity [16] allow us to configure multi-leg trips.
Complete itineraries are constructed on the server and returned to the customer
for selection. In an example such as the one given above, we could in principle
browse through all the 4 million possible solutions, evaluating each manually as to
whether it satisfies our constraints. Considering that solutions are displayed in web
pages with about 10 solutions at a time, this would involve an enormous number
of transfers. Each web page sent back has about 60 Kbytes, so in total we need to
transfer (and look at) about 24 Gbytes (4 x 105/10 x 60 Kbytes) of information to
see the complete solution space.

However, a smart user can save some time by exploiting regularities of the domain,
such as the fact that most flights operate daily and usually have space available.
But this means precisely that the tool is not very intelligent: it still requires the
customer to do most of the work.

2.3.2.  SmartClients offer the possibility to support the customer’s decision-making
process with an intelligent scratchpad. In contrast to conventional tools, it can keep
track of all options and choices and avoid having to reload information which had
already been requested earlier.

First of all, the customer specifies initial constraints about the trip: the departure
and arrival airports, departure dates, and some general preferences. The Smart-
Client then collects information about all flights which could be part of a solution
in one single server access. Since the information is encoded as a Constraint Satis-
faction Problem (CSP), it only needs to record the sum of the information for each
possible flight, not all their combinations. In this example, there are 795 possible
flights, each of which is encoded in a text line containing no more than 80 bytes.
Thus, the entire CSP takes up no more than 63 Kbytes (795 % 80bytes). Added
to this the size of the Java Constraint Library (100 Kbytes) and the graphical
interface (300 Kbytes), the complete SmartClient is no larger than 500 Kbytes.



Considering that the size of an average response page from a conventional server
such as Travelocity is already 60 Kbytes, this is not a particularly large agent. It
can be transmitted through the Internet in less than 1 minute through a standard
modem.

The CSP in the SmartClient implicitly contains all 4,470,396 possible solutions.
Because it runs locally on the customer’s computer, the best combinations (accord-
ing to some user’s preferences, as described in Section 3.5) can be searched using
advanced constraint satisfaction techniques.

Once the customer has decided on a particular solution, the SmartClient generates
a new request to the server, which can then initiate a booking process.

2.4. Networked Information Systems

Often, problem solving requires information from many different servers. For ex-
ample, in travel planning I not only have to consider the air travel, but also:

e schedules of ground transportation to and from airports,
e the availability of people that I want to meet, and
e my own availability.

Travel planning requires finding a combination of meeting time, ground and air
transportation that meets the constraints of the participants as well as the trans-
portation means.

One can figure out that information about schedules and agendas is available
through different agents accessible through a network. The planning problem could
then be solved in the following steps:

e gather information about schedules and availability from each of the servers,
e construct the combined problem, and
e solve this combined problem in a single process.

Here again, the formulation of solutions spaces as CSP can be of great help. The
planning agent can combine the CSPs obtained from different servers into a single
CSP which represents the entire problem.

Consider the following example: Bill, living in Bern, Switzerland, has to arrange
a 3-hour business meeting with John, who is located in Princeton, USA. Both have
agenda agents which can be queried for time intervals when they are free, and the
airline provides its schedules on a server. Bill can then leave the job of planning the
entire trip to his agent. Figure 1 shows the CSP that this planning agent would have
to construct and solve. Any solution to this CSP will be a consistent combination
of times and flights.

To construct this complete CSP, the planning agent will have to obtain parts of
the CSP from different servers: Bill’s agenda, the airline, and John’s agenda. If each
of them can provide its information as a CSP, it becomes easy for the planning agent
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Figure 1. A CSP for a complete travel planner combining information from several servers. Ovals
represent the variables and the arcs the constraints of the CSP. Note that Bill is living in Bern
(Switzerland), so he can leave from both Geneva or Ziirich airports. On the other side, Bill can
arrive at New York or Philadelphia because both are equally convenient for reaching Princeton.

to compose them into a single problem. It would also be possible to integrate other
CSPs representing for example, ground transportation, hotels, etc. The solutions
to the combined problem can then be generated and browsed using a SmartClient
just as in the case of a single server. It would be extremely difficult and inefficient
to provide such a service without the CSP formalism.

3. Constraint Satisfaction for SmartClients

In this section, first we describe formally how we model the travel planning problem
as a CSP. Then, the architecture for supporting SmartClients is described. Subsec-
tion 3.3 focuses on the Java Constraint Library. The rest of the section is dedicated
to explaining how the user deals with the SmartClient by posting constraints in
order to get good solutions.



3.1.  Modeling the travel planning problem as a CSP

Let us formalize the problem of arranging travel plans using a constraint-based for-
malism. We define an itinerary as a sequence of legs or segments between different
destinations: itinerary = {lego,legi,...,legn—1}. Then, the CSP encoding the
travel planning problem with n legs is defined by a tuple P = (X, D, C') where:

e X ={DTy, ..., DT, ATy, ..., AT_1, Airportso, ..., Airports,, Flightsy,
..., Flights,_1, AirCrafts, Fares, Airlines, ...} is a set of variables. There
are several kind of variables:

— DT; and AT; represent the dates and times on which the traveler could
depart and arrive respectively.

—  Airports; represents the possible airports near the departure for leg; of the
itinerary.

—  Flights; stands for the possible flights in between the airports of Airports;
and Airports;y;.

— The problem can have more variables for encoding the user’s preferences.
For example, variable AirCrafts is used for encoding the type of aircraft,
variable Fares for encoding the different types of fares, Airlines for the
different airline companies, etc... These constraints can involve the whole
itinerary or only a specific leg of the itinerary.

e D ={Ds,...,D,} is the set of domains. There are several kinds of domains
depending on the type of the associated variable:

—  For variables DT; or AT;: the domain contains all possible departure and
arrival times for the leg;.

— For variables Airports;: the domain is a set of airports for the departure
of the leg;.

— For variables Flights;: the domain is the set of possible flights from Airports;
to Airports;y.

— For variables AirCrafts, Fares and Airlines: the domain is the set of
different aircrafts, the set of available fares or the set of airline companies
respectively.

e C = {Ci,...,Ck} is the set of constraints. Basically, there are two kinds of
constraints: those imposed by the user’s preferences and those imposed by
flight schedules. There are constraints on the variables Flights;, Airports;,
DT; and AT; that guarantee that the flight is compatible with the airports,
departures times and arrival times. A binary constraint in between AT; and
DT} takes into consideration that the flight for leg;;1 departs after the flight
for leg; arrives. Then most of the user’s preferences are expressed by means
of constraints between Flight; variables and Aircrafts, Airlines, Fares and
other variables.



In Figure 2, we show the constraint graph representing the example described
above.

Aircraft
types
Airline
‘ company
' I
' Available

fares

Other
variables

Figure 2. The constraint graph representing all the possible solutions for the given example.
Nodes represent variables and the edges represent the constraints. The constraints guarantee that
the user’s preferences are taken into consideration and the flight schedules are satisfied.

3.2.  Architecturet

Initial
SERVER specification CLIENT
Database ~_ E—
with . .
- . Generation of [—— | Resolution of
information [
for the CSP csP smart agent csP

Figure 3. SmartClient architecture. The CSP is generated on the server side from the initial user
query. Then, the CSP is sent back to the client side where the user’s computer can solve the
problem locally without further need for data from the server.

The architecture supporting smart-agent methodology is shown in Figure 3. The
client sends a request containing the user constraints to the server. The server
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accesses databases in order to generate the corresponding CSP taking into consid-
eration the constraints of the user. The CSP is packaged with a search algorithm to
form an agent, the SmartClient, which is transfered to the client side. In this way
the user can browse through the different solutions by interacting with the agent
locally.

We decompose the process into two parts:

e the information server compiles all relevant information from the database and
the user constraints (query) into the corresponding CSP. The variables of the
CSP depend on how the problem has been modeled. The domains of variables
must be searched for in a database or an information system. In our architec-
ture, the exact queries to the databases depend on the query of the user. For
example, in the domain of air travel planning, if the user wants to flight from
Geneva to London on the 2"¢ or the 3"¢ of July, then we will search for flights
on these dates going from Geneva to London. Our prototype for planning flights
uses the Galileo reservation system which is used by Swissair and other major
airlines. The advantage of building the CSP on the server side and sending it
to the client side is that the CSP is a compact representation of all solutions
that the problem can have given the initial restrictions of the user. So, the CSP
can be transferred quickly.

e the server sends a smart agent consisting of the CSP and search algorithms to
the client. This allows the user to browse through all the possible solutions.
Since the agent executes on the client, response time can be very fast and the
user can compare different alternatives without placing unnecessary load on the
server.

Building the CSP requires only a small fraction of time compared to solving the
CSP, so having the agent executed on the client significantly reduces server overload.
After having generated the CSP it is no longer necessary to access the server, so
the agent is completely autonomous

3.3.  Java Constraint Library (JCL)?

We implemented the Java Constraint Library (JCL [15]), which allows us to
package constraint satisfaction problems and their solvers in compact autonomous
agents suitable for transmission on the Internet. It provides services for:

e creating and managing discrete and binary CSPs, and

e applying preprocessing and search algorithms to CSPs.

The JCL can be used either in a stand-alone Java application or in an applet (an
applet is an application designed to be transmited over the Internet and executed
by a Java-compatible Web browser). The purpose of the JCL is to provide a frame-
work for easily building agents that solve CSPs on the Web. The JCL allows the
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Graphical User Interface (GUI) for editing
and solving CSPs

JCL
Algorithms for searching Javascript
solutions and
preprocessing CSPs Functions for
scripting HTML
pages

Java language

Figure 4. The components of the JCL environment. The JCL is composed by two main elements:
the Constraint Library and the Graphical User Interface. The Constraint Library is implemented
in Java being able to be used in applets. The Shell is a GUI for the library that combines Java
with Javascript allowing the system to present results in HTML pages.

development of portable applications and applets using the constraint mechanisms.
It can be downloaded from http://liawww.epfl.ch/ torrens/JCL.

Basically, the JCL is divided into two parts: a Constraint Library available on
the Web and a Shell with a Graphical User Interface built on the top of this library
(see Figure 4).

3.8.1. The Constraint Library provides methods for building CSPs from scratch
and solving them. The user only has to model the problem as a CSP and then use
the methods from the JCL to build the CSP. Once the CSP is built, any of the
algorithms implemented in the JCL can be used for solving the CSP. These algo-
rithms can search for one, all or n solutions depending on one parameter that the
user can set. Once the solving algorithm finishes, the JCL reports an enumeration
of the solutions found and some statistics on the search. Statistics on the search
includes the number of backtracks, the number of consistency checks, the number
of instantiations, and so forth. The library contains both search and preprocess-
ing algorithms. The search algorithms allow us to find solutions of a CSP, while
the preprocessing algorithms are used to simplify a CSP by eliminating values and
compound labels that do not affect its solutions. Several search algorithms are im-
plemented in the JCL. There are three main algorithms derived from Chronological
Backtracking (BT) that are: Backmarking (BM), Backjumping (BJ) and Forward
Checking (FC). Combinations of these algorithms yield other algorithms (see [7]
for more details on these combined algorithms) which are implemented in the li-
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brary: Constraint-directed Backjumping, Graph-based Backjumping, Backmarking
with Backjumping, Backmarking with constraint-directed Backjumping, Backmark-
ing with graph-based Backjumping , Forward Checking with Backjumping, Forward
Checking with constraint-directed Backjumping , Forward Checking with graph-based
Backjumping and MAC (Forward checking using arc consistency). Some combina-
tions of them are implemented in CSPLib [18] and just adapted in the JCL.

Two preprocessing algorithms are implemented in the JCL: Arc-consistency (AC)
and Path-consistency (PC) [9].

The JCL has been extended with methods for dealing with exclusion constraints
(unary constraints) and with binary relations like =, #, <, >, <, and >. In this
way, the JCL supports the Constraint Choice Language which is an agent content
language designed to explicitly support agent communication about CSPs [19].
Such language could be useful for SmartClients that combine several information
systems. In the travel domain, we can imagine several SmartClient agents for con-
figuring different parts of a travel (flights, hotels, events, etc). The communication
among this agents could be done using CCL, and the solving process would be
carried out by the JCL.

3.3.2.  The User Graphical Interface (GUI) has been implemented for easing the
integration of the Constraint Library into Java applications and applets where the
results of the algorithms must be displayed graphically. We have also implemented
an application and an applet for editing and solving general CSPs. The user can
build variables, domains and constraints by means of a graphic interface. CSPs can
also be saved to a text file following a concrete syntax, so they can be edited in
any text editor. The functionality of the GUI allows the user to connect applets to
HTML pages as well by means of Javascript.

The main goals of the GUI for the JCL are:

e test and demonstrate the library graphically and intuitively, and

e provide classes in order to easily allow us to integrate the solving algorithms
with graphical applications or applets.

3.4. Representing solution spaces

Compacting solution spaces is a key point for SmartClient technology where solu-
tions spaces are sent through the Web to the user’s computer. In this subsection,
the issue of how CSPs can help compacting solution spaces is discussed.

Combinatorial problems can have an enormous number of solutions, arising through
the combinations of variable values. For a problem with n variables of uniform do-
main size d, there can be up to d" different solutions. A complete enumeration of
all solutions would require n - d™ units of storage.

If variables are completely independent, the space can be represented as a cross
product of all their values. This would require only n - d units of storage.
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However, in most cases the admissible combinations are restricted by constraints.
In the worst case, a constraint can be stored as a list of all the admissible tuples. In
such a case, a k-ary constraint can require up to d* units of storage. In a network
with n variables, there can be at most n- (n—1) - (n—k+1) < n* such constraints,
so in the worst case we require at most

(n-d)

units of memory to store a network of degree k. If k is relatively small with respect
to n, this is exponentially better than storing all admissible combinations. The price
to pay, of course, is that solutions can only be accessed by solving the NP-complete
problem of constraint satisfaction. We call a space of solutions described in this
way a constraint space.

3.5.  Browsing solution spaces

Very often, the initial constraints given by the customer define a very large space of
possible solutions. For example, even if I want to travel on a particular day, there
is often a bewildering number of possible flights and combinations of them that
I could take. While it is possible to optimize for a single criterion, such as price
or travel time, this might cause the user to miss solutions which would have been
preferred: a small increase in price might be acceptable in return for an advantage
in another criterion. Interactive browsing is necessary to find the right solutions in
such a multi-criteria problem.

Formulating solution spaces using the CSP formalism offers interesting possibil-
ities for this browsing process. In particular, users can narrow down their choices
by posting additional constraints on the solutions they see. These constraints can
be formulated on any attribute of the solutions. For example, in an airline travel
problem, it would be possible to formulate constraints such as “minimum layover
time has to be 90 minutes” and filter flight combinations in this way. Since the con-
straint satisfaction algorithms are completely uniform, such additional constraints
can be incorporated into the system at any moment, thus searching new solutions
according to the new posted constraints.

The SmartClient can thus implement approaches similar to that in [8], where
sample solutions are proposed to the customer and stimulate formulation of ad-
ditional constraints to rule out undesirable features. However, with SmartClients
this mechanism can be much more powerful, since it is not limited by the need to
communicate with the central server.

3.6.  Configuration constraints, user’s preferences and criteria for optimality

User’s preferences can be set by posting constraints on the attributes of any pro-
posed solution. In our framework, user’s preferences are modeled as soft constraints.
Normally, there are also constraints that are predefined for optimizing some crite-
ria. For example, users always prefer inexpensive products, thus the price could
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be a criterion to be optimized. Configuration constraints are also needed in order
to guarantee the correctness of the solution. The following types of constraints are
identified:

o Constraints for configuration: constraints that never can be violated. These
constraints guarantee the feasibility and the correctness of a solution. For ex-
ample, if we want to go from Geneva to Paris for one day, the return flight
must be taken after the outgoing flight has arrived to Paris.

o Constraints for preferences: constraints for expressing user’s preferences. By
mean of these constraints we express the explicit user’s preferences, for instance,
the user could prefer to fly with SwissAir rather than with Lufthansa.

o Constraints for optimization: constraints for determining the quality or opti-
mality of a (partial) solution. Some optimality criteria which are valid in general
can be predefined. For example, users don’t like to stop in intermediate airports
or buyers want to pay as less as possible for a concrete good.

The next subsection describes the algorithms which allow us to find solutions
where the CSP is overconstrained by minimizing the conflicting constraints.

3.7.  Dealing with overconstrained situations

Through constraint posting, the user can quickly arrive at a situation where there
is no longer any solution satisfying all constraints. Such situations have been exten-
sively studied within the constraint satisfaction framework, and there are several
alternatives for dealing with them:

e in partial constraint satisfaction ([5]), we find solutions where some variable
assignments violate constraints. The advantage of this framework is that it is
simple to implement and gives intuitive results. The disadvantage is that we
might also obtain inconsistent solutions, violating for example the constraint
that we cannot leave a city before having arrived there.

e many frameworks have been proposed for separating soft and hard constraints.
For example, Borning ([1]) orders constraints in a hierarchy of importance; the
best solutions are those which satisfy all constraints up to a maximal level in
this hierarchy. This framework lets us avoid inconsistencies, but the solutions
are less intuitive to users: we would, for example, prefer to violate a constraint
on the preferred airline 10 times rather than violate two different preferences
on departure times. Also, it is difficult to establish an ordering of constraints
which reflects the user’s preferences.

e the user can be asked to retract certain constraints. Such retraction can be
chronological, or it can be supported by an explicit analysis to find minimal
conflicting sets of constraints. This approach is the most satisfying one, as the
user can get an explanation such as “you cannot leave later than 8 am and travel
with your preferred airline”. However, it involves numerous difficulties: the
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number of conflict sets can grow exponentially with the number of constraints,
it is computationally expensive to compute then, constraints and conflict sets
need to be displayed and chosen from, etc.

In light of this discussion, our prototype performs partial constraint satisfaction tak-
ing into account the penalties of the violated constraints, and also allows chrono-
logical retraction of constraints by the user when (s)he is not satisfied with the
solutions obtained in this way.

4. The Air Travel Planning (ATP) prototype® [10]

We have implemented a prototype for Air Travel Planning (ATP) using SmartClient
technology. In most current travel e-commerce sites, the traveler needs to enter
dates, times and destinations and is then directly led to a small choice of flights.
In our approach, the buyer initially specifies only a set of possible destinations and
ranges of dates. The catalog then proposes a large set of possible products, using
three different displays:

e an overview display which allows comparing the entire range of solutions ac-
cording to selected criteria,

e specific example products to elicit further constraints on their attributes, and
e a visualization comparing small sets of alternatives in their attributes.

In all these displays, buyers identify their needs (constraints) and evaluate them
constantly until they reach an optimal solution. Flexible interaction sequences are
supported through the use of constraint satisfaction as a basic selection mechanism
(as described in previous sections). This allows us to model a buyer’s criteria
accurately and explicitly. Constraints can be posted and retracted in any order,
resulting in a flexible conversation that rapidly leads the buyer to refine his needs.
Constraint satisfaction paradigm provides support for visualizing and comparing
the entire space of possibilities, thus ending up with a solution that appears to be
the best deal and that she/he is thus ready to buy.

4.1.  Defining initial needs

Buyers enter the interaction with often very vague ideas of what their actual needs
are. In air travel, they usually know where and roughly when they want to travel,
but they do not think of many other secondary criteria, such as departure times,
airports and airlines they like to avoid, etc.

We use a world map as a metaphor for defining origination and destination air-
ports. As a user zooms in, detailed information appears, such as each country’s
contours and the names of available airports. Clicking any name will enter the
corresponding airport into the itinerary definition panel located on the upper-left
corner (see Figure 5). The system automatically selects airports which are really
close to the airports entered by the user.
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Figure 5. Query display with world map in the initial panel. The user can input his/her initial
preferences about the travel, basically the destinations and the dates.

The Search trips button generates a solution space which is then shipped to the
customer’s side, whose constraints and preferences are used as guidelines to define
an initial focus on the solution space.

4.2.  Getting an overview of the available products

Often, the range of choices that a buyer might consider is bewildering. When there
are many competing and possibly conflicting evaluation criteria, there can be a huge
number of relevant choices, each optimal for some of the criteria and suboptimal
for others. For example, the cheapest flight may require three plane changes. In
trip planning, the complexity and richness of such decision problems are further
compounded by the conditional nature of users’ criteria. That is for certain flights,
they would prefer the cheapest, while for others, they would prefer non-stop feature.

Such multi-criteria analysis can be performed in the overview display (see Fig-
ure 6), showing a scatter-plot of a sample set of solutions according to total time
(horizontal axis) and departure time for segment 2 (vertical axis). In the shown ex-
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ample, the scatter-plot is useful to see that if the user wants to leave in the morning
for the segment two, he has basically two options:

e to leave on the 20th of January, or

e to leave on the 18th of January but take a solution that takes about 3 hours
more than the others.
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Figure 6. Tradeoff between departure time for segment 2 and total flying time in the overview
panel. It is possible to inspect each of the possibilities in the Overview panel, and use this to
make an initial choice which we then further inspect in the other views or panels. Selected flights
are displayed in detail on the flight table below the graphical plot.

Solutions can be selected and are then stored in the Current trip summary panel.

At any moment during the solution space navigation and browsing, users can go
to the Ouverview panel to further compare trips. Overviews can be provided for
any combination of price, total flying time, number of intermediate stops, depar-
ture/arrival times for any segment, and so on.
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4.83.  Eliciting further needs and constraints

A typical buyer has many constraints that are not stated up front. The user becomes
aware of these only when solutions are proposed that violate them. The Edit
preferences panel, shown in Figure 7, allows us to post constraints on any item in
the display. In the textual display, they can be posted by clicking on the respective
cell and thus activating a menu, as shown in the figure. Similarly, it is possible to
post constraints on any of the following solution attributes:

e Dprice,

e airlines,

e aircraft types,

e departure and arrival dates,
e departure and arrival times,
e intermediate airports, and
e direct of non-direct flights.

When constraints are posted in this way, they are automatically restricted to the
context in which they were posted. For example, if the user posts a constraint on
a departure time, it will by default be applied to flights for that particular leg and
leaving from that particular airport only. Applicability can be further restricted
by selecting cells as a context, for example only when leaving from San Francisco
airport because of the longer driving time.

Constraints can also be posted using sliders in the graphical tracer display above
the textual display, which is discussed in more detail later.

Posting constraints in this manner eliminates one major difficulty with conver-
sational interfaces: it makes it impossible for the user to input constraints that
cannot be understood. Since the display does not show attributes or values that
do not exist, it is not possible to post constraints on them.

At any time, the user can request the system to compute a new set of solutions
that satisfy all constraints posted so far, and will usually obtain immediate response.

4.4.  Comparing alternatives in detail

The tracer display (see Figure 7) shows each solution as a trace through the set
of flight attributes comprising a trip itinerary. For each attribute there is one
vertical bar with its possible values. A solution is a trace that links the values of
the different attributes. The tracer display quickly makes apparent the differences
among a set of possibilities. The tracer display also allows us to post additional
constraints by using sliders on each attribute. This gives users who prefer to work
with more graphical abstractions another way of declaring needs and criteria to the
system. Sliders on attribute bars can further provide rapid specification of ranges
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Figure 7. Edit preferences display allows the user to post preferences on any attribute of any dis-
played solution. Each solution is shown as a trace through the set of flight attributes. Constraints
can be posted by using sliders and check boxes on the attributes.

of dates and time. Clicking on the other hand allows easy interaction for choices,
such as whether someone wants to stop in a specific intermediate airport or not.

As an alternative way, this interaction design is particularly useful when travel is
less constrained, allowing buyers to quickly decide that they can only expect small
differences in cost, but potentially large gains in travel time. This mechanism can
help users define criteria to find the “good deal”.

5. Conclusions

The modern world overwhelms people with massive information overload. We be-
lieve that Artificial Intelligence techniques have an important role to play in dealing
with it. Up to now, much work has concentrated on techniques for retrieving or
filtering information as such. We believe that the next step is to actively support
the user in the problem-solving process. Only in this way can we achieve further
substantial reductions in the complexity a user has to deal with.
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Since most problem-solving is either compute- or knowledge-intensive, providing
such functionality poses severe scalability problems. In an information system that
has to serve thousands of users with small response times, the time that can be
allotted to each individual user is very small. Smart clients offer a way out of
this scaleability problem by making available the computation capacity of each
user, thus linearly scaling the available capacity with the total load. The work we
present here shows that contrary to what one might assume, this paradigm is very
manageable for real applications. We hope to encourage others to investigate such
an architecture for other problems as well.

Another important aspect of our work is the use of the constraint satisfaction
paradigm. It allows us to represent complex problems and their solution algorithms
in a very compact way since constraint satisfaction is extreme in its compactness
and simplicity. In networked environments where the size of applications becomes
important, this is another interesting feature which can be exploited in many other
applications.

SmartClients are a new way of applying constraint satisfaction techniques. Rather
than focusing on efficient solvers, we exploit the possibilities of representing spaces
of solutions as constraint satisfaction problems. This possibility is important for
information systems, where problem solving is based on comparing or synthesizing
large numbers of solutions from a set given by an information system server.
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Notes

1. Note that SmartClient architecture is protected by a pending patent.

2. The JCL is distributed in open source software under the terms of the LGPL (Lesser General
Public License Version 2).

3. A long version of this chapter can be found in [10].
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