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Abstract. We propose a method for constructing regression trees with range and region splitting. We present an
efficient algorithm for computing the optimal two-dimensional region that minimizes the mean squared error of an
objective numeric attribute in a given database. As two-dimensional regions, we consider a classR of grid-regions,
such as “x-monotone,” “rectilinear-convex,” and “rectangular,” in the plane associated with two numeric attributes.
We compute the optimal region R ∈ R. We propose to use a test that splits data into those that lie inside the region
R and those that lie outside the region in the construction of regression trees. Experiments confirm that the use of
region splitting gives compact and accurate regression trees in many domains.
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1. Introduction

We consider a regression problem for modeling and approximating the values of a con-
tinuous attribute in a relational table. In a table, we often treat one continuous attribute
as special, and call it the objective attribute. The other attributes are called conditional
attributes. Several models have been proposed for modeling and approximating the values
of a continuous objective attribute by using the values of conditional attributes, such as
statistical linear regression, spline functions, and neural networks. Regression trees are also
a widely used method for such modeling tasks.

A regression tree is a rooted tree such that each intermediate node is associated with a
test. At an intermediate node (initially at the root node), we check the test of the node to find
out which branch a given record should move to. We assume a regression tree is a binary
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Splitting” in Proceedings of the 23rd VLDB Conference (Athens, Greece, 26–29 August). VLDB Endowment,
1997, pp. 166–175.
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††This work was performed while the author was at IBM Tokyo Research Laboratory.
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tree structure. Therefore, if the record satisfies the test, it goes down one branch. Otherwise,
it goes down the other branch. The record is recursively checked at intermediate nodes and
finally reaches a leaf node. Each leaf lists a predicted value for the objective attribute that
is appropriate to the test conditions along the path to that leaf. We can predict the value of
the objective attribute for a given record as the value given at the associated leaf.

Various proposals for constructing compact and accurate trees from a (training) table of
data have been made in the AI community (Breiman et al., 1984; Quinlan, 1993; Piatetsky-
Shapiro & Frawley, 1991) and recently efficient construction of classification trees from
large tables has also been investigated in the database community (Mehta, Agrawal, &
Rissanen, 1996; Shafer, Agrawal, & Mehta, 1996; Gehrke, Ramakrishnan, & Ganti, 1998).

This paper explores an improvement to the standard strategy of selecting internal-node
tests during regression tree construction. In particular, conventional regression tree con-
struction algorithms often use a test on a continuous, conditional attribute with a cut value
within the range of the conditional attribute that splits data into those below the cut value
and those above. Such a test is called a “guillotine-cut.” However, consider the case when
two conditional numeric attributes have a non-linear correlation with respect to the objective
numeric attribute. In such a case, a test with a two-dimensional region for splitting data into
two subsets may be more natural and effective.

As an example, consider Table 1, which shows part of the relational table that was
collected from the New York currency markets every Monday, from the last Monday of 1985
through the first Monday of May 1993. It contains 10 numeric attributes that are W (week),
M (month), Y (year), BPS (British Pound Sterling, US$/pound), GDM (Deutschmark,
US$/mark), YEN (Japanese Yen, US$/yen), TB3M (3-month Treasury bill yields), TB30Y
(30-year Treasury bill yields), GOLD (US$/ounce), and SP500 (Standard and Poors Index).
Suppose we are interested in predicting the SP500, which is one index of overall market
performance, from the values of other attributes in the table, using a regression tree.

Figure 1 illustrates a node in the regression tree generated by our method. The top
histogram shows the data distribution of 384 records in Table 1 along with values of the
SP500, which range from 190 to 460 and are divided into sub-ranges with a uniform width
of ten. The data in the top histogram are then split by the region R in the middle of the
figure. The R is a region in the Euclidean plane whose x-axis is the GDM (mark) price and
whose y-axis is the GOLD price. The bottom-left histogram and bottom-right histogram
show the data distribution of records inside the region R and that of records outside the R,

Table 1. Currency data.

Y M W BPS GDM · · · GOLD SP500

85 12 52 1.44353 0.40746 · · · 326.00 210.88

86 1 1 1.44612 0.40805 · · · 339.45 205.96

86 1 2 1.43794 0.40485 · · · 357.25 208.43

86 1 3 1.40470 0.40879 · · · 355.25 206.43
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93 5 18 1.56875 0.63384 · · · 357.50 442.31
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respectively. The number of records, and the mean and variance of SP500 values in those
three histograms are:

No. of tuples Mean Variance

Top 384 324 4430
Bottom-left 155 391 1117
Bottom-right 229 278 1535

The region R is chosen to minimize the sum of the mean squared errors of the two subsets
after the split. From the shape of R, we can see that a lower gold price (lower than 368) is
generally related to a higher SP500 index. Also, when the value of GDM is between 0.56
and 0.60, the SP500 index is likely to be high if gold is not too high. Although we only
present a node in a regression tree here, in general we recursively generate intermediate
nodes until we cannot significantly improve the mean squared error of the tree.

Figure 1. Region splitting.
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In the remainder of the paper, we describe our variation of regression tree construction,
which can form tests using two-dimensional regions and standard range cuts, as well as
tests of categorical attributes. We show that the optimal region that minimizes the mean
squared error can be efficiently computed, and through experiments in a variety of domains,
show that a regression tree with region splitting tends to be more accurate and smaller than
a conventional tree with guillotine-cuts only.

2. Regression tree construction

Let D denote a relational schema, which is a set of categorical or numeric attributes. We
select a numeric attribute Y as the objective attribute. We call the other attributes in D
conditional attributes.

We generate a regression tree T from a specific instance of relation, D, of D. D is called
the training data. Let t be a record of D, and let t[Y ] denote the value of the objective
attribute Y . Let w denote a node in a regression tree T , and let Dw denote the set of records
in D that are classified by node w. We assume that Dw is not empty. Let |Dw| denote the
number of records in Dw, and let µ(Dw) denote the average value of the objective attribute
Y in Dw; that is, µ(Dw) = (1/|Dw|)∑t∈Dw

t[Y ]. By recursively following tests at internal
nodes of T , classification of any record follows a single path from the root to a leaf, which
we denote leaf(t). We say that t is classified by the leaf node leaf(t). Suppose that we are
given another instance of the relation D′ over D. For each record t in D′, we find the leaf
node leaf(t). We use µ(Dleaf(t)) as the predicted value for t , whose actual value is t[Y ]. To
evaluate the prediction error of T against relation D′, we use the mean squared error

MSE(T, D′) =
∑

t∈D′
(
t[Y ] − µ

(
Dleaf(t)

))2

|D′| .

When we are given training data D, we do not know what instances D′ of D will be given
as test data. Thus we try to generate a regression tree T such that the mean squared error of
T against the training data D, namely M SE(T, D), is small.

2.1. Greedy tree construction

The problem of constructing a minimum regression tree from a given set of training records
is known to be NP-hard (Hyafil & Rivest, 1976; Garey & Johnson, 1979). Therefore, we
have to use an approximation algorithm for the problem.

The most common method has been the classic greedy recursive partitioning strategy,
which is summarized as Algorithm 2.1. If a test splits a set of records Dw in a node w into
two subsets Dleft

w and Dright
w , the mean squared error of the node becomes

∑
t∈D

left
w

(
t[Y ] − µ

(
Dleft

w

))2 + ∑
t∈Dright

w

(
t[Y ] − µ

(
Dright

w

))2

|Dw| . (1)
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In the greedy tree construction, we find a test (step 5-6 in SPLIT) that minimizes Formula 1
at each split. Algorithm 2.1 is a greedy algorithm that constructs a regression tree T from
D. We stop splitting a tree if the number of records in Dw becomes negligible.

ALGORITHM 2.1. Regression Tree Construction

MAIN ()

1. Read training data D in a database.
2. SPLIT (D)

SPLIT (Dw)

1. IF (Dw satisfies stopping condition) THEN stop.
2. Examine all possible tests on each categorical attribute.
3. Examine all possible guillotine cut tests on each numeric attribute.
4. Examine all possible region tests on each pair of numeric attributes.
5. Find the optimal test that most reduces MSE(T,Dw).
6. Split Dw into Dleft

w and Dright
w by using the optimal test.

7. SPLIT (Dleft
w )

8. SPLIT (Dright
w )

2.2. Tests on categorical conditional attributes

For a categorical conditional attribute A, a primitive test has the form A = a, where a is an
element in the domain of A. A record t satisfies a test of the form A = a if t[A] = a. A test
on a categorical conditional attribute is an arbitrary Boolean disjunction of such primitive
tests, such as “A = a ∨ A = b ∨ · · ·.”

Assume that the cardinality of A is m. We can order all the m primitive tests according to
the average value of Y . The optimal test that minimizes Formula 1 must be one of the cuts
of the ordered primitive tests. Therefore, we can find the optimal test in O(m log m) time.
Breiman, Friedman, Olshen and Stone showed the O(m log m) algorithm for the GINI index
criterion (Breiman et al., 1984). We will show, later in this paper, that the mean squared
error criterion, which is defined by Formula 1, has the same property when applied to this
algorithm.

2.3. Tests on numeric conditional attributes

For tests on numeric attributes, most regression trees use a test of the form B < b using
a numeric attribute B, i.e., guillotine-cut splitting. Suppose that we select a node w to
partition. Among all the instances of guillotine-cut splitting, conventional methods select
the optimal one, say B < b, that minimizes the mean squared error. B < b partitions Dw

into Dleft
w = {t ∈ Dw | t[B] < b} and Dright

w = {t ∈ Dw | b ≤ t[B]}.
Our algorithm allows guillotine-cut splitting through tests of the form B < b, but we

also allow tests of the form B ∈ [b1, b2] and (B, C) ∈ R, where b, b1, and b2 are elements
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in the domain of conditional attributes B, and R is a connected region in the Euclidean
plane associated with conditional attributes B and C . The value of t satisfies B ∈ [b1, b2] if
b1 ≤ t[B] ≤ b2, and satisfies (B, C) ∈ R if (t[B], t[C]) is mapped to the region R.

To repeat the motivation for region splits, there are many strong correlations among
numeric attributes, which should be considered during test selection. Some work on classi-
fication and regression trees allow multivariate tests of the form 
i ai Bi < c, where ai and
c are constants, to handle correlations (Breiman et al., 1984; Murthy, Kasif, & Salzberg,
1994; Brodley & Utgoff, 1995). Though such multivariate tests can handle combination
of many numeric attributes, linear partitioning by those tests does not directly account for
non-linear correlations. Figure 1 is a typical example of such a non-linear correlation. To
handle non-linear correlations, Ittner and Schlosser (1996) considers composite attributes
that include all possible pairwise products and squares of numerical attributes, and finds a
linear partitioning on those composite attributes. This approach is an alternative to our use
of regions.

2.4. Pruning regression trees

From training data, we can generate large regression trees through recursive partitioning.
Larger regression trees can reduce the mean squared error in the training data but are likely
to overfit the training data, giving a higher mean squared error against test data. To avoid
this, we have to stop expanding leaves before a regression tree overfits the training data, or
prune unnecessary leaves from an overfitted tree. The former approach is sometimes called
prepruning, while the latter approach is called postpruning.

Though the prepruning methods can reduce computation time, the accuracy of the trees
produced by postpruning is, in general, higher than that of prepruned trees. Therefore,
postpruning methods are very popular. Since pruning methods have a great effect on the
accuracy of trees, various postpruning methods have been intensively explored (Mingers,
1989). Nonetheless, we applied a variant of cost-complexity pruning, which is a popular
prepruning method used in CART (Breiman et al., 1984), since our primary goal was to
explore the utility of region splitting with respect to the accuracy of trees of different sizes.

Suppose that the set of records Dw at a node w is split into Dleft
w and Dright

w so that the
Formula 1 is minimized. Before the split, the mean squared error at node w is

∑
t∈Dw

(t[Y ] − µ(Dw))2

|Dw| . (2)

The split is effective if the difference between Formula 1 and Formula 2 at the node is
large, because the split reduces the mean squared error of the regression tree. Let us call the
difference the profit of the split. If the profit is small, the split is not effective and we prune
the subtree of the node. To this end, we provide a threshold for the profit, and we prune the
subtree of the node if we cannot find any split with profit that is more than the threshold.
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We used the following threshold:

α ×
∑

t∈D(t[Y ] − µ(D))2

|D| ,

where D denotes the set of all the records in the training dataset, and α is a special parameter
called a weight parameter. This threshold is equivalent to the AID criteria in Breiman et al.
(1984).

The choice of the weight parameter α strongly affects the mean squared error against
the test data. A larger value of the parameter is more likely to prune subtrees and hence to
produce smaller regression trees, while a smaller value of the parameter generates a larger
regression tree that might overfit the training data. We need to control the parameter value
to yield a better regression tree with a smaller mean squared error. We use a separate dataset
called the validation set to find an appropriate value of the parameter and use that value for
pruning trees.

3. Range and region splitting

In this paper, we propose considering a broader class of tests than guillotine cuts, such as
range splits of the form B ∈ [b1, b2] and region splits of the form (B, C) ∈ R. Since ranges
can be treated as special cases of regions, we focus on computing the region that minimizes
the mean squared error. Suppose that we choose a node w to split. Define Din

w and Dout
w to

be the subsets of records Dw, that are inside and outside a region, respectively.

Din
w = {t ∈ Dw | (t[B], t[C]) ∈ R},

Dout
w = Dw − Din

w .

We consider how to find the region R that minimizes

∑
t∈Din

w

(
t[Y ] − µ

(
Din

w

))2 + ∑
t∈Dout

w

(
t[Y ] − µ

(
Dout

w

))2

|Dw| ,

which we denote by U (R).

3.1. Grid regions

We present three classes of regions that can be defined on a two-dimensional pixel grid
plane G. To define those regions, we first distribute the values of B (resp. C) into NB (NC )
buckets so that every bucket contains almost the same number of records. We then divide the
Euclidean plane associated with B and C into NB × NC pixels (unit squares). For simplicity,
we assume that NB = NC = N without loss of generality as regards our algorithms.

A grid region is a union of pixels in G that are connected. An x-monotone region is a
grid region whose intersection with any vertical line is undivided. For example, figure 2(a)
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Figure 2. Region families.

shows a region that is not x-monotone, since the intersection of the vertical line A and the
region is divided. In contrast, figure 2(b) shows an x-monotone region. We can express an
x-monotone region by a disjunction of expressions, where each disjunct has the form (a1 <
x < a2) and (b1 < y < b2), where the union of disjuncts does not divide a vertical
column. A rectilinear convex region is an x-monotone region such that its intersection with
any horizontal line is also undivided. Figure 2(c) shows an example of a rectilinear convex
region. A rectangular region is a rectangle on G, and is thus a rectilinear convex region.
We will consider the class of x-monotone regions, the class of rectilinear convex regions,
and the class of rectangular regions.

3.2. Interclass variance

Let R be a class of grid regions. For easier computation of the region R ∈ R that minimizes
U (R), we introduce

V (R) = ∣∣Din
w

∣∣(µ(
Din

w

) − µ(Dw)
)2 + ∣∣Dout

w

∣∣(µ(
Dout

w

) − µ(Dw)
)2

,

which we call the interclass variance. The following lemma shows that the region R that
maximizes V (R) also minimizes U (R).

Lemma 3.1. Let R be a class of grid regions, and let R be an element in R. The maxi-
mization of V (R) is equivalent to the minimization of U (R).

Proof:

V (R) = ∣∣Din
w

∣∣(µ(
Din

w

) − µ(Dw)
)2 + ∣∣Dout

w

∣∣(µ(
Dout

w

) − µ(Dw)
)2

= −|Dw|µ(Dw)2 + (∣∣Din
w

∣∣µ(
Din

w

)2 + ∣∣Dout
w

∣∣µ(
Dout

w

)2)
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Since −|Dw|µ(Dw)2 is invariant with respect to the choice of R, the maximization of V (R)

is equivalent to the maximization of (|Din
w |µ(Din

w )
2 + |Dout

w |µ(Dout
w )

2
).

U (R) =
∑

t∈Din
w

(
t[Y ] − µ

(
Din

w

))2 + ∑
t∈Dout

w

(
t[Y ] − µ

(
Dout

w

))2

|Dw|

=
∑

t∈Dw
t[Y ]2 − (∣∣Din

w

∣∣µ(
Din

w

)2 + ∣∣Dout
w

∣∣µ(
Dout

w

)2)
|Dw|

Since
∑

t∈Dw
t[Y ]2 and |Dw| are independent of the choice of R, the minimization of U (R)

is equivalent to the maximization of (|Din
w |µ(Din

w )
2 + |Dout

w |µ(Dout
w )

2
), and therefore the

maximization of V (R) is equivalent to the minimization of U (R). ✷

3.3. The region maximizing interclass variance

Next we consider how to compute the region R ∈ R that maximizes V (R). Observe that
V (R) is invariant if we replace t[Y ] by t[Y ] − µ

(
Dw

)
for each t ∈ Dw. Thus, after this

replacement, the region maximizing V (R) still gives the solution to the original problem.
Furthermore, this modification makes µ(Dw) = 0, and hence

V (R) = ∣∣Din
w

∣∣µ(
Din

w

)2 + ∣∣Dout
w

∣∣µ(
Dout

w

)2
.

Let x denote |Din
w |, let y be

∑
t∈Din

w
t[Y ], and let M be |Dw|. Since |Din

w |µ(Din
w ) +

|Dout
w |µ(Dout

w ) = |Dw|µ(Dw) = 0, we have

V (R) = y2

(
1

x
+ 1

M − x

)
,

which we will denote by f (x, y).
For each R ∈ R, we associate a stamp point (x, y), where x = |Din

w | and y = ∑
t∈Din

w
t[Y ].

Consider the convex hull of all those stamp points. Since the number of x-monotone regions
(or rectilinear convex regions) is more than N N , we cannot afford to calculate all the stamp
points, and therefore we simply assume their existence. The following theorem guarantees
the existence of the stamp point associated with the region R ∈ R that maximizes V (R)

on the boundary of the convex hull of all stamp points associated with regions in R.

Theorem 3.1. f (x, y) = y2( 1
x + 1

M−x ) is convex in the region M > x > 0; namely,

(1 − γ ) f (x1, y1) + γ f (x2, y2) ≥ f ((1 − γ )x1 + γ x2, (1 − γ )y1 + γ y2)

for 0 ≤ γ ≤ 1 and arbitrary points (x1, y1) and (x2, y2) such that M > x1, x2 > 0.
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Proof: Let � denote a vector (δ1, δ2), and let V be δ1x + δ2 y. It is sufficient to show that
for any �, ∂2 f (x, y)/∂V 2 ≥ 0. First let us consider the case in which δ1, δ2 �= 0.

∂ f (x, y)

∂V
= ∂ f (x, y)

∂x
· 1

δ1
+ ∂ f (x, y)

∂y
· 1

δ2

= y2

(−1

x2
+ 1

(M − x)2

)
1

δ1
+ 2y

(
1

x
+ 1

M − x

)
1

δ2

Next,

∂2 f (x, y)

∂V 2
=

{
y2

(
2

x3
+ 2

(M − x)3

)
1

δ1
+ 2y

(−1

x2
+ 1

(M − x)2

)
1

δ2

}
1

δ1

+
{

2y

(−1

x2
+ 1

(M − x)2

)
1

δ1
+ 2

(
1

x
+ 1

(M − x)

)
1

δ2

}
1

δ2

= 2

x

(
y

xδ1
− 1

δ2

)2

+ 2

M − x

(
y

(M − x)δ1
+ 1

δ2

)2

≥ 0

Next, when δ1 �= 0 and δ2 = 0,

∂2 f (x, y)

∂V 2
= y2

(
2

x3
+ 2

(M − x)3

)
1

δ2
1

≥ 0.

We can similarly prove the case in which δ1 = 0 and δ2 �= 0. ✷

3.4. Computing a stamp point on a convex hull

A point of the convex hull and its corresponding region can be computed efficiently by using
the “hand-probing” technique, invented by Asano, Chen, Katoh, and Tokuyama (Asano
et al., 1996) for image segmentation and modified by Fukuda, Morimoto, Morishita, and
Tokuyama (Fukuda et al., 1996) for extraction of the two-dimensional optimized association
rules. Geometrically, hand-probing computes a tangential point of a line (with a certain slope
θ ) and the convex hull of all stamp points. A line with a slope θ can be characterized as
y − θx = a, where a is a constant. The tangential point with the line maximizes (or
minimizes) y − θx among all stamp points.

Let x(i, j) be a number of records in the (i, j)-th pixel in G, and let y(i, j) be∑
t∈(i, j)-th pixel t[Y ]. Given a vector θ , we define g(i, j) = y(i, j) − θx(i, j).
Let us consider an x-monotone region associated with the slope θ . For each m =

1, 2, . . . , N, we precompute the indices bottomm(s) and topm(s) for all 1 ≤ s ≤ N, where
bottomm(s) and topm(s) are defined so that

∑s
i=bottomm (s) g(i, m) and

∑topm (s)
i=s g(i, m) are

maximized (or minimized) respectively. This pre-computation takes O(N) time.
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For two indices s and s ′ (such that s ≤ s ′), we define

coverm(s, s ′) =
topm (s ′)∑

i=bottomm (s)

g(i, m).

We define F(i, ≤m) to be the partial x-monotone region that contains the (m, i)-th pixel
and maximizes (or minimizes) the summation of g(i, j) over pixels in the region on the
left side of the m-th column of G. Then, we have the following formula:

F(i, ≤m + 1) = max1≤ j≤N {F( j, ≤m) + coverm+1(i, j)}

or 0 if it takes negative value. From this formula, we can compute maxm{maxi F(i, ≤m)}
and the associated region, which must maximize (or minimize) the summation of g(i, j).
If F( j, ≤m) for 1 ≤ j ≤ N are given, we can compute F(i, ≤m + 1) for 1 ≤ i ≤ N in
O(N) time. Thus, this dynamic programming can be performed in O(N 2) time for a slope θ .
Figure 3 shows a conceptual image of the dynamic programming. Detailed algorithms and
proofs are in Fukuda et al. (1996).

A rectilinear convex region is also composed of connected vertical columns. Since its
intersection with any horizontal line must be undivided, we use another dynamic program-
ming to compute a grid region that maximizes (or minimizes) the summation of g(i, j).
There are four types of dynamic programming for concatenating a new column to the pre-
vious region: adding a wider column (W), adding a column slanting upward (U), adding a
column slanting downward (D), and adding a narrower column (N). Figure 4 conceptually
shows those dynamic programming and valid combinations of them. Dynamic program-
ming gives us an O(N 3) time solution for computing a rectilinear convex region. Detailed
algorithms and proofs are in Yoda et al. (1997).

Figure 3. Dynamic programming for an X-monotone region.
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Figure 4. Dynamic programming for a rectilinear convex region.

The time complexity of computing a rectangular region is also O(N 3).

3.5. Searching on the convex hull

To search for the stamp point associated with the region R that maximizes V(R), Theorem
3.1 implies that we can focus on scanning the convex hull of all the stamp points. By using
the hand-probing technique repeatedly, we can scan all the points on the hull and find the
optimal point associated with the region that maximizes V(R). However, when the number
of records is n, the number of points on the hull is at most n if we consider x-monotone
regions or rectilinear convex regions. Therefore, in the worst case, we may need to try
hand-probing n times in order to find the optimal stamp point, which is costly in practice.
To avoid searching for unnecessary points, we use a guided branch and bound strategy.

While searching for the optimal region, we maintain the current maximum Vmax corre-
sponding to the points examined so far. Suppose we have examined two tangent points,
say I (left) and I (right), and consider the interval I = [I (left), I (right)] in figure 5. Let
Q(I ) = (xQ(I ), yQ(I )) be the point of intersection of the two tangent lines that are used
to compute I (left) and I (right). We can compute the interclass variance value of Q(I ),
f (Q(I )) = f (xQ(I ), yQ(I )).

Figure 5. Guided branch-and-bound search.
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Corollary 3.1. For any point Q′ = (x ′, y′) inside the triangle I (left), I (right), and Q(I ),

f (x ′, y′) ≤ max
{

f
(
xQ(I ), yQ(I )

)
, Vmax

}

Proof: Immediate from Theorem 3.1. ✷

This corollary gives an upper bound of points on the convex hull between these two
points. Hence, we can find the optimal region effectively by hand-probing together with
a branch and bound strategy guided by the values f (Q(I )). We examine the subinterval
with the maximum value of f (Q(I )) first. In addition, subintervals whose f (Q(I )) is less
than Vmax are pruned away. During the process, Vmax is monotonically increased while each
f (Q(I )) is monotonically decreased. Most of the subintervals are expected to be pruned
away during the computation, and therefore the number of hand-probings is expected to
be O(log n), where n is the number of points on the convex hull. Algorithm 3.1 sketches
the branch and bound search, which is substantially the same as we used for finding the
optimal region that minimizes entropy in the two class classification problem (Morimoto
et al., 1997).

ALGORITHM 3.1 Branch and Bound Search

MAIN ()

1. Initialize the set of candidate intervals S.
2. Compute the initial interval Iinit = [Iinit(left), Iinit(right)] using θ = ∞.
3. f (Q(Iinit)) = ∞
4. Vmax = max{ f (Iinit(left)), f (Iinit(right))}
5. Insert Iinit into S.
6. Choose I that has the maximal f (Q(I ) from S.
7. IF Vmax < f (Q(I )), THEN call (BranchBound (I ) and goto Step 6, ELSE stop

searching.

BranchBound (I )

1. Let θmid be the slope of the line containing I (left) and I (right).
2. Compute a new point I (mid) using θmid .
3. If Vmax > f (I (mid)) then Vmax = f (I (mid)).
4. Divide I into Ileft = [I (left), I (mid)] and Iright = [I (mid), I (right)] and compute

f (Q(Ile f t )) and f (Q(Iright)).
5. Insert Ileft and Iright into S.

Recall that the time complexities of performing hand-probing for an x-monotone region,
a rectilinear convex region, and a rectangular region are O(N 2), O(N 3), and O(N 3),
respectively. Thus, we can experimentally compute the region minimizing the mean squared
error in time proportional to O(N 2 log n), O(N 3 log n), and O(N 3 log n) for x-monotone
regions, rectilinear convex regions, and rectangular regions, respectively.
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3.6. Record density of a pixel

We uniformly distribute each numeric attribute into N ordered buckets. Next, for each pair
of numeric attributes, we create an N × N pixel grid G. The average number of records in
each pixel on G, which we call the record density, influences the accuracy of the regression
trees. Using a lower record density is likely to make the regression trees overfit the training
dataset, while a coarse grid with a higher record density often fails to find variously shaped
regions.

We empirically found that a record density ranging from five to ten gives a lower mean
squared error for test datasets, and we therefore use a record density of five or ten in the
later experimental section. The experimental results for a record density of five show the
effects of relatively fine grid regions, while those for a record density of ten show the effects
of coarse grid regions.

In the process of generating regression trees, the number of records becomes smaller at
nodes lower in the tree. In order to guarantee a record density of five or ten, we are forced
to use a coarse grid, say 2 × 2, which is too rough to generate interesting regions. If we
have to use a coarse grid whose size is less than 5 × 5, we employ guillotine-cut splitting
instead.

3.7. Spline interpolation of grid regions

We compute the optimal region on a discretized pixel grid. However, such grid regions
tend to be too coarse to describe regions if there are not enough records. In such cases,
we use an interpolation technique to get smooth regions. Since the number of records
becomes smaller at nodes lower in regression trees, interpolation techniques are
indispensable.

The optimal region on a pixel grid is expressed by a disjunction of the form (a1 < x <
a2) and (b1 < y < b2). Therefore, we can plot two points ( a1+a2

2 , b1) ( a1+a2
2 , b2) for

each column of the grid region. Then, we compute a smooth region from those points.
We compute two kinds of spline curves, spline1 and spline2, of interpolated regions from

a set of points on a pixel grid. Figure 6 shows examples of the two kinds of interpolated
regions. In each pixel grid, the gray pixel grid region shows the optimal region that is
computed by our algorithm. The points on the border of the gray region are used to compute
the interpolated region.

Figure 7 illustrates how to compute a spline curve from a set of points. We first order
points of the set by x values and make a point sequence. Then, we split the point sequence
into several intervals as in the figure. For spline1, we cut the sequence at the x value for each
point. For spline2, we use the middle value of each two consecutive points in the sequence.
For each interval i , we define a polynomial function of the form fi (x) = ax3 +bx2 +cx+d
where a, b, c, and d are constants, and xi ≤ x ≤ xi+1 for spline1, and xi +xi+1

2 ≤ x ≤ xi+1+xi+2

2
for spline2.

Each polynomial function, say fi (x), of spline1 is defined so that the following conditions
are satisfied.
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Figure 6. Interpolated regions.

– fi (x) must pass through xi and xi+1 · (xi = (xi , yi ) is the i-th point of a point sequence.)
– f ′

i (xi+1) = f ′
i+1(xi+1) · ( f ′

i (x) is the 1st derivative of fi (x).)
– f ′′

i (xi+1) = f ′′
i+1(xi+1) · ( f ′′

i (x) is the 2nd derivative of fi (x).)

Each polynomial function of spline2 satisfies the following conditions.

– fi (x) must pass through xi+xi+1
2 and xi+1+xi+2

2 .
– f ′

i (
xi+1+xi+2

2 ) = f ′
i+1(

xi+1+xi+2

2 ) = yi+2−yi+1

xi+2−xi+1
.

Though interpolated regions may be worse than the original pixel grid regions with
respect to the mean squared error of training datasets, those interpolated regions are much
more accurate for test datasets, as we will show in the experimental results.

Figure 7. Spline interpolation.
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4. Experimental results

To examine prediction accuracy, we used several public datasets, summarized in Table 2,
which were acquired from the following WWW site:

http://www.cs.utoronto.ca/∼ delve/data/datasets.html.

We chose these datasets because almost all the attributes are numeric and there are enough
records for effective region splitting.

4.1. Minimal potential error

To examine the minimal potential error of trees, we performed the following ten-fold cross-
validation tests for each of the 10 datasets:

1. We randomly divided the original dataset into ten almost-equal-sized subsets.
2. We excluded one subset and used the other nine subsets as the training dataset to generate

regression trees with each of 4 types of splitting: guillotine cuts, x-monotone regions,
rectilinear convex regions, and rectangular regions.

3. We used the excluded subset as the test dataset to evaluate the regression tree, and
computed the mean squared error against the test dataset. The absolute value of the mean
squared error varies depending on the sample dataset. To compare the mean squared
errors of different dataset, we used a “normalized” version called the relative mean
squared error of a regression tree, which is defined as the mean squared error divided
by the variance of the objective attribute.

4. We returned to Step 2 and excluded a different subset. If there is no remaining subset for
the test dataset, then we calculated the average and standard deviation of the ten results.

To examine the effectiveness of region splitting and eliminate the effect of pruning, we
generated a number of regression trees for various values of the weight parameter, then we

Table 2. Dataset summary.

Dataset #records #attrs

add10 9792 10

abalone 4177 8

kin-8fh 8192 8

kin-8fm 8192 8

kin-8nh 8192 8

kin-8nm 8192 8

pumadyn-8fh 8192 8

pumadyn-8fm 8192 8

pumadyn-8nh 8192 8

pumadyn-8nm 8192 8
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Figure 8. Accuracy for “abalone”.

compared the best accuracy of those various-sized regression trees, and call it the minimal
potential error.

For instance, let us consider the “abalone” dataset. Figure 8 shows how the relative
mean squared error changes according to the value of the weight parameter. The graph
for “Rectilinear (dens 5)” shows the relative mean squared errors of the regression trees
with rectilinear convex regions for a record density of five, and we see that the relative
mean squared error is smallest when the weight parameter is 0.006. Observe that the value
increases for weight parameters less than 0.006, which indicates that the regression tree
becomes larger and overfits the training data. Similarly, for x-monotone region splitting,
rectangular region splitting, and guillotine cut splitting, we can find the respective regression
tree with the smallest relative mean squared error.

For the other datasets, we performed the same analysis, which shows the same general
trends as figure 8 (i.e., generally, a lower error for rectilinear (dens 5) over alternatives across
weight values, and similar shape curves for each method due to under and overfitting).
Tables 3–5 summarize the results, showing the pairs of the average relative mean squared
error and the average number of leaves for trees constructed with the best parameter values,
i.e., weight parameter α and pixel density. The number in each parenthesis is the standard
deviation over the ten results of cross validation. We underlined the smallest relative mean
squared error among all split strategies (x-monotone, rectilinear convex, rectangular, and
guillotine) for each dataset. Almost universally, the rectilinear, spline2 method yields the
lowest error rates across all domains. While we do not indicate the significance of differences
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Table 3. Minimal potential error (X-monotone).

Pixel Grid Spline1 Spline2

Dataset Err Size Err Size Err Size

abalone 0.523 (0.0397) 10.0 (0.63) 0.523 (0.0481) 9.1 (0.83) 0.505 (0.0490) 8.6 (.917)

add10 0.141 (0.00854) 117.6 (4.34) 0.135 (0.00870) 147.7 (12.1) 0.127 (0.00969) 126.5 (9.87)

kin-8fh 0.450 (0.0331) 49.5 (3.20) 0.449 (0.0281) 38.8 (2.32) 0.444 (0.0190) 39.0 (1.55)

kin-8fm 0.224 (0.0132) 157.8 (8.35) 0.222 (0.0172) 95.2 (3.46) 0.211 (0.0127) 95.2 (3.54)

kin-8nh 0.661 (0.0538) 35.7 (1.79) 0.648 (0.0520) 43.0 (4.88) 0.625 (0.0374) 32.2 (1.89)

kin-8nm 0.497 (0.0270) 57.0 (3.19) 0.487 (0.0212) 63.4 (4.92) 0.465 (0.0206) 62.8 (4.02)

pumadyn-8fh 0.410 (0.0187) 8.0 (0.00) 0.405 (0.0232) 8.0 (0.00) 0.403 (0.0206) 8.0 (0.00)

pumadyn-8fm 0.0607 (0.00726) 15.9 (0.49) 0.0588 (0.00587) 16.0 (0.00) 0.0574 (0.00585) 17.0 (0.77)

pumadyn-8nh 0.350 (0.0272) 7.8 (0.40) 0.344 (0.0260) 8.3 (0.64) 0.341 (0.0250) 10.3 (0.90)

pumadyn-8nm 0.0526 (0.00415) 20.0 (0.63) 0.0487 (0.00362) 39.4 (3.72) 0.0480 (0.00338) 35.1 (2.70)

between methods within a domain because cross validation violates sample independence
assumptions, the number of “wins” across domains for rectilinear, spline2 with respect to
any other method is significant by a sign test at the 0.05 level (N = 10), though if kin-8XX
and pumadyn-8XX are not considered independent, then the number of wins for rectilinear,
spline2 is only marginally significant by a sign test (N = 4) with respect to each alternative
strategy.

4.2. Error rates of pruned trees

For minimal potential error, the weight parameter value and record density value giv-
ing the minimum error ratio greatly depends on the dataset and construction method. In

Table 4. Minimal potential error (rectilinear).

Pixel Grid Spline1 Spline2

Dataset Err Size Err Size Err Size

abalone 0.522 (0.0436) 8.8 (0.98) 0.500 (0.0427) 9.9 (0.94) 0.489 (0.0463) 8.8 (0.75)

add10 0.121 (0.00618) 121.3 (8.00) 0.118 (0.00719) 127.4 (6.83) 0.114 (0.00458) 123.9 (6.76)

kin-8fh 0.433 (0.0241) 59.8 (2.14) 0.419 (0.0274) 55.7 (1.85) 0.412 (0.0223) 55.3 (2.93)

kin-8fm 0.196 (0.0106) 138.7 (4.45) 0.197 (0.00865) 115.2 (5.31) 0.193 (0.00793) 150.6 (6.59)

kin-8nh 0.613 (0.0437) 30.1 (2.07) 0.608 (0.0422) 33.7 (2.57) 0.610 (0.0388) 47.7 (2.41)

kin-8nm 0.450 (0.0365) 93.1 (3.27) 0.451 (0.0234) 51.7 (1.19) 0.440 (0.0265) 67.1 (3.91)

pumadyn-8fh 0.401 (0.0208) 8.0 (0.00) 0.400 (0.0199) 8.2 (0.40) 0.400 (0.0178) 8.0 (0.00)

pumadyn-8fm 0.0600 (0.00628) 15.8 (0.40) 0.0581 (0.00545) 16.3 (0.64) 0.0572 (0.00575) 19.5 (1.36)

pumadyn-8nh 0.339 (0.0287) 8.1 (0.30) 0.335 (0.0260) 8.0 (0.00) 0.333 (0.0274) 8.3 (0.46)

pumadyn-8nm 0.0501 (0.00373) 26.6 (1.36) 0.0471 (0.00428) 40.5 (4.15) 0.0468 (0.00456) 39.4 (2.33)
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Table 5. Minimal potential error (conventional).

Rectangular Guillotine

Dataset Err Size Err Size

abalone 0.536 (0.0352) 10.1 (0.700) 0.539 (0.0480) 38.9 (2.51)

add10 0.156 (0.00932) 148.9 (5.36) 0.185 (0.00746) 540.2 (7.19)

kin-8fh 0.460 (0.0256) 69.9 (3.33) 0.479 (0.0299) 128.3 (3.41)

kin-8fm 0.257 (0.0186) 162.1 (3.88) 0.249 (0.0164) 919.9 (7.91)

kin-8nh 0.618 (0.0398) 37.9 (1.81) 0.655 (0.0389) 88.4 (6.23)

kin-8nm 0.477 (0.0217) 59.5 (3.47) 0.541 (0.0499) 203.6 (7.49)

pumadyn-8fh 0.409 (0.0223) 19.8 (1.36) 0.410 (0.0184) 26.2 (2.09)

pumadyn-8fm 0.0655 (0.00494) 62.6 (3.61) 0.0632 (0.00683) 153.9 (5.09)

pumadyn-8nh 0.353 (0.0304) 27.3 (2.00) 0.355 (0.0317) 44.1 (1.45)

pumadyn-8nm 0.0541 (0.00335) 99.9 (2.47) 0.0535 (0.00367) 185.0 (4.94)

comparison of the error rate, we use a separate dataset, designated as the validation set, to
find the adequate weight and density values for pruning.

We reserved one subset as the validation set, which is arbitrarily chosen from the
nine training subsets during each trial of the 10-fold cross validation. That is, we used
eight subsets for tree building and used one subset for finding the parameters, i.e., the
weight parameter and the record density. We pruned a regression tree by the best pa-
rameter setting for the validation set and examined its error rate for the remaining test
sets.

Tables 6–8 summarizes the results of the 10-fold cross validation experiment.
The cross-validation results can be summarized as follows:

– X-monotone and rectilinear convex regions attain more accurate and smaller trees than
conventional trees (at marginal significance for error rate by a sign test).

– Spline interpolation makes region splitting more accurate. Even though the spline2 sac-
rifices training accuracy (see Section 3.7), it attains the most accurate results (for tests)
in most of the cases.

– Rectilinear regions are robust even if we use a low record density. Therefore, the results of a
record density of five were more accurate than those of a record density of ten in most of the
cases. As a result, rectilinear convex regions won over all of other splitting methods on all
datasets.

– In case of x-monotone regions, on the other hand, using a low record density tends
to give a higher error ratio because of overfitting. Therefore, the results for a record
density of ten were more accurate than those for a record density of five in most of the
cases.

– By using a validation set, we found parameter values that attained to satisfactory results
as regards accuracy.
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Table 6. Error of pruned tree (X-monotone).

Pixel grid Spline1 Spline2

Dataset Err Size Err Size Err Size

abalone 0.535 (0.0573) 10.6 (4.27) 0.530 (0.0615) 10.5 (4.30) 0.519 (0.0432) 8.6 (1.56)

add10 0.141 (0.00986) 119.7 (26.1) 0.138 (0.0145) 134.1 (23.9) 0.131 (0.0108) 108.7 (18.2)

kin-8fh 0.465 (0.0233) 45.8 (18.0) 0.453 (0.0187) 42.5 (9.70) 0.448 (0.0148) 47.1 (20.8)

kin-8fm 0.240 (0.0194) 148.1 (89.9) 0.240 (0.0129) 122.4 (34.8) 0.234 (0.0126) 144.8 (63.4)

kin-8nh 0.683 (0.0348) 31.7 (11.4) 0.655 (0.0303) 32.8 (10.0) 0.644 (0.0393) 34.5 (21.3)

kin-8nm 0.503 (0.0315) 46.4 (11.9) 0.493 (0.0322) 53.6 (17.5) 0.476 (0.0241) 70.1 (36.6)

pumadyn-8fh 0.416 (0.0243) 7.90 (1.14) 0.410 (0.0246) 8.90 (1.04) 0.402 (0.0232) 8.30 (0.46)

pumadyn-8fm 0.0611 (0.00348) 17.9 (3.75) 0.0601 (0.00515) 19.1 (6.04) 0.0584 (0.00398) 16.4 (2.54)

pumadyn-8nh 0.349 (0.0242) 7.90 (1.04) 0.343 (0.0190) 9.1 (2.66) 0.343 (0.0195) 9.1 (2.07)

pumadyn-8nm 0.0546 (0.00568) 31.2 (9.31) 0.0508 (0.00529) 41.3 (11.3) 0.0503 (0.00409) 39.7 (16.0)

4.3. Performance results

The CPU time taken to construct a regression tree depends on the execution time needed
to compute the optimal region for splitting data. Thus, the cost of computing one optimal
region gives us an idea of the overall performance in generating one regression tree.

4.3.1. Computing one optimal region. We generated our test data, in the form of an N × N
grid, as follows: We first generated random numbers uniformly distributed in [N 2, 2N 2]
and assigned them to the number of records in each pixel. We then assigned 1, . . . , N 2 as
the sum of the target values in a pixel, from a corner pixel to the central one, proceeding in

Table 7. Error of pruned tree (rectilinear).

Pixel grid Spline1 Spline2

Dataset Err Size Err Size Err Size

abalone 0.511 (0.0585) 9.00 (1.73) 0.501 (0.0584) 9.90 (4.46) 0.511 (0.0472) 14.9 (13.5)

add10 0.122 (0.00880) 115.6 (12.9) 0.121 (0.00634) 111.8 (17.0) 0.117 (0.00673) 124.3 (19.5)

kin-8fh 0.439 (0.0268) 55.6 (20.7) 0.437 (0.0209) 46.1 (10.8) 0.431 (0.0256) 52.8 (16.8)

kin-8fm 0.213 (0.0130) 137.2 (58.3) 0.208 (0.0168) 115.8 (26.1) 0.211 (0.0195) 130.2 (57.2)

kin-8nh 0.620 (0.0246) 36.9 (10.0) 0.620 (0.0169) 40.8 (18.1) 0.615 (0.0182) 37.9 (8.67)

kin-8nm 0.459 (0.0218) 54.6 (17.3) 0.461 (0.0142) 63.2 (14.2) 0.456 (0.0273) 60.3 (10.1)

pumadyn-8fh 0.406 (0.0253) 8.10 (0.54) 0.402 (0.0257) 8.30 (0.90) 0.400 (0.0231) 7.80 (0.60)

pumadyn-8fm 0.0605 (0.00396) 17.3 (2.05) 0.0595 (0.00378) 22.6 (6.30) 0.580 (0.00345) 17.5 (1.86)

pumadyn-8nh 0.338 (0.0208) 8.2 (0.75) 0.338 (0.00540) 9.1 (1.58) 0.336 (0.0228) 10.3 (2.05)

pumadyn-8nm 0.0524 (0.00546) 37.1 (12.5) 0.0483 (0.00540) 33.9 (9.36) 0.0482 (0.00453) 33.7 (9.00)
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Table 8. Error of pruned tree (conventional).

Rectangular Guillotine

Dataset Err Size Err Size

abalone 0.554 (0.0859) 15.0 (3.13) 0.545 (0.0701) 30.2 (9.31)

add10 0.164 (0.00747) 177.6 (36.4) 0.191 (0.00748) 425.6 (124.2)

kin-8fh 0.473 (0.0353) 60.0 (14.5) 0.490 (0.0200) 121.7 (62.2)

kin-8fm 0.257 (0.0193) 156.6 (43.2) 0.252 (0.0133) 800.0 (289.3)

kin-8nh 0.633 (0.0290) 36.4 (12.9) 0.641 (0.0210) 87.2 (20.3)

kin-8nm 0.490 (0.0281) 58.2 (10.6) 0.533 (0.0326) 125.7 (55.8)

pumadyn-8fh 0.414 (0.0307) 18.8 (2.75) 0.408 (0.0239) 24.9 (4.18)

pumadyn-8fm 0.0653 (0.00409) 56.8 (5.60) 0.0646 (0.00467) 99.8 (21.4)

pumadyn-8nh 0.353 (0.0188) 23.9 (4.59) 0.365 (0.0203) 46.6 (14.9)

pumadyn-8nm 0.0584 (0.00592) 84.7 (18.9) 0.0566 (0.00512) 190.1 (68.3)

a spiral fashion. These test data were generated so that the number of points on the convex
hull increased sub-linearly to N , by the square root of the number of pixels. We examined
the CPU time taken to compute the optimal region and the number of hand probing needed
to find the region. We performed all experiments on an IBM RS/6000 workstation with a
604e3 332 MHz CPU and 768 MB of main memory, running under the AIX 4.2 operating
system.

Table 9 shows the time (sec.) and number of hand probing that were required in the guided
branch and bound algorithm to find the optimal x-monotone (or respectively rectilinear
convex, or rectangular) region that minimizes the mean squared error. It shows that the
number of hand probing increases very slowly thanks to the guided branch and bound
algorithm. Figure 9 confirms that the CPU time follows our scale estimation.

At the root of a regression tree, we may need a large number of pixels to guarantee
the specified record density. The number of records, however, decreases in the lower parts
of the tree, and the number of pixels soon becomes less than 20 × 20 for most datasets;
hence computing the optimal rectilinear convex region is generally not costly according to
Table 10.

Table 9. Time for computing the optimal region (1).

X-monotone Rectilinear Rectangular

#Pixel Time #Touch Time #Touch Time #Touch

102 0.0117 29 0.0148 22 0.00282 17

202 0.0522 36 0.120 30 0.0146 23

302 0.112 35 0.444 33 0.0429 24

402 0.193 34 1.04 32 0.0951 24

502 0.372 42 2.27 35 0.199 27
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Figure 9. Time for computing an optimal region (2).

4.3.2. Computing one regression tree. The next experiment examines the overall perfor-
mance in tree construction. At each node of a regression tree, we first prepared grid regions
for each combination of numeric attributes, and then computed the optimal region. The grid
preparation can be done by scanning all the records at a node just once. However, we have
to examine all pairs (permutations for x-monotone regions) of two numeric attributes to
find the optimal region. Thus, in general, the number of attributes dramatically affects the
performance if we use region splitting.

Table 10 compares the time (sec.) taken to construct trees by using datasets with different
numbers of records. We randomly selected records from the “add10” dataset to generate
datasets having different numbers of records, and used those datasets to construct a regres-
sion tree by performing region splitting with a record density of five. We compared the
time taken to construct unpruned large trees using x-monotone (spline2) regions, rectilinear

Table 10. Tree construction time (1).

#Records X-monotone Rectilinear Guillotine

2000 33.3 31.5 4.10

4000 80.2 80.1 9.65

6000 130 136 15.9

8000 180 188 22.8
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Table 11. Tree construction time (2).

#Attributes X-monotone Rectilinear Guillotine

4 58.7 64.4 17.7

6 85.8 91.8 19.3

8 128 136 20.8

10 180 186 22.3

convex (spline2) regions, and guillotine cuts. The result shows that tree construction time
is a little more than our scale estimation, because trees from larger datasets tend to become
bigger.

Table 11, on the other hand, compares the performance using datasets with different
numbers of attributes. We used 8000 records from the “add10” dataset, and constructed
trees using N numerical attributes in the dataset. Though the time complexity for finding
the optimal region in each split is almost linear of the combinations (permutations) of
attributes, the overall tree construction time does seems to increase sub-linearly relative
to the number of combinations. One of the main reasons is that the cost of computing the
optimal region is not dominant if there are few attributes.

5. Conclusion and discussion

Experiments using diverse datasets confirmed that regression trees with region splitting
appear to be more accurate and smaller than conventional ones. However, in order to use
region splitting, we have to spend additional computation time that is proportional to the
number of combinations of numeric conditional attributes. In the experiments, region split-
ting trees generally reduced error ratio by around 10 to 20%. One case of which achieves
48% reduction. Those reductions suggest the advantages of region splitting trees. In many
applications, the improvements will be worth the computational cost if there are not too
many numeric attributes.

Another important advantage of region splitting is comprehensibility of correlations
among conditional attributes, which we did not evaluate objectively. Though the optimal
region in each node of a regression tree itself is complicated, arguably we can easily under-
stand two-dimensional visual representations like that of figure 1.

By introducing region splitting in regression trees, we have to consider additional pa-
rameters: record density, type of regions, and type of splines. Choice of those parameters
affects construction time and prediction accuracy of the trees.

As for the types of splines, the computational costs of the three types, including no
interpolation, are small and negligible. The spline2 achieved better results than the others
in almost all datasets and experimental conditions, though the experiments to date are only
suggestive of the advantage of spline2.

As for the other experimental conditions, there are tradeoffs. If we use lower record
density, we can find finer pixel regions. However, it takes much time and it tends to overfit
if record density is too fine or if the number of records is too small. According to the
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experimental results, we should use a record density of more than five. Since the number of
records becomes smaller in the lower nodes of a tree, the pixel grid becomes too coarse with
less than five by five. In such cases, we abandoned region splitting and used conventional
guillotine cutting, though an alternative might be single-variable regressions as described
by Lubinsky (Lubinsky, 1996).

An x-monotone region can express more variety of shapes than a rectilinear region.
However, it often overfits, especially when we use a low record density. In the experiments,
because of overfitting, the accuracy results of x-monotone regions is worse than that of
rectilinear regions. If we use an x-monotone region, we should use a record density of more
than ten. A notable advantage of using x-monotone regions is their fast computation time. If
the number of records becomes huge, say more than a million, it is better to use x-monotone
regions.

For classification problems, we applied similar region splitting for constructing decision
trees in Morimoto et al. (1997). Though trees with region splitting also reduce classification
errors, those reductions are not so large compared with the regression cases. The spline
interpolations were not so effective in the classification problems, which was one of the
reasons for the differences. In k-class classification problems, we have to consider a k-
dimensional guided branch and bound search, while we can handle regression problems
in two-dimensional plane. In such cases, the time and space complexities for classification
become large, and we have to compromise on optimality.

In this paper, we proposed region splitting in regression trees and presented the methods
and their effectiveness. As discussed above, there are issues that have to be explored, such as
parameter adjustment, handling tables with many numerical attributes, and handling tables
with a small number of records.
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