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Abstract. The eligibility trace is cne ot the basic mechanisms used in reinforcement learning to handle
delaved reward. In this paper we introduce a new kind of eligibility trace, the replacing trace, analyze it
theoretically, and show that it results in faster, more reliable leaming than the conventional trace. Both kinds
of trace assign credit 1o prior events according to how recently they occurred, but only the conventional trace
gives greater credit 1o repeated events. Our analysis is for conventienal and replace-trace versions of the
offine TDX1) algorithm applied to undiscounted absorbing Markov chains. First, we show that these methods
converge under repeated presentations of the training set to the same predictions as two well known Monte
Carlo methods. We then analyze the relative cfficiency of the two Monte Carlo methods. We show that
the method comesponding to conventicnat TD 15 biased, whereas the method corresponding to replace-trace
T} is unbiased. In addition, we show that the method corresponding to replacing traces 1z closely related
to the maximum likelihood solution for these tasks, and that its mean squared error is always lower in the
long run. Computational results confirm these analyses and show that they are applicable more generally. In
particular, we show that replacing traces significantly improve performance and reduce parameter sensitivity
on the “Mountain-Car’* task, a full reinforcement-learning problem with a continuous state space, when using
a feature-based functon approximator,

Keyweords: reinforcement lcarning, temporal difference learming, eligibility trace, Monte Carlo method, Markov
chain, CMAC

1. Eligibility lraces

Two fundamentat mechanisms have been used in reinforcement learning to handle delayed
reward. One s temporal-difference {TD) learning, as in the TD(A) algornithin (Sutton,
1688) and in Q-learning (Watking, 1989). TD leaming in effect constructs an internal
reward signal that is less delayed than the original, external one. However, TD methods
can eliminate the delay completely only on fully Markov problems, which are rare in
practice. In most problems some delay always remains between an action and its etfective
reward, and on all problems some delay 1s always present during the time bolore TD
learning is complete. Thus, there 15 a general need for a seccond mechanism to handle
whatever delay is not eliminated by TT) tearning.

The second mechanism that has been widely used for handhing delay 18 the eligibility
trace.’ Introduced by Klopf (1972), ctigibility traces have been used in a variety of rein-
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forcement fearning systems (e.g., Barto, Sutton & Andcerson, 1983; Lin, 1992; Tesauro,
1992; Peng & Williams, 1994). Systematic empirical studies of ¢ligibility traces in con-
juncton with TD methods were made by Suuon (1984), and theoretical results have
been obtained by scveral authors {e.g., Dayan, 1992; Jaakkola, Jordan & Singh, 1994
Tsitsiklis, 1994, Dayan & Scjnowski, 1994; Satton & Singh, 1994).

The idea behind all eligibility waces is very simple. Each time a state is visited it
initiates a short-term memory process, a trace, which then decays gradually over time
This trace marks the state as eligible for learning. If an unexpectedly good or bad event
oceurs while the trace 1s non-zero, then the state is assigned credit accordingly. In a
conventional accumulating trace, the trace builds up each time the state is cntered. In a
replacing rrace, on the other hand, each time the state is visited the trace is reset to 1
regardicss of the presence of a prior wace. The new trace replaces the old, See Figure 1.

Sufton {1984} describes the conventional trace as tmplementing the credit assigniment
heuristics of recency—rmore credit to more recent events—and frequency—maore credit
to events that have occurred more tmes. The new replacing trace can be seen simply
as discarding the frequency heuristic while retaining the recency heuristic, As we show
later, this stmple change can have a significant cffect on performance,

Typicalty, eligibility waces decay exponentially according to the product of a decay
parameter, A, 0 << A < 1, and a discount-ralc parameter, v, O <<y < 1. The conventional
accumulating trace is defined by:?

(5) = § Phels) i s
Cr+108) — yAey(s) + 1 it s =54,

where e;{s) represents the trace for state s at time ¢, and s, is the actual state at time f
The corresponding replacing trace 1s defined by:

. { ~Ae(s) il s/ s,
(’fr*\kﬁ') =

1 i s— 5.

In a control probilem, each starc-action pair has a separate wace. When a state is visited
and an action taken, the state’s trace for that action is reset to 1 while the traces for the
other actions are reset to zero (see Section 5).

l | | l l l l Times at which a State is Visited

~——— Gonventional Accumulating Trace

,,,,,,,,,,, T——... Replacing Trace

Figure ! Accumulating and replacing eligibility traces.
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For problems with a large state space it may be extremely unlikely for the exact
same state ever to recur, and thus one might think replacing traces would be irrelevant.
However, large problems require some sort of generalization between states, and thus
some form of function approximator. Even if the same stares never recuar, states with
the same fearures will. In Section 5 we show that replacing traces do indeed make a
significant difference on problems with a large siale space when the traces are done on
a feature-by-feature basis rather than on a state-by-state basis.

The rest of this paper is structured as follows. In the next section we review the TD(A)
prediction algorithm and prove that its variations using accumulating and replacing traces
are closely related to two Monte Carlo algorithms. [n Scetion 3 we present our main
results on the relative efficiency of the two Monte Carlo algorithms. Sections 4 and 5
arc cmpirical and return to the general case.

2. TD(A) and Monte Carlo Prediction Methods

The prediction problem we consider is a classical one in reinforcement learming and
optimal control. A Markov chain emits on each of its transitions a reward, ri ¢ R,
according to a probability distribution dependent only on the pre-transition state, s, and
the post-transilion state, s, ). For each state, we seck to predict the expected total
(cumulative} reward emitted starting from that state untit the chain reaches a terminal
state. This is called the value of the state, and the function mapping states s to their
values V' (s) is called the value function. In this paper, we assume no discounting { == 1)
and that the Markov chain always reaches a terminal state. Without loss ol generality
we assume that there is a single lerminal state, T, with value V(1) = 0. A single mp
from starting state to terminal state is called a trial.

2.1, TD(\) Algorithms

The TD(A) family of algorithms combine TD learning with eligibility traces to estimate
the value funciion. The discrele-state form of the TD(AY algorithm 1s defined by

AVI(sY — e (8) | repr + Vilsigy) V,(sr)i €. (5) T, VE sl s £ (1)

where Vj{s) is the estimate at dme ¢ of V{s), ay(s) is a posilive step-size parameter,
ery 1 s) 15 the eligibility trace for state . and AV, (s) is the increment i the estimate
of ¥{s) determined at time #.° The value at the terminal state is of course defined as
VT = 0. ¥ In ondine TD(A), the estimates are incremented on every time step:
Vg (st — Vils) + AV, (s). In offine TD(A), on the other hand, the mcrements AVi{s)
are set aside uniil the terminal state is reached. [In this case the estimates V() are
constant while the chain 1s undergoing slate transitions, all changes being deferred until
the end of the rial.

There 1s also a third case in which updates are deferred until after an entire set of trials
have heen presented. Eleually this is done with a small fixed step size, o, () — o and
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with the training set {the set of trials) presented over and over again until convergence of
the valuc cstimates. Although this “repeated presentations™ traiming paradigm is rarcly
used in practice, it can reveal telling theoretical propertics of the algorithms. For example,
Sutton (1988} showed that TD{0} (TD(A) with A — 0) converges under these conditions
to a maximum likelihood estimate, arguably the best possible solution to this prediction
problern (see Section 2.3). In this paper, for convenience, we refer 1o the repeated
presentations training paradigm simply as batch updating. Later in this seclion we show
that the batch versions of conventional and replace-trace TD(1) methods are equivalent
10 two Monte Carlo prediction methods.

2.2, Monte Carlo Algorithms

The total reward following a particular visit to a state is called the return for that visit.
The value of a state is thus the expected return, This suggests that one might estimate a
state’s value simply by averaging all the returns that follow . This is what s classically
done in Monte Carlo {(MC) prediction methods (Rubinstein, 1981, Curtiss, 1954; Wasow,
1952; Bario & Duft, 1901). We distinguish two specific algorithims:

Every-visit MC: Estimate the value ol a state as the average of the returng that have
followed all visits o the state.

First-visit MC - Estimate the value of a state as the average of the returns that have
followed the first visits to the state, where a first visit s the first tunc during a wial that
the state 18 visited.

Note that both algoriduns {oim their estmates based entirely on actual, complete re-
turns. This is in contrast (o TD(A), whosc updates (1) arc based in part on existing
estimates. However, this 15 only in part, and, as A — 1, TD(A)} methods come o more
and muore closely approsiaw MC owethods (Sections 2.4 and 2.5). Tn particular, the
conventional, accumulate-trace version of TI)(A} comes to approximate every-visit MC,
whereas replace-trace TD(A) comes Lo approximale first-visit MC. One of the main points
of this paper is that we can better vnderstand the difference between replace and accumu-
late versions of TD{A) by understanding the dilfcrence between these two MC methods.
This naturally brings up the question that we focus on in Section 3: what are the relative
merits of firse-visit and every-visit MC methods?

2.3. A Simple Example

To help develop intuitions. first consider the very simple Markov chain shown in Fig-
ure 2a. On each step. the chain either stays in 5 with probability p, or gocs on
tcrminate in 1 with probabibty | p. Supposc we wish to estimate the expected number
of steps before termination when starting in 5. ‘Fo put this mn the form of estimating a
value function, we say that a reward of +1 is crmutted on every step, in which case V{9)
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is equal to the expected number of steps before termination. Suppose that the only data
that has been chserved is a single trial generated by the Markov chain, and that that trial
lasted 4 steps, 3 passing from 5 to S, and one passing from 5 to T, as shown in Figure
2b. What do the two MC metheds conclude from this one trial?

We assume that the methods do not know the structure of the chain, All they know
it the one experience shown in Figure 2b. The first visit MC method in effect sees a
single traversal from the first tme 5 was visited to 7". That traversal lasted 4 sieps, so
its cstimate of V' (9) is 4. Every-visit MC, on the other hand, in effect sees 4 separate
traversals from S to 77, onc with 1 steps, one with 3 steps, one with 2 steps, and one
with 1 step. Averaging over these four effective trials, every-visit MC estimates V(5)
as % = 2.5. The replace and accumulate versions of TD(1)} may or may not
form exactly these estimates, depending on their e sequence, but they will move their
estimates in these directions. In particular, if the corresponding offline TD{1} method
starts the trtal with these estimates, then it will leave them unchanged after experiencing
the trial. The batch version of the two TD(1) algorithms will compute exactly these
estimates.

Which estimate is better, 4 or 2.57 Intuitively, the first answer appears better. The
only trial observed took 4 steps, so 4 seems like the best estimnate of its expected value.
In any cvent, the answer 2.5 seems too low. In a sense, the whole point of this paper
is to present theoretical and empincal analyses in support of this intuition. We show
below that in fuct the answer 1 is the only unbiased answer, and that 2.5, the answer of
every-visit MC and of conventional TD(1), is biased in a statistical sense.

It is instructive to compare these two estimates of the value function with the estimate
that is optimal in the maximum likelthood sense. Given some data, 1n this case a sot
of observed trials, we can construci the maximum-likelihood model of the underlying
Markov process. In general, this 15 the model whose probability of generating the ob-
served data 1¢ the highest. Consider our simple example. After the one trial has been
observed, the maximum-likelihood cstimate of the S-10-5 transition probabulity s —I the
traction of the actual transitions that went that way, and the maximum-likelihood estimate
of the 5 to T transiuon probability 1s '1 No other transitions have been observed, so
they arc estimated as having probabitity . Thus, the maximum-likelihood model of the
Markov chain 1s as shown in Figure 2c.

Q 7 §—~8—=8§—85—T
3

a) True Process b) Observed Trial ¢} Max Likelihood Model

Figure 2. A stnple example of & Markov prediction problem. The objective is to predict the number of steps
untl termination.
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We define the ML estimare of the value function as the value function that would be
exactly corrcet if the maximum-likelihood model of the Markov process were cxactly
correct. That is, it 1s the ostisrate equal to the correel answer if the estimate of the
Markov chain was not really an estimate, but was known with certainty. Note that the
ML estimate makes full usc of all the observed data.

Let us compute the ML cstimate for our simple example. If the maximum-hkelthood
model of the chain, as shown in Figure 2¢, were exactly correct, what then would be the
expected number of time steps before termination? For each possible number of steps,
k, we ¢an compute the probability of its occurning, and then the cxpected number, as

XD

V"“"”“(S) -\ Pr(ik
P

i

Thus, in this simple example the ML estimate 15 the same as the first-visit MC estimate.
In general, these two are not exactly the same, but they are closcly related. We establish
the relationship in the generat case in Section 3.2

Computing the ML estimate 1s in general very computationatly complex. Tf the number
of states is 7, then the maximum-likelihood model of the Markov chain requires O(n?)
memory, and computing the ML estimate from it requires roughly ()(n*) computational
operations.” The TD methods by contrast all use memory and computation per step that
is only O{n). It is in part because ol these computational considerations that learning
solutions arc of interest while the ML estimate remains an ideal generally unreachable in
practice. However, we can still ask how closely the various learning methods approximate
this idcal.

2.4. Equivalence of Batch TD(I) and MC Methods

In this subsection we establish that the replace and accumulate forms of batch TD(1) are
equivalent, respectively, 1o tirst-visit and every-visit MC. The next subsection proves a
similar equivalence for the offline TD{1) algorithms.

The equivalence of the accumulate-trace version of batch TD(1) to every-visit MC
tollows immediately from prior resules. Baich TD{1) is a gradient-descent procedure
known to converge to the estimare with minimum mean squared erear on the training set
(Sutton, 198%; Dayan, 1992; Barnard, 1993). In the case of discrete states, the minimum
MSFE estimate for a state is the sample average of the returns from cvery visit to that
state in the trammng setf. and thus it is the same as the estimate computed by cvery-visit
MC.

Showing the equivalence of replace-trace baich TD(1) and first-visit MC requires a
Little more work.
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THEOREM 1. For any training set of N trials and any fived oy(s) = « < %, bateh

replace TD(1) produces the same estimates as firsi-visit MC.

Proof: In considering updates to the estimates for any state s we need only consider
trials in which s occurs. On trals in which s does not oceur, the estimates of both
methods are obviously unchanged. We index the trials in which state s occurs from 1 to
N(s). Let t,(n) be the time at which state s is first visited n trial », and let tp{n} be
the time at which the terminal state is reached. Let V,/(s) represent the replace TD(1)
cstimale of the valuc of state s after ¢ passes through the training set, for ¢ > 1:

N(s) bpr{ny—1

VI (s) = V(s Y Y AV

n=1 t=(,(n)
Nig)trini—1

= V,R(S) + o Z Z [7‘1.+1 + VJR(.S\'.+1) - V‘H(qr”

n=1 t=t.{n)

N{s) trini—1
— VLR(.&:) N Z ,I/LI{(,C;L_‘(R)) + L ot

n=1 bt (n)

Nis}

i

Fls)y+a D [R(E)) V(s
=1
N{s)
= (1— N(s))¥ +oox Z (ts(n))

n=1I

where R(#) is the return following tone ¢ to the end of the trial. This in turn implies that

VE(s) = (1 — N(sa) Vi (s) + L (n)) L+ (1 - N(sja) + ... (1 N{s)a)y '],

a=1

Theretfore,

VEGS) = (1 NV s) + Z Ft.(n)) Z(l — N{s)a)

=1 -0
N{s)
= Z H(ts(n))m (because N (s)o < 1)
n=1
PN (R ED)]
N{s) ‘

which is the first-visit MC estimate. n
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2.5, Egquivalence of Offtine TD(I) and MC Methods by Choice of o

In this subscction we establish that the replace and accumulate forms of offfine TID(1)
can also be made equivalent to the corresponding MC methods by suitable choice of the
step-size sequence o, (s).

THEOREM 2: Offtine replace TD(1) is equivalent to first-visit MC under the step-size
schedule
1

a(s) = S —
%) number of first visits to s up through time 1

Proof: As before, in considering updates to the estimates of V/{s), we need only consider
trials in which s occurs. The cumulative increment in the estimale of V{s) as a result
of the i** trial in which s occurs is

b (i ir (7]
Z AVi(sy = Z () l"'r‘J + Vv:f—"'x(stﬂ) - {/TiRl(S‘)J
b=toid) t=t.{5)
1 : R
— ;(R“q(i')) - Vzi("))

Therefore, the update (o offline replace TD(1), after a complete trial. is
VI = VE () b S (R(0) - V),

which 15 just the iterative recursive equation for incrementatly computing the average ol
the first-visit returns, { (L. (1)), B{t.(2)), R(t:(3)), ...} [ |

THEOREM 3. Offine accumulate TD{1) is equivalent to every-visit MC under the step-
size schedwle
1

ey (s) = — 4 _ :
J number of visits to 3 up through the entire trial contaning time |

Proof: Once again we consider only trials in which state s occurs. For this proof we
need to use the time index of every visit to state s, complicating notation somewhat. Let
t.{2; k) be the time index of the £™ visit to state ¢ in triat 2. Also, let K (7) be the
total number of visits to state s in trial 7. The essential idea behind the proof is 1o agam
show that the offline TD(1) equation is an itcralive recursive averaging cquation, only
this time of the returns from cvery visit to state s.

Let cx;(s) be the step-size parameter used in processing trial <. The comulative incre-
ment in the estimate of V(s) as a result of trial ¢ is

17 (2] toli21—1 t i3 =1

STOAWE) - wils) | Y Aculs) + 2 > A i)

teet, (1) t—ta (1] boe{nR
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£ (d)

o G YT Ay (s

E=t (G R (0]
K. (i}

= ofs) | 3 R{tu(i:) — K0V (s)]
g=1

where A;(s:) = 7 + VA (5,000 - V.A(s,), and VA (s) 1s the accumulate-trace estimate
at trial . Therctfore,

K. (1)
VA = VAL +auls) | Y Rits(E5)) — Ko()VA (9)
=1
Because ays) — Z—L-l—};ﬁ, this will compute the sample average of all the actual
. 1€
returns from every visit to state s up to and including trial 4. [ |

3. Analytic Comparison of Monte Carlo Methods

In the previous section we established close relationships of replace and accumulate
TD{1) to first-visit and every-visit MC methods respeciively. By better understanding
the difference between the MC methods, then, we might hope to better understand the
difference between the TD methods. Accordingly, in this section we evaluale analytically
the quality of the solutions found by the two MC methods. Tn brief, we explore the
asymptotic correctness of all methods, the bias of the MC methods, the variance and
mean-squarcd crror of the MC methods, and the relationship of the MU methods to the
maximum-likelihood estimate. The results of this section are summarized in Table 1.

3.1.  Asymptotic Convergence

In this subsection we biiclly establish the asymptotic correciness of the T methods.
The asymplouc convergence of accumulate TD(A) for gencral A is well known (Dayan,
1992; Jaakkola, Jordan & Singh, 1994: Tsitsiklis, 1994 Peng, 1993). The main results
appear to carry ovel 1o the replace-trace case with minimal modifications. In particular:

THROREM 1. Offtine (online) repluce TI(X) converges to the desired value function
w.p I under the conditions for wp 1 convergence of offline {online} conventional TIN )
stated by Jaakkola, Jordan and Singh {1994).

Proof: Jaakkola. Jordan and Singh (1994) proved that online and offline TD(X) converpes
w.p.1 1o the correct predictions, under natural conditions, as the number of trials goes
to infinity (or as the number of time steps goes to infinity in the online, non-absorbing
case. with ~ < 1) Their proof 1s hased on showing that the offline TD{A) estimator is a
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contraction mapping in expected value. They show that it is a weighted sum of n-step
corrected truncated returns,

ey . =l o
Vioi(se) = s b b T Vi (8tpa)s

that, for all # = 1, are better estimates (in expecied value) of V(s ) than is Vi (s,). The
eligibility trace collects successive n-step estimators, and 1ts magnitude determines their
weighting. The TD(A) cstimator 13

=1

Z {T'H-k-u f 'YVL(SL-{-A‘ | 1) . Vt(Strfk\J] k1 (-‘?r,) + Vf,(-‘fr} =

kO
(1 _/\) Z/\'H,—IL,}(”)(SI:)+V}(T)(St) Z /\'n,fl .
=1 o7 A

where, for the accumulating irace, 7 is the number of time steps until termination,
whereas, for the replacing wace, 7 1s the number of time steps until 1he next revisit to
state 5,. Although the weighted sum is slightly different in the replace casc, 1t 1s sull a
contraction mapping in expected value and meets all the conditions of Jaakkola er al’s
proofs of convergence for online and offline updating. [ ]

3.2, Relationship to the ML Estimate

In the simple example in Figure 2, the first-visit MC estimate is the same as the ML
estimate. However, this is true 1n general only for the starting state, assuming all trials
starl in the same state. One way of thinking about this is to consider for any state s just
the subset of the training trials that include s. For each of these trials, discard the early
part of the trial before s was visited for the first time. Consider the remaiming “lails” of
the trials as a new training set. This reduced training sct 1s really all the MC methods
ever see in forming their estimates for s. We refer to the ML estimate of V() based
on this reduced training set as the reduced-ML estimate. In this subsection we show that
the reduced ML estimate 18 equivalent in general to the [irst-visit MC estimatc.

THEOREM 55 For any undiscounted absorbing Muarkov chain, the estimares computed
by first-visit MC are the reduced-MI. estimates, for all states and after all rials.

Proof: The first-visit MC ostimate 1s the average of the returns from first visits to state
¢ Because the maximum-likelihcod model is built from the partial experience rooted
tn state s, the sum over all # of the probability of making a particular transition at time
step ¢ according o the maximum-likelihood modet is equal o the ratio of the number of
times that transition was actually made to the number of tnals. Therefore, the reduced-
MI. estimate [or slate s is equal to the first-visit MC estimate. See Appendix Al for a
complete prool, u

Theorem 5 shows the equivalence of the first-visit MC and reduced-MIL cstimates.
Every-visit MC in general produces an estimate different ftow tie icduced-ME. estimate.
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3.3.  Reduction to a Two-State Abstracted Markov Chain

In this subsection we mtroduce a conceptual reduction of arbitrary undiscounted absorbing
Markov chains to a two-state abstracted Markov chain thal we then use in the rest of
this paper’s analyses of MC methods. The reduction is based on focusing on each state
mdividually. Assume tor the moment that we are interested in the value only ol one
state, 5. We assume that all training trials start in staic 5. We can do this without loss
of generality because the change in the value of a state after a irial is unaffected by
anything (hat happens betore the first visit to the state on that trial.

For any Markov chain, a trial produces two sequences, a random sequence of states,
{s}. beginning with s and ending in 7", and an associated random sequence of rewards,
{r} Partition sequence {s} mto contiguous subsequences that begin in s and end just
hefore the next revisit to 5. The subsequence starting with the 7 revisit to £ is denoted
{5}i. The last such subsequence is special in that it cnds in the terminal state and
is denoted {s}7. The corresponding reward sequences are similarly denoted {+}, and
{rtr. Because of the Markov property. {s}; is independent of {s},, for all ¢ # 5, and
similarly {r}, s independent of {r},. This is useful because it means thal the precise
sequence of siates that actually occurs between visits o s does not play a role i the
first-visit MC or the every-visit MC estimates for V(). Stmilarly, the precise sequence
of rewards, {r};. does nut matter, as only the sum of the rewards in between visits 1o s
arc used in the MC methods.

(s},

S o

O -0+ +O-@ + » +@+~O+ 0T

P r
S . 8

Figure 3 Absiracted Markev chain. At the top is a typical sequence of stafes comprising o training trial,
The sequence can be divided inte contiguous subsequences ae the visds o start stafe s For our analyses. the
precise sequence ol states and rewards in between revisits to ~ doos not matler. Therefore, in considering the
value of 5. arbitrary undiscounted Markov chains can be absiracted o the fwo-stale chain shown in the lower
part of the figure.
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Therefore, for the purpose of analysis, arbitrary undiscounted Markov chains can be
reduced to the two-state abstract chain shown in the lower part of Figure 3. The as-
sociaicd probabilitics and rewards require careful elaboration. Let Pp and P, denote
the prebabilities of terminating and looping respectively 1n the abstracted chan. Let 7,
and rp represent the random rewards associated with a § ~» s transition and a 5 ~» T
transition in Iigurc 3. We usc the quantitics, By — B{rs}, Var(r,) = E{{r.  R?),
Ry — B{ry}, and Var(ry) = E{(rr — Ry)?} in the following analysis. Precise
definitions of thesc quantities are given in Appendix A2,

first-visit MC:
Let {x} stand for the paired random sequence ({s}, {r}). The first-visit MC estimate
for V() alter one trial, {z}, is

VES) = fIx)) = ra, b 7a, +Tay = T, v T

where k15 the random number of revisits 1o state 5. v, 8 the sum of the individual
rewards in the sequence {r},, and rp is the random total reward received after the last
visit to state s, For all i, F{r,. } = R, The first-visit MC estimate of V{s) after n
tials, {00 {r}2 0 {217 s

o S

i

VIOsy - Y et {et™) =
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In words, V. (s} is simply the average of the estimates from the n sample trajectories,
{3z}, . {2}, all of which are independent of cach other because of the Markov
proporty.

every-visit MC:
The every-visit MC estimate Tor one trial, {z}, is

bnwm 32 F) e, + 20, b o b kre, 4 (K4 Liry

V) ) = R = PR}

where k& ts the random number of revisits to state s in the sequence {x}. Every visit to
state s effectively starts another trial. Therefore, the rewards that occur in between the
i and (1 + 1)% visits to state s are included ¢ times in the estimate.

The every-visit MC estimate after n trials, {z}t {x}? .., {2}", is

Z:: L Prwm ({7} _
Z?,fl(ki t 1) 4

where k, is the nomber of revisits 1o & in the " trial {x}*. Unlike the first-visit MC
estimator, the every-vistt MC estimator for » trials is not simply the average of the
estimates for individual trials, making its analysis more complex.

We derive the nas (31es) and vanance (Var) of first-visit MC and every-visit MC as
a function of the number ol trials, n. The mean squared error (MSE) is Bins® + Var

Vf(s) ) A 3 N a4 (3)

3.4. Bias Resulis

First consider the true value of state s in Figure 3. From Bellman’s equation (Bellman,
1957

Vi(s) — TR, + V() + PRy + Vi)
inr
(1 - POVIsT - PiRe + Prfp,

and thereflore

THROREM G Firsi-visit MC iy unbiased, i.e., ;{n’-z.as_f.;'(s) = V(5) E{\,f {5)} =0 for
all w0
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Proof: The first-visit MC estimate is unbiased because the tolal reward on a sample path
from the start stale s to the lerminal state T' s by definition an unbiased estimate of the
expected total reward across all such paths. Therefore, the average of the estimates from
n independent sample paths is also unbiased. See Appendix A3 for a detaled proof.

m
THEOREM 7. Every-visit MC is biased and, after n trials, its bias is
w : B 2 \ 2 P
B , S B _ S B ) 5
Bias, (s) = V(s) — E{V,7(s)} = p—ry lesl (8} = ey {QPT R‘\J .
Proof: Sec Appendix A4, |

One way of understanding the bias in the every-visit MC estimale 1s to note that this
method averages many returns {or each wrial. Returns from the same trial share many of
the same rewards and are thus not independent. The bias becomes smaller as more trnals
are observed because the returns from different trials are independent. Another way of
understanding the bias is to note that the every-visit MC estimate (3} is the ratto of 1wo
random variables. In general, the expected value of such a ratio 15 not the ratio of the
expected values of the numerator and denominator.

COROLLARY Ta: Everv-visit MC is unbiased in the limit ay n — o0

3.5. Vuriance and MSE Results

TrreorEyM 8 The vartance of first-visit MC s

i V(l + ‘)‘ 1 - P\ P‘. :
Varl (s) = —:-(i = Var(re) + Fl—‘-Var(rﬁ) | ?fﬁf
Proof: Sec Appendix AS. |

Because the first-visit MC estimate is the sample average of estimates dernved from
independent trials, the variance goes down as % The first two terms in the variance are
due to the variance of the rewards, and the third torm s the vanance due to the random
number ol revisilts 1o state < in each mal.

Conoreawy Sa: The MSE of firstvisit MC is

bl

: , R oo Y A LT
MSES sy — (Biash (s)? + Varl (s) — - Var{ry) + _ﬁ,y ariry) + l_—"r]?,”
‘ n

EEA
-

i
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TuaroREM 9 The variance of every-visit MC after one trial is bounded by

by 1 . 1P . .
Varinn) [ — g| Vet - (R < vartt
and
: Py 1P
Varlf(s) < Var(ry) {?Pq} +Var(re) + EPQ R
Proof: See Appendix A6 =

We were able to obtain only these upper and lower bounds on the variance of every-visit
MC. For a single trial, every-visit MC produces an cstimate that 1s closer to zero than
the estimate produced by first-visit MC; therefore Var® < Varf This effect was seen
in the simple example of Figure 2, in which the every visit MC estimator underestimated
the expected number of revisits.

Of coursc, a low variance is not of itself a virtue. For example, an estimator that
returns a constant independent of the data has zero variance, but 15 not a good estimator.
Of greater impottance is to be low in mean squared crror (MSE):

COROLLARY Oz After one trial, MSEF(s) < MSE{(s) because (I}t (s))7
Varf (s) < MSEL(s).

Thus, after one trial, every-visit MC is always as good or better than first-visit MC in
terms of both vanance and MSE. Eventually, however, this relative advantage always
reverses itsclf

THEOREM 100 There exists an N < oo, such that for all n > N, Varl (s) > Varl (s).
Proof: The basic dea of the proof 1s that the O(,,ll) component of Ver? is larger than
that of Var! The other (2 ({;) components of Var’ fall off much more rapidly than
the € ('—t) component, and c;af;lu be ignored for large enough n. See Apperdix A7 for a

complete prool. ]

COROLLARY 10a: There exists an N <2 o, such that, for ali n > N,

MSER () — (BiasE ()12 + VarE(s) > MSE! (5) — Varl (s).

Figure 4 shows an empirical example of this crossover of MSE. These data are for the
two MO trethods applied to an nstance of the example task of Figure Za. In ths case
crossover occurred at mal NV = 5. In general, crossover can occur as carly as the {irst
rial. For example, if the only non-zero reward in a problem is on termination, then
R, — 0, and Var{r,) = 0, which in turn implies that Bm,‘;;','" f), for all «, and that
Varfi(s) = Varl (5) sothat MSEE(s) = MSEF ().
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First-Visit MC

Average 1
Root MSE

0.5

() T T T T
0 5 10 15 20

Trials

Figure 4. Erpirical demonstration of crossover of MSE on the example task shown wn Figure 2a. The S-to-S
transition probability was p = 0.6, These data are averages over 10, 000 runs.

3.6. Summary

Table 1 summanzes the results of this section comparing first-visit and every-visit MC
methods. Some of the results are unambiguously in favor of the first-visit method over
the every visit method: only the first visit estimate s unblased and related to the MT. ¢s-
ttmate. On the other hand, the MSE results can be viewed as mixed. Initially, every-visit
MC 15 of better MSE, but later it is always overtaken by first-visit MC. The implications
of this are unclear. To some it might suggest that we should seck a combination of the
two estimators that 1s always of lowest MSE. However, that might be a mistake. We
suspect that the first-visit cstimate 1 always the more useful one, even when it s worse
in terms of MSE. Qur other theoretical results arc consistent with this view, but 1t remains
a speculation and a topic for futurc rescarch.

Table | Summary of Statistical Results

Algorithm Convergent  Unbiased  Short MSE  Long MSE  Reduced-ML

First Visit MO Yey Yes Higher Lower Yeu

Every-Visit MC Yes No l.ower Higher No
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4. Random-Walk Experiment

In this section we present an empirical comparison of replacing and accumulating eligi-
bility traces. Whereas our theoretical results are limited to the case of A = 1 and either
offline or batch updating, in this experiment we used online updating and general A. 'We
used the random-walk process shown in Figure 5. The rewards were zero everywhere
except upon entering the terminal states. The reward upon transition tnto State 21 was
+1 and upon transition into State I was 1. The discount factor was v — 1. The initial
value estimates were 0 for all states. We implemented online TID{A) with both Kinds of
traces lor ten different values of A 00,0, 0.2, 0.4, 0.6, 0.8, 0.9, 0.85, 0.975, 0.99, and
1.0.

The step-size parameter was held constant, . (s) = a, ¥t, ¥s. For each value of A,
we used o values between 0 and 1.0 in increments of 0.0L. Each (A, ) pair was treated
as a scparate algorithm, cach of which we ran for 10 trials. The performance measure
for a tnal was the root mean squared error (RMSE) between the correct predictions and
the predictions made at the end of the trial from states that had been visited at least once
in that or a previous trial. These errors were then averaged over the 10 trials, and then
over 1000 separate runs to obtain the performance measure for cach algorithm plotted
in Figures 6 and 7. The random number generator was sceded such that all algorithms
cxpentenced exactly the same trials.

Figure 6 shows the performance of each method as a function of « and A. For each
value of A, both kinds of TD method performed best at an intermediate value of ¢, as is
typically the case for such learning algorithms. The larger the A value, the smaller the o
value that yielded best performance, presumably because the eligibility trace multiplies
the step-size parameter in the update equation.

The critical resulis are the differences between replace and accumulate TD methods.
Replace TD was much more robust to the chotce of the step-size parameter than accumu-
late TD. Indeed, for A > 0.9, accumulate TD(A) became unstable for ¢ > 0.6 Ax large
A, accumutate TD built up very large eligibility traces for states that were revisiied many
umes before termination. This caused very large changes in the value cstmates and led
to instability, Figure 7 summarizes the data by plotting, for each A, only the performance
at the best «v for that A. For every A, the best performance of replace TT) was betler than
or equal to the best performance of accumulate TD. We conclude that, at least for the
problem studied here, replace TD(A) is faster and more robust than accumulate TD(A).

1

G 0
Pty e R
-1 0 o]

Figure 5. The random walk process. Staring in State 11, steps are taken left or nght with cqual probability
unti) cither State 1 or State 21 is entered. rerminating the trial and generating a final noo-zero reward.
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ACCUMULATE TRACES

Averago

RMSE

0.8 o
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5.P. SINGH AND R SUTTON

REFLACE TRACES

-

Figure 6. Performance of replace and accumulate TD{A} on the random-walk task, for various vaiues of A and
a. The performance measure was the RMSE per state per irial over the first 10 trials. These data are averages

over 1000 runs.
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Figure 7. Best performances or accumulae and replace TII(A) an e randorm-walk 1ask.
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5. Mountain-Car Fxperiment

In this scction we deseribe an cxperimental companison of replacing and accumulating
traces when used as part of a reinforcement learning system to solve a control problem.
In this case, the methods learned io predict the value not of a state, but of a state-action
pair, and the approximate valuc function was implemented as a set of CMAC ncual
networks, one for cach action.

The control problem we used was Moore’s (1991) mountain car task. A car drives
alung a mounlain frack as shown in Figure 8. The objective is w drive past the wp of
the mountain on the righthand side. However, gravity is stronger than the engine, and
even at fuli thrust the car cannot accelerate up the steep slope. The only way to solve the
problem iy w0 Hest accelerate buckwardy, away [tom the goal, and then apply (ull thrust
forwards, building up enough speed to carry over the steep slope even while slowing
down the whole way. Thus, one must initially move away from the goal in order to
reach i1t in the long wun. This is a stnple examnple of 4 wsk where things must gel worse
betore they car get better. Many control methodologies have great difficulties with tasks
of this kind uniess explicitly aided by a human designer.

The reward in this problem is —1 for all tme steps until the car has passed 10 the
right of the mountain top. Passing the top ends the trial and ends this punishment. The
reinforcement learning agent seeks to maximize its total reward prior 1o the lermination
of the rial. Te do so, it must drive 1 the goal in minimum time. At each ume siep the
learning agent chooses one of three actions: [ull thrust forward, full thrust reverse, or
no thrust. This action, together with the effect of gravity (dependent on the steepness of
the slope). dewrmines the next velocity and position of the car. The complete physics
of the mountain-car task arc given i Appendix B.

The reinforcement learning algonithm we applied 1o this task was the Sarsa algorithr
studied by Rummeery and Niranjan (1994) and others. The objective in this algorithm is 10
learn to estimate the action-value function Q7 (s, ¢} tor the current policy w. The action-

GOAL

/

1Gra\n1y

Figure 8. The Mountain-Car task. The force of gravity is stronger than the motor.

&
/

S~
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1. Initially: iw,(f) := =20, e.(f) := 0, Va € Actions, Vf ¢ CMAC-tiles.
2. Start of Trial: s = random-state();
F .= features(s);
a = greedy-policy(F).
3. Eligibitity Traces: e4(f) := Aep(f), ¥b, Vf;
3a. Accumulate algorithm: e, (f) = e (f) + 1, ¥f € F.
3b. Replace algorithm: e f) =1, ep(f):=0,VfeF, ¥+ a
4, Environment Step:
Take action «; observe resultant reward, . and next state s’
5. Choose Next Action:
F' = features(s’). unless ' is the terminal state, then F' = §;
a’ = greedy-policy{ F').
6. Learn: wn(f) = wi(f) ~ Z|r + 2 pcpowar D e p Wales(f), BV
7. Loop: a:=4a’, 5= & F = F';if 5" 1s the terminal state, go to 2; clse go 1o 3.

Figure 9. The Sarsa Algorithm used on the Mountain-Car task. The function greedy-pelicy( 1) computes
ZJEF i tor cach action @ and coturns the action for which the sum is largest, resolving any ties randomly

The function feasmres(s) returns the set of CMAC tiles corresponding 10 the state s. Programming optimizations
can teduce the expense per iteration 1o a small multiple (dependent on &) of the number of features, e, present
on a rypical time step. Here moas 5
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value Q™ (s, e} gives, for any state, s, and action, a, the expected return for starting from
state s, laking action q, and therealter following policy «. In the case of the mountain-car
task the return is simply the sum of the future reward, i.c., the negative of the number of
tume steps until the goal is reached. Most of the details of the Sarsa algorithm we used are
given in Figure 9. The name “Sarsa” comes from the quintuple of actual events involved
in the update: (sg, ar, Pepr, 5441, @41 ). This algorithm is closely related 1o Q-learning
{Watkins, 1989) and to various simplified forms of the bucket brigade (Holland, 1986;
Wilson, o appear). It is also identical to the TD{A} algorithm applied to state-action

pairs rather than to states 0

The mountain-car task has a continuous two-dimensional state space with an infinite
number of states. To apply reinforcement learming requires some form of function ap-
proximator. We used a set of three CMACs (Albus, [981; Mitler, Glanz, & Kraft, 199,
one for each action. Thesc are simple functions approximators using repeated overlapping
tilings of the state space to produce a feature representation for a final lincar mapping.
In this case we divided the two state varnables, the position and velocity of the car, cach
into eight evenly spaced intervals, thereby partitioning the state space into 64 regions,
or boxes. A ninth row and column were added so that the tiling could be offset by a
random fraction ot an interval without leaving any states uncovered. We repeated this
five times, each with a different. randomly selected offset. For example, Figure 10 shows
two tilings superimposed on the 2D state space. The result was a total of 9 x 9x 5 = 405
boxes. The state at any particular ume was represented by the ive boxes, one per nling,
within which the state resided. We think of the state representation as a feature vector
with 405 features, exactly 5 of which are present (non-vero) at any point in nme. The
approximate action-value function is linear in this feature representation. Note that thes
representation of the state causes the preblem to no longer be Markov: many different
nearby states produce exactly the same feature representation.

e Tiling #1

Tiling #2

Car Velocity

Car Position

Figure 11 Two 3 % 9 CMAC rilings oftset and overlaid over the continuous, twe-dimensional state space of
the Moeuntain-Car task. Any state 5 in exactly one Gle/box/[eature of each tiling. The experiments used 3
tilings, each offser by a random fraction of a file width
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The chgibility traces were implemented on a feature-by-feature basis. Corresponding
to each feature were three traces, one per action. The features are treated in essence
like states. For replace algorithms, whenever a feature occurs, its traces are reset to |
{for the action selected) or O (for all the other actions) This 1s not the onlty possibility,
of course. Another would be to allow the traces for each state-action pair to continue
until that parr occwrred again. This would be more in keeping with the idea of replacing
traces as a mechanism, but the approach we chose seems like the appropriate way to
generalize the idea of first-visit MC to the control case: after a state has been revisited,
it no longer matters what action was taken on the previous visit. A companson of these
two possibilities (and perhaps others) would make a good extension 1o this work.

The greedy policy was uscd 1o select actions. The initial weights were set to produce a
uniform, optimistic initial cstimate of valuc (-100) across the statc space.” Sce Uigure 9
for further details.

We applied replace and accurnulate Sarsa algorithms to this task, each with a range of
values for A and a. Dach algorithm was run for 20 wials, where a trial was one passage
from a randomly selected starting state to the goal. All algorithms used the same sets
of random starting states. The performance measure for the run was the average trial
length over the 20 trials. This measure was then averaged over 30 runs to produce the
results shown in Figures 11 and 12. Figure 11 shows the detailed results for each value
of A and o, whereas Figure 12 is a summary showing only the best performance of each
algorithm at cach A valuc.

Several eresting results are evident from this data. First, the replace-trace method
performed better than the accumulate-trace method at all A values. The accumulate
method perfonmed panticub ly pootly 1elative o the replace method al high values of A
For both methods, performance appeared to be best at an intermediate A value. These

o ACCUMULATE TRACES
\e [ !

= 700 !
i
Steps/Trial
Averaged uvel :
firsg 20 trials =60

and 30 runs ;

: . r . '
0 0.2 {rd %) {18 1 1.2 i 2 (i) 0.6 0.8 t [l

Figure 1. Resalts on the Mountaim-Car task for each value of A und . Each data point 15 the average duration
of the first 20 trials of a ren, averaged over 30 runs. The standard errors are omitted to simplify the graph:
they ranged from about 10 to about 50.
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Figure 12, Summary of results on the Mountain-Car task. For each value of A we show its performance at its
best value of o. The error bars indicaie one siandard error.

results are all consistent with those presented for the random-walk task in the previous
section. On the mountain-car task, accumulating traces at best iraproved only slightly
over no traces (A + 0) and al worst dramatically degraded performance. Replacing traces,
on the other hand, significantly improved performance at alt excepl the very longest trace
lengths (A == 59). Traces that do not decay (A — 1) resulted in significantly worse
performance than all other A values tried, including ne traces at all (A — 0},

Much more empirical experience is needed with trace mechanisms betfore a definitive
conclusion can be drawn about their relative effectiveness, particularly when function
approximators are used. However, these experiments do provide significant evidence for
two key points: 1) that replace-trace methods can perform much better than conventional,
accumulate-trace methods. particularly at fong trace lengths, and 2) that althongh long
traces may help substantially, best performance is obtained when the traces are not
nfinite, that is, when intermediale predictions are used as targets rather than actual
sample returns.

6. Conclusions

We have presenied a vartety of analytical and empirical cvidence supporting the dea
that replacing chpibility traces penit more efficient use of experience in reinforcement
learning and long-term prediction,

Our analytical results concerned a special case closely eelated 1o that used in classical
studies of Monte Carlo methods. We showed that methods using conventional waces are
biased, whercas replace-trace methods are unbiased. While the conclusions of our meare
squared-error analysis arec mixed. the maximum likelihood analysis is clearly in favor
of replacing traces. As a whole, these analytic results strongly support the conclusion
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that replace-trace methods make better inferences from limied data than conventional
accurnulate-trace methods.

On the other hand, these analytic results concerm only a special case quite different
from those cncountered in practice. It would be desirable to extend our analyses (o
the case of A < 1 and to permil other step-size schedules. Analysis of cases involving
function approximators and violations of the Markov acsonmphon would also he useful
further steps.

Our empirtcal results treated a much more realisiic case, including in some cases all of
the extensions listed above. These results showed consistent, significant, and somelimes
large advanlages of replace-trace methods over accumulate-trace methods, and of trace
methods gencrally over trace-less methods. The mountain-car experiment showed that the
replace-trace idea can be successfully used in conjunction with a featnre-hased finction
approximator. Although it is not yet clear how 1o cxtend the replace-trace 1dea to other
kinds of function approximators, such as back-propagation networks or nearcst-neighbor
methods, Sutton and Whitehead (1993) and athers have argned that feamre-hased function
approximators are actually preferable for online reinforcement learning.

Our empirical results showed a sharp drop in performance as the trace parameter
A approached 1, corresponding to very long traces. This drop was mueh lewe sovere
with replacing traces but was still clearly present. This bears on the long-standing
question of the relative merits of TD(1) methods versus wue temporal-difference (A <
1} methods It might appear that replacing traces make TD(1) methnds maore capable
compelitors; the replace TD(1) method is unbiased in the special case, and more efficient
than conventional TD{1) in both theory and practice. However, this is at the cost of losing
some ol the theoretical advantages of conveniional TH(1)  Tn particolar, conventional
TD(1) converges in many cascs 1o a minimal mean squared-error solution when function
approximators are used (Dayan, 1992) and has been shown to be usclul in non-Markov
problems (Jaakkola, Singh & Jordan, 1995). The replace version nf TR doces not share
these theoretical guarantees. Like A < 1 mothods, it appears to achieve greater efficicncy
in part by relying on the Markov propesty. In practice, however, the relative merits of
different A — 1 methods may not be of great significance. All of oor empincal resalrs
suggest far better performance is obtained with A <7 1, even when function approximalors
arc used that create an apparently non-Markov task.

Replacing traces are a simple modification of oxisting discrete-state or feature-hased
reinforcement learning algoruhms, [n cases in which a good state representation can be
obtained they appear 1o offer significant improvements in learning speed and rehability
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Appendix A
Proofs of Analytical Results

A.1l. Proof of Theorem 5: First-Visit MC is Redoced-ML

In considering the cstimate Vi (s), we can assume that all trials start in s, because both
first-visit MC and reduced-ML. methods tgnore transitions prior to the first visit to . Let
1y be the number of times state « has been visited, and et ny, be the number of times
transition i ~+ j has been encountered. Let £, be the average of the rewards seen on
the j ~» & transitions.

Then Lﬂ\‘?(.&), the first-visit MC estimate alfter N trials with start statc s, is

1
Vil = Dl muhe

AES e s

This is wdentical i {2) because ch -5 Tyx Ftyp 18 the total summed reward scen during
the N trials. Because N = n, ‘) i © ’n“, we can rewrite this as

. 1, .
R - Y e e 2 iR (A

; g
KUH 508

The maximum-hkelihood model of the Markov process after IV trials has transilion
probabilities F(¢j) = l—i and expected rewards R{ij} — R;;. Let V\‘”L@) denote the
reduced-MEL astimate ;\l‘ttt‘r N trale. Ry definition V_‘,('}'”’(Q) N VS FTIE ot O S
where E'y 15 the expectation operator for the maxirum-tikelihood model after V trials,
and v, s the payolff at step . Therefore

Vit (s) L Rig|Probu{y ~ k) | Proba(j ~ k) + Proba(y ~» k) + .|
1.k
= XRM(:}A‘ (A2
ik
th

where Prob;(j ~+ k) 1s the probability of a j-to-& wansitien at the %% step according o
the maximum-hkelihced model. We now show that for ali 3, &, U, of (A2} 15 cqual to
U " of (A1)
( onsider two spectal cases of § in (A2
Case 1, § = &
Ve = £(sk) = Plss)Plsk) 4 ZP(srr';z)f)(m.&;)P(s/’c) +
-

T Tigs < Thsyn s
Ry IRy
Tl g Tha  Flya

ri
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= Dk 4 PY(ss) 4 PEss) + PPss) o+ |

Thy

5

Tk

(1+ N, (A%

The

where P7{ij) 1s the probability of going from state 7 1o state 7 in exactly n steps, and
Ny is the cxpocted number of revisits to state s as per our current maximum-likelihood
model.

Case 2, j £ s
Uy = Plsi)P(jk) JrZI’(.@m)P(m_j)P(jk:) ;
e
Thgk | Naj Thum Thng
'H‘_:, s Z Tig Tbm

’H

= [P sy) + PR b PR s+

SE N, (A4)

??J

where \” 15 the expected number of visits to state 3.

For all j, the V., satisly the recursions

n
Nog = Pleg) ) Nanl(my) L N = (4.5)

’ T
I

We now show thal Ny = - for j + 5, and N, — L — 1, by showing
E e Tiw L — Ty

that these quantities satisfy the recursions (A.5).

A Tl Thyng {124 N Tlyy g 1
i — —_— =T - 4“_-‘-":\ -
53 g Zﬂé Tign s — 2., This e \7is - >, Pus

. flgy . ”'ru _ Thgg
Tos Ty - }“ Teis  Ths
\er Ting 1y

- 21 Mis ; h’s Zl iy

and, again from (A.5),

Tigs

A\s 8T

T
® ks

2o Toms ns
e w3 Mge e — 3, T,

Plugging the above values of Ny and V., mio (A3) and (A4). we obtain Uy
Lo i vr
S =

T .
Lot
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A.2. Facts Used in Proofs of Theorems 6-1¢

The proofe for Theorems 6-10 assumne the abstract chain of Figure 3 with just two states,
s and 7. The quantines Ry = Fir,}, Var{ry) = E{{r, - R}, By — Elrpl,
and Var(rr) — E{(rr — Ryp)?} are of interest for the analysis and require careful
elaboration. Let .5, be the set of all state sequences that can occur between visits to
state s {including state & at the head), and let S be the set of all state sequences (hat
can oceur on the final run from s to T (including state s). The termination probability is
Py — Z{S}T-ES’T P{{#i1}, where the probability of a sequence of states is the product
of the probabilitics of the individual state transitions. By definttion %, = 1 — Pp. The
reward probabilities are defined as lollows: Prob{r, — q} = llgee P P(ry,y =
gl{s}), and Protfry — q} — H{S},T,Eb-,rp(['.3}]-)P{T"f = g[{s}s). Therefore, f1, —
2gubProb{r, =g}, Ry = 2oqaProb{ry = ¢p. Similarly, Var(ry) — > Prob{r, —
gilq - R and Var(re) = 32, Prob{rr = q}(q - Rr)®.

It the rewards in the original Matkov chain are deteoministic functions ol (e stale
transitions, then there will be a single r; associated with each {s};. I the rewards
in the original problem are stochastic, however, then there 18 a set of possible random
7’s associated with sach {s};. Also note that cven if all the individual rewards in the
original Markov chain are deterministic, Var{r,} and Var(ry) can still be greater than
zero because v, and re will be stochastic because of the many different paths from s 1o
s and from s to 7.

The following fact is used throughout:

ElF({=})] = ) PUa} F({x})

{x}
= Y PRE{F DIk, (A.6)
ke
where & 18 the number of revisits to state s. We also use the facts that, if + < 1. then,
X0 o
- — and Pt = e
; (L -r)? ala (1-7)3

A3, Proof of Theorem 6: First-Visit MC is Unbiased
First we show thai first-visit MC 1s unbiased for one trial. From (A.6)
BV () = B lfUa ] — D P Uk
k

= NPy PHER, 1 By
k
P,
(L-prpy ™ 1-p
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= P‘*R + R
= pofs it
— Vi(s)

Becausc the estimate after n trials, V.¥'(s), is the sample average of n indcpendent
cstimates cach of which is unbiasced, the n-trial cstimate itsclf 1s unbiascd. |

A.4. Proof of Theorem 7: Every-Visit MC is Biased

For a single tnal, the bias of the every-visit MC algorithm 1s
EWVE(s)} = By t({zh] = Y PR)Ep {t({a ]k}
k.
R+ 2R, b+ RE,+ (k-
_ Z%Rf‘( Lo 2R, b+ RR+ +1)R1>
k

P
& k.
- ZPTPS SR 1 Ry
- 2

_ p‘ R.4+ R
— 2PI s+ hr.

Thereloe, Biusl” = V(s) = B{V{"(s)} — 5%;1?3.

Computing the bias after n trials is a bt more complex, because of the combinatorics
of getting & revisits to state s in n trials, denoted B{r; &). Equivalently, one can think
of Bin;k) as the number of different ways of factoring k into n non-negatve incger
additive factors with the order considered important. Therefore, Bin:k) = (577",
Further let B{r; ky ks, .., ks]k) be the number of different ways one can get ky o
k., a8 the tactors with the order ignored. Note that Zfaum of k Bk koo kanlk) =
B(n: k). We use superscripts to distinguish the rewards from different trials, e.g. r?
refers to the random total reward received between the 5% and (j + 1) visits to start
state s in the second trial.

2 brum ({7}) }
Z:’=1(ka + 1)

s
— Z P(kl;k‘L---,krl)ﬂ{',,‘} { n] 3o i k«"nkiz,----kn

RIVF() = F}{

kb ok Pk 1)
- IS ki 1)
— I I s e | e t= — . Lo
: Z;(m_ L Biniky ko .. A,,,_A.)[ T R + Ry
k tactors of k

. - —r ,i\”,-,‘ 2 A
= Ry 4+ R (L Py Pf }_, Bini ki ke, knik) {“’%} )

k factors of k
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This, together with

, "ok k
Z B{n, by by o k| [27-2(‘;3%; }

(i &), (AT

factors ol &

which we show below, and the fact that

oo

kP
E ok P i gy 2 8
kmnp.s- T (n.k)n PT,

leads to the conclusion that

EvEsy =R v Top

X )} = Ry + —R,.

& S| Pr

Therefore Biast(s) = V(s) — E{VF(s}} == -5+ R, This also proves that the
every-visit MC algorithm is unbiased tn the Lt as »n —> oo, ]

Proof of (A.7):

Detine T'(n; k) as the sumn over all factorizations of the squared factors of #:

kgl

Tin k) — Z B(n;klzk:gj...,kﬂk)Z(k’l)g,

factors of k =1

We know the following facts from first principles:

k
Fact 1: Z B{n k —j) = B{n+ 1; k)

J=0
k EB(n +1:k)
F,.-': —“\,' n;k /:.._’._-—.--_....__...":
act 2 LJB(N_:‘{ 7 e ;
F=0
- T(n i1, k)
Fact 3: Y °Blnjk — 3} — ~—mmet
ZJ (nk - ) i
=0
and also that, by definition,
k -
Fact 4: T{n | 1;k) = ZT(»; k— gy — 5°B{n:k - j).
J=0
Facts 3 and 4 imply that
o+ 1 k
Tin - 1:k) — S Tnik - ) (A8

Tl
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Using Facts [-3 we can show by substitution that T(n; k) — %B(n k) is a
solution of the recursion {A.8), hence proving that

Z Bin ki kay o knlk) Li(h){l = Mkal—uB(n;k‘) =

n+1

factors of & i=1

Z Bin ki ks ok k) Z?:l(ki}z] } K Bn; k) = b Bin; k) =

factors of k L Q(k +?’L) 2“9 *"fl) n+1
E (Yo k) +k k
Binky, koo b L e - Bin: k).
(ki ke, |%) Tk —— {n; k) ]

factors of k&

A.5. Proof of Theorem 8: Variance of First-Visit MC

We first compute the variance of first-visit MC after one trial {x}:
Var (s} = E{(F{=)) - VIs)?)
= Z PUSE e} V()7 Ik}

k
N P"' )
_ Z PpP_f'E{ " {((Z Trs, + ’I"T) : (}3‘:1{5 + R’['J) k}
% i=1
i 2

" N N . p( .
NP PEEL, QY (2 e ) H 2y v 4 «j-,?Rﬁ
k

i=1 i

1[7 N k }') [J
2 R Rt RE N or | SR Ry ) =200 | 2P R+ Ry
+ Pt v |y ZTW(PT st 1) ”(P;- s T .1)

i=1
k
— }_1 PrPF By, {Z(ri — B3y~ (% R%) ‘ k} + KPRV 2kR, Ry

i 1

2

)

z }’J P 5
flé ])T - 2 ‘E; .Fl Rj lr]rf- - QATR,,-R';-

- » . I)‘- 27
_ ZPerf kVar(ry) + Var{re) h’f ( : PT) }

P s vt s Leverte

- Ty, ar(r —Variry).

P2 r ’

The first term s the variance due to the variance in the number of revisits to state s, and
the second term is the varnance duc to the random rewards. The first-visit MC estimate
after n trials iy the sample average of the v independent trials; theretore, Vart () =

) P,
+ F+R,M}ER1—2-

R I
Vo (s} 7 -
"
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A.6. Proof of Theorem 9: Variance of Every-Visit MC After 1 Trial

Vary(s) — B {(t({z}) - E{t({zPH?}

+ 25, + . A krg, + (k+ Dy AN ‘
}:) 2 8 . & ] e
{S]L ({zhH { e QJJTR“J“RI

‘2

T‘pkﬂ \C SR S S RPN SR
(k) {‘r{ ((k+ ) rs, + k%—lmer + 3

2 Py, P 2
+>;/m 3‘.7"5_4 4F2R _TII)S.RF+ H’,T.

koo P,
—9 — P Tl
_Slk 7T (ZP R, +RI) Z)P

2k + 1) R2 P
Py ¥ ( o 5 L.
E P { ar( w(thi) Var(rs) + e (k PT)

” R‘E Pﬁ 1)
fI/af(T)-f-_,lszrVar ZT‘F!;+)
Note that % é = Aetg‘\(?.:ll)) - % - 6(& = % Therelore,
L 7y I
I/a?"(r.ff‘) b ZF[{? + Var{rg ) [3}%" _ J < V(?J‘{"(s%
and
Var{ (s) < Var(ry) + LE + Var(r,) T . ]
1 : PZ & HPT

A.7. Proof of Theorem 10: First-Visit MC is Fventually T.ower in Variance and
MSE

The central idea for this proof was provided to us by faakkola (personal communication)
The every-visit MC estimate,
T .
) - >_J,:| fnum({'l'l{t)
S ki 1)
can be rewritien as

1 Z”--l baa 0} ]

ok
VE (s

.

‘/{[‘"(H“} N (F’{{k ll;r"” . ,%2:71 Pl { :)1)
o RS ;tllf’(/\’rl)

n Bk rIT
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because, for all i, E{k; +1} - P . Itis also easy to show that for all i, E{Prtn. ({z})} =
V(s), and E{Pr(k: + 1)} = L

Consider the sequence ol functions
V(s) t 6T,

L+ 8K,
where fn - ﬁ E?:I(PTtnum({I}i) - V(S)), and Rﬂ = % ZTL P’" ki+ l‘) ” l)'
Note that ¥, E{T,} = 0, F{R,} = 0,and f, (Vl_ﬁ) = VE(s). Therefore, Var) (s) —
Ff{(fn(f,ﬁ))z} — (E{V.E{s)})?. Using Taylor’s expansion,

-2 1 _. g2 L.ﬂ. 2 L& |
& (\/_ﬂ) = L0 Vi f)éf”(é) ‘5 o n2! ()62fn( ) o0 ™

Thercfore,

fald) =

1 8% .
f ( ) l anfﬁ(é) ‘,5—-0}

eyt e

VarZ(s) = E{ F2(0) + \f =

108,
bE (s |
{671# (jédfn( ) §=0

We prove below that F {ﬁgg@fz( i) \5 1 } is ()( ) by showing that for all
-0

T2, F{,w F2(8)s .0} 1s O, The O (,T) term in (A.9) can he ignored, because

Var! (s) decreases as 71; and the goal here is to show that for large N, VarZ(s) =
Varl(s) forall n > N.
We use the following facts withont proof {except 12 which 1s proved subscquently):

Fact 5. E{f2(0)} — V*(s),

Fact 6 F {;‘%‘f;f(é) h=n} = because -, f’(o) }H; V()T VIR
A% o e s
Fact 7 PT 28y S 2T - 8V(s)TL K, + 6V} KS:
1A =0

Fact & E{K2} - P.:

- 2+ P2 , )
Fact O B{K,T,} =~ R+ Re(Py 1) - Vs,
T

Py P

Fact 100 B{T2} - = z " Var(r) + (P DVar(rp) - V7is)
i
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. 4P +,2P5 P +4P2+P3 .
s (n+ 1P 2P,
Fact 11: Vi{s) — (B{V.E(s)? = (2t DE po + . __R.Rr.

(nt1)2P;°°  (n+ L)Pp

18

Fact 12: £ — —2(4
A {2% gez/n(®)

Do+ r s I+ 1),
s 0} nlPr V(rr(ra) : n )V(”.(TT)
P,— P2 , 2P,
2 R.Rr.
nlZ % nly d

Therefore, the (2} behavior of the variance of the every-visit MC estimate is

F + PZ (P 4 l) P —n—1 P2
FON E 5 E] 2
) mm ———% ——Var(r h
Var, (s) pyEn Var(re) + - Var(rr) + P2 i ( n T 1)? Pz
Finally, comparing with
Vart'is) - v V P R
Fary (s) nP ar{ry) + —Var{rr) + [’2
proves Theorem 10. [ ]

Ignoring higher order terms:

Vis)+aT,

2
Note that f2{#) is of the form ( o ) . Thercefore, Tor all ¢ > 0, the denominator

of d—é& is of the form (1 + 8K,)7 for some j > 0. On cvaluating at & = 0, the
denominator will always be 1, leaving in the numerator terms of the 1'()rm (:T,"l"K,ﬁ,

where ¢ (8 some constant and m, z > (0. For example, Fact 6 shows that (M J2 'a 0

2V ()T, — V(=)K,). and Fact 7 shows that %gu 2(8) fto o= 272 3V(s }[nh'n
6V2{(s) K2 We show that E{T7KZ} is O(1).

Both I_n and A, arc sums ol 1 independent mean-zero random vatiables. 17 K2
contatns terms that are products of random variables for the n trials. On taking cx-
pectation, any term that contains a random vanable from some trial exactly once drops
out. Therefore all terms that remain should contain variables from no more than | 75 |

trials. Thes implics that the number of terms that survive are O{nl™7 1) (the constant
is a function of 4, but s independent of n}. Therctore,

BT} — e 57 e which is O(1),
[T

where oy 15 some constant.  This mmplies that the expected value of the terms i the

Taylor cxpansion corresponding to ¢ o~ 2 are €) (%) .
ne
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Proof of Fact 12:

pl! A, EL207 - BV (s)T, K, + 6V2{s) K2}
o O | = > :
) & = T

(A 10)

From Fact 10:

P, + P . »
E{2T2} = 2TV(IT‘(TS) + 2P + DWar(re)y — 2V3(s)
»
F2(1 4 P) PERZ 0.1 R, Ry + R
1P [1 [ E—— L bi‘ Rn?
fT Fr
P o+ e
= 2" S Var(r,) + 2(P + UVar(r)
Iy
. AP, 9P, ., 6P .
2PV L =R By =2 R £ R2
+2F, (s)}PT s I*P’% _S-O-P% i
Simalarly, from Fact %
- . })5 . PS
PERVSTLRLY = 8V (52 R (F PRt Ra) = Vi)
1
. ®ie RP,
= wVRA(5) P, — = R?
(5) P, 7 o —R, Ry,

and from Fact 8:
E{6V ()R = 67,V

Therefore, from (A1), we see that
. EAEITS roi? Fel Ly N PP o 0 g
B2 17(8) 5ot T n“:, Var(re) + == Var(rr) + TP{LB@ #h Ry

Appendix B
Details of the Mountain-Car Task

The mountain-car task {(Figure 8) has two continuous state variables, the position of the
car, 1, and the velocity of the car, w, At the start of each trial, the mitial stale 15 chosen
randomly, uniformly from the allowed ranges: —1.2 < p < 0.5, —0.07 <0 ¢ <2 0.07. The
mountain geography is described by altitude — sin{3p). The action. 4,. takes on values
i {+1,0. L} corresponding to forward thrust. no thrust, and reverse thrust, The state
evolution was according o the following simplified physics:

vy o bowrd Tuy - 0001, g cos{ 31!
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and
Por1 — bound |p + vy,

where ¢ = —-0.0020 15 the force of gravity and the bound operation clips cach variable
within its allowed range. I p,y | 15 clipped in this way, then w4 15 also reset  zero.
Reward 15 1 on all tnme sieps. The trial terminates with the first position value that
exceeds ¢y > 0.5,

Notes

. Arguably, yet a third mechanism for managing delayed reward is 1o change representations or world models
(e.g., Dayan, 1993 Sutton, 1995}

2. In some previous work {e.g. Sutton & Baro, 1987, 1920) the traces were normalized by a factor of 1 —-~ X,
which 15 equivaleni 1o replacing the “1'" i these equations by 1 — A, In this paper, as in most previous
work, we absorl this Linear normalization into the step-size pararcier, «, in cquation (1),

3. The time index here is assumed w continue increasing across trials, For example, if one inal reaches a
termunal state ar twne v, then the next teial beging at time 7 + 1

4. For this reason, this esomate 1§ sometimes also referred 10 as the ceriainty eguivalenr estimate (c.g, Kumar
and Varaiya, [986).

5. Intheery it is possible o get this down o G(n?378) operanoos (Raase, [988), bui, even o practical, inis
15 still far (oo complex for many applications.

6. Although this algorithm 5 indeed identical o TIHA), the theorencal results for TD(A) on stationary pre-
diction problems (e.g., Sutton, 1988; Davan, 1992) do not apply here because the policy s conttnually
changing, creating u nansiariviary predicton problem.

7. This is a very simple way of assuring mitial exploration of the staic space. Because most values are beiter
than they should be, the learning systern is mitially disappointed no matter what it does. which causes
it to try a variety ot things even though sis policy at any one nune is deterministic. Thaz approach was
sufficient for this wsk, bue of course wo do not advocae it in generdl as g solultion o the problem of
assuring exploravion
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