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Abstract. Learning from reinforcements is a promising approach for creating intelligent agents Howaver,
reinforcement leaming usually requires a lurge number of training episodes. We present and evaluate a design
that addresses this shortcoming by allowing a connectionist Q-leamer to accept advice given, at any time
and in a natural manner, by an external observer. In our approach. the advice-giver watches the learner and
occastonally makes sugpestions, expreesed as instructions in a simple imperalive programming language. Basoed
on techniques frem knowledge-based neural networks. we insert these programs directly into the agent’s atility
function. Subsequent reinforcement leaming further integrates and refines the advice. We present empirical
evidence that investigates several aspects of our approach and shows that, given good advice, a leamer can
achicve statistically siguificant gainy in expected weward. A secownd experiiaent shows thal advice improves the
expected reward regacdless of the stage of training at which it is given, while ancther study demonstrates that
subsequent advice can resull in further gains in reward. Finally, we present experimental results that indicate
our method is more powerful than a naive iechnique for making use of advice.

Keywords: Reinforcement learmng, advice-giving, neuvral networks, Q-learning, learning frors instruction,
theory refinement, knowledge-based neural networks, adaptive azents

1. Imtroduction

A successful and increasingly popular method for creating intelligent agents is to have
them learn from reinforcements (Barto, Sutton, & Watkins, 1990; Lin, 1992; Mahadevan
& Connell, 1992; Tesauro, 1992; Watkins, 1989). However, these approaches suffer
from their nced for large numbers of training cpisodes. Several methods for speeding
up reinforcement learning have been proposed; one promising approach is to design a
learner that can also accept advice tfrom an external observer (Clouse & Ulgoff, 1992;
Gordon & Subramanian, 1994; Lin, 1992; Mactin & Shavlik, 1994). Figure | shows the
general struclure of a reinforcement leamer, augmented (in bold) with an observer that
provides advice. We present and evaluate a connectionist approach in which agents leamn
from both expenience and instruction. Our approach produces agents that significantly
outperform agents that only learn Irom reinforcements.

To illustrate the gencral idea of advice-taking, imagine that you are watching an agent
leaming to play some video game. Assume you notice that frequently the agent loses
because 1t gnes into a “hox canyon” in search of food and then gets trapped by its
opponents. One would like to give the learner broad advice such as “do not go into box
canyons when opponents are tn sight.” This approach 1s more appealing than the current
alternative: repeatedly place the learner in similar circumstances and expect it to learn
this advice from direet cxpenience, while not forgetting what it previousty learned.
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Figure . In basic reinforcement learning the learner receives a description of ¢he curreni environimeni (the
stale), selects an action o choOse, and receIves a ramnforcereni as a consequence ol selecting that action. We
augment this with a process that atiows an observer o waich the learner and sugpest advice based on the
learper’s behavior.

Recognition of the value of advice-taking has a long history in Al The general idea of
a program accepting advice was first proposced nearly 40 years ago by McCarthy (1958).
Over a decade ago, Mostow (1982) developed a program that accepted and “operational-
1zed” high-level advice about how to better play the card game Hearts. Recently, after a
decade-long lull, there has been a growing amount of research on advice-taking (Gordon
& Subramanian, 1994; Huffman & Laird, 1993; Maclin & Shavlik, 1994; Noelle &
Cottrell, 1994). For exampie, Gordon and Subramanian (1994) crealed a systern that de-
ductively compiles high-level advice Into concrete actions, which are then refined using
gencetic algorithms.

Scveral characteristics of our approach to providing advice are particularly interesting.
One, we allow the advisor to provide instruction i a quasi-natural language using terms
about the specific task domain; the advisor docs not have 1o be aware of the nlemal
representations and algorithms used by the learner in order to provide useful adwvice.
Two, the advice need not be precisely specificd; vague tlerms such as “big,” “near,” and
“old” are acceptable. Three, the learner docs not follow the advice blindly; rather, the
lcarner judges the usefulness of the advice and 15 capable of altering the advice based
on subsequent expercnce.

In Section 2 we present a framework for using advice with reinforecement learners, and
In Section 3 we outline an implemented system that instantiates this framework. The
fourth scction describes experiments that invesugate the value of our approach. Finally,
we discuss possible extensions to our rescarch, relate our work to other rescarch, and
present sore conclusions.

2. A General Framework for Advice-Taking

In this section we present our design for a reinforcement learning (RL) advice-taker,
following the five-step framework for advice-taking developed by Hayes-Roth, Klahr
and Mostow (1981). In Section 3 we present specific details of our implemented system,
named RATLE, which concretizes the design deseribed below.

Step 1. Request/receive the advice. To hegin the process ol advice-taking, a docision
must be made that advice 15 needed. Often, approaches to advice-taking focus on having
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the learner ask for advice when it needs help (Clouse & Utgofl, 1992; Whitehead, 1991).
Rather than having the learner request advice, we allow the external obscrver w provide
advice whenever the observer feols it 1s appropriate.  There arc two reasons to allow
the obscrver to determine when advice 1s needed: (1) it places less of a burden on the
observer; and (11) 1L 15 an open question how to create the besl mechanism for having an
agent recognize (and capress) its need for general advice. Othier RL inctheds (Clouse
& Utgoffl, 1992; Whitehead, 1991) focus on having the observer provide information
about the action to lake n a specific state, However, this can require a lot of interaction
between the human adviser and compuect carner, and alse means thal the learner must
induce the gencrality of the advice.

Step 2. Convert the advice into an internal representation. Once the observer
has created a picce of advice, the agent must ry 1o understand the advice. Due to
the complexities of natural language processing, we require that the external observer
express its advice using a simple programming language and a hst of task-specific terms.
We then parse the advice, using iraditional methods from the programming-langnages
literature (Levine, Mason, & Brown, 1992).

Table 1 shows some sample advice that the observer could provide to an agent learning
to play a video game. The left column contains the advice as expressed in our program-
ming language, the center column shows the advice in English, and the right coturmn
Hustrates the advice. (In Section 3 we use these samples o dlostvate our algerithm For
integraling advice.)

Step 3. Convert the advice into a usable form. Aficr the advice has been parsed, the
system transforms the general advice into terms that it can ditectly understand. Using
techniques from knowledge compdation (Dietterich. 1991), a learner can convert (“op-
crationalize™) high-level advice into a (usually larger) collection of directly inierpretable
statements (Gordon & Subramanian, 1994, Kaclbling & Roscnsclicin, 1990, Nilsson,
1994y We only address a lunited form of operationalization, namely the concretization
of imprecise terms such as “near” and “many.” Terms such as these allow the advice-
gver to provide natural, yet partally vague, instrucuons, and elimmnate the need Ton the
advisor to fully understand the learner’s sensors.

Step 4. Integrate the reformmlated advice into the agent’s knowledge base. In
this work we employ a conneciionist approach to RL {Anderson, 1987; Barto, Suiton,
& Anderson, 1983 Lin, 1992). Hence, to incorporate the observer’s advice, the agenl’s
neural network must be updated. We use 1deas Irom knowledge-based newral nerwaorks
{Fu, 1989, Ombhin & Giles, 1992 Shavlik & Towel, 1959 o directly mstall ihe advice
into the agent. In one approach w knowledge-based nearal networks, KBarn {Towell,
Shavlik, & Noordewier, 1990; Towell & Shavlik, 1994), a set of propositional rules s
re-represented as a neural network, K1saNy converts a ruleset into a network by mapping
the “target conceps™ of the ruleser 1o cutput units and creating hidden units that represent
the mtermuediaic conclusions (for detlails, see Seciion 33, We extend the KBa~~ meihod
to accommodate our advice-giving language.

Figure 2 Wllustrales our basic approach [or adding advice mto the reinforcement learner ‘s

action-choosing aetvwork. This network computes a lunction from sensations io the utility
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Table !. Samples of advice m our advice language (left column).

Advice English Version

- MACLIN AND J. W, SHAVLIK

Pictorial Version

IF An Enemy 15 (Near A West) A [T an enemy is near and
An Obstacle 18 (Near A North)  west and an obstacle is
THEN near and north, hide be-
MULTIACTION hind the obstacle.
MoveEast
MoveNorth
END
END;

WHEN Surrounded A
OKtoPushEast A
An FEnemy 18 Near

When the agent is sur-
rounded, pushing east is
possible, and an enemy ic

REPEAT near, then keep pushing

MULTIACTION (moving the obstacle out

PushEast of the way) and moving
MoveEast

east until there 18 nothing
END more to push or the agent

UNTIL = OKtoPushEast v is no longer surrounded.
— Surrounded

END,
1F An Enemy 15 (Near A East) Do not move toward a
TIHEN ncarby cnemy.

OO MoveEast
ENTY,

ACtions

Sensor Inputs

Hidden Units
for Advice

Figure 2. Adding advice 0 (he KL agent’s nedral network by creating new hidden gnits thao represenr the

advi

~ The ihick links on the dght caplure the semaniics ol the advice. The added thin links initiatly have

near-zere weight; during subsequent backpropagation mraining the magrutude of their weights can change,
thereby refining the original advice. Detalls and an example appear in Section 3
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of actions. Incorporating advice involves adding to the existing neural nctwork new
hidden units that represent the advice.

Step 5. Judge the value of the advice. 'Lhe final step of the advice-taking process
is to evaluate the advice. We vicw this process from two perspectives: (i) the learner’s,
who must decide 1f the advice is useful; and (ii) the advisor’s, who must decide if the
advice had the desired etfect on the behavior of the learner. Our learner evaluates advice
by continued operation in its eavironment; the feedback provided by the environment
offers a crude measure of the advice’s quality. (One can also envision thal in some
circumstances - such as a game-learner that can play against usell (Tesauro, 1992) or
when an agent builds an internal world model (Sutton, 1991} — it would be possible
to quickly estimate whether the advice improves performance.) The advisor judges the
value of his or her advice similarly (1.e., by watching the learner’s post-advice behavior).
This may lcad to the advisor giving further advice — therehy restarting the advice-taking
process.

3. The RATLE System

Figure 3 summanzes the approach we discussed in the previous section. We imple-
mented the RATLE (Reinforcement and Advice-Taking Learning Environment) system
as a mechanism for evaluating this framewerk. In order to explain RATLE, we first re-
view connectionist Q-learning (Sutton, 1988; Watkins, 1989), the form of reinforcement
learning that we use in our implementation, and then KRaNN {Towell & Shavlik, 1994),
a technique for incorporating knowledge in the form of rules into a neural network. We
then discuss our cxtensions to these techniques by showing how we implement each of
the five steps described in the previous sectton.

; Environmeni
Observer Agent

{Actinn

Rehavier |

Advice . Reformulated
Advice
Advice womge. Language o Operationalizer o Rule—to-Nertwork
Imertace Parser Mapper

Figure 3. Interacnon of the observer, agent. and our advice taking sysiem. The process is a cyele: the observer
watches the agenr’s hehavior to deerimuoe whal advice o give, the advice-taking system processes the advice
and inserts it into the ageni, which changes ihe agent's behavior thus possibly causing the observer o provide
more advice. The ageot operates as a normal Q-learming agent when oo presented with advice.
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Background — Connectionist O-Learning

In standard KL, the learner senses the current world state, chooses an action (o execute,
and occastonally receives rewards and punishments. Based on these reinforcements from
the environment, the task of the learner s to improve its action-choosing module such
that 1t mcrsases the total amount of remnforcement it recerves. In our augmentation, an
observer watches the learner and periodically provides advice, which RATLE incorporates
mto the action-choosing module of the RL agent.

In Q-learning (Watkins, 1989) the action-choosing module uses & urility funcrion that
maps stales and actions to a numeric value (the utdity). The wtility value of a particular
statc and action is the predicted {uture (discounted) reward that will be achieved if thar
action 14 taken by the agent in that state and the agent acts optimally afterwards. 1t 1s
easy 1o sce that given a perfect version of this function, the optimai plan 1s to simply
choose, in cach state that s reached, the action with the largest utility.

To learn a utility function, a Q-learner wpically starts out with a randomly chosen
utility function and stochasucally explores its environment. As the agent explores, o
continually makes prediciwons about the reward it expects and then updates its uatility
function by comparig the reward it actually recerves to s predicuon, In connectionist
(J-learning, the unlity function 1s implemented as a neural network, whose mputs describe
the current state and whose outputs are the uiihiy of each action

The mam difterence between our approach and standard connectionist Q-learning 1s that
our agent continually checks for pending advice, and if so. incorporates that advice to
its utility function, Table 2 shows the main loop of an agent employving connectionist (-
learning. augmented (in italics) by our process lor using advice.  The resulling composite
system we refer to as RATLR.

Background — Knowledge-Based Newral Networks

[ order {or us 1o make use of the advice provided by the ebserver, we must incorporate
this advice nto the agent’s neural-network utility tunction. To do so, we extend the
KBANN afgonithm (Towell & Shaviik, 1994) KRaxN 18 a method for meomporating
knowledge, m the form of simple proposttional rules, i6lo a neural network. In a KBANN
nctwork, the units of the neiwork represent Boolean concepts. A concept is assumerd to
be trae if the unit representing the concept s hghly achve (near 1) and talse f the i
15 tactve (near 0). Te represent the meaniag of o set of rules, KREANN connecls unis
with highly weighted links and sets unit bhases hresholds) m such a manner that the
fnon-impind nnits emnkate AN D or O gates, os appropriale. Freure 4 <hows an example
of this process for a set of simple proposttionat rules.

I KATLE. we use an imperaiive programining language, mstead of propositional rules,
to specity advice. Tn order v map this more complex lanpguage, we make use ol hidden
units that record state nformation. These wruls are recurrent and record the acuvation
of a hidden unit from the previous activation of ihe network (Le., they “remember” the
previous aclivation value). Woe discuss how these units are used bolow,
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Table 2. Steps of the RATLE algorithms. Our additions Lo the standard connectionist Q-learning loop arc Step 6
and the subrouting IncorporateAdvice (all shown in iralics). We follow Lin’s (1992) method exaclly for action
selection and Q-function updating (Steps 2 and 5). When estimating the performance of a network (“testing”),
the action with the highest atility is chosen in Step 2 and no updating 15 done in Step 5.

Agent’s Main Loop Incorporate Advice
1. Read scnsors, Gi. Parse advice.
2. Stochastically choose an action, where the probability of  6b. Operationalize  any Juzzy
selecting an action is proportional 1© the log of its pre- ferms.
dicted utility (i e i< current Q value). Relain the pre-  6¢. Translate advice into nerwork
dicted utility of the action selected. components.
3. Perform selected action. 6d. Insert translated advice
4. Measure reinforcement, if any. direcily into RL agent’s
5. Update utility function — use the current state, the cur- neural-network based wiility
rent Q-funciion, and the actual reinforcement to obtain a Junction.
new estimate of the expected utility; use the difference  6e. Retwrn.
between the new estimate of utility and the previous es-
timate as the error signal to propagate through the neural
network.
6. Advice pending? If so, call corporateAdvice.
7. Goto L.

(i}

a :—b,c.

b —d, c.

b :—¢ notf.

¢ —fg h

Figure 4. Sample of the KBANN algornthm: (i) a propositional ruie set in Prolog notation; (i) the rules viewed
as an AND-OR dependency graph: (iil) each proposition is represented as a unit {extra uniis are also added w
represent disjunctive definitions, e.g., &), and their weights and biasces are set so lhat they implemient AND or
OR gates, &g, the welghts 6 — @ and ¢ — o are set to 4 and a’s bias (thresheld) o 6 (the bias of an OR node
is 2% (iv) low-weighted tinks are added between layers as a basis for future learning (e.g. an antccedent can
be added to a rule by inercasing one of these weights).

Implementing the Five-Step Framework

In the remainder of this section we describe how we implemented the advice-taking
strategy presented i the last section. Several worked cxamples are included.
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Step 1. Request/receive the advice. To give advice, the observer simply interrupts the
agent’s execution and types his or her advice. Advice must be expressed in the language
defined by the grammar in Appendix B.

Step 2. Convert the advice into an internal representation. We built RATLES
advice parser using the standard Unix compiler tools Jex and yace (Levine ct al., 1992).

Our advice-taking language has two main programming constructs: IFP-THEN rules
and toops (both WHILE and REPEAT). The loop constructs also have optional forms
that allow the teacher to specify more complex loops (e.g.. the REPEAT may have an
entry condition).  Each ol these constructs may specify cither a single action or, via
the MULTIACTION construct, a “plan” containing a sequence of acticns. The observer
may also specify that an action should rot be taken as a consequent (as opposed Lo
speciiying an action w take). Examples of advice in vur language appear in Table | and
in Appendix A.

The 1#-17MEN constructs actually serve two purposes. An IF-THEN can be used [o
spuecily that a particular action should be taken in a particular situation. It can also be
used to creale a new intermediate term; in this case, the conclusion of the 1F-THEN
rule is nol an action, but instead is the keyword INFER followed by the name of the
new intormediate term. This allows the observer te create descriptive terms based on
the sensed features. For example, the advisor may want 1o define an intermediate term
Notlarge that 1s true if an object is Small or Medium, and then use the derived term
NotLarge 1n subsequent advice.

In order 1o spectfy the preconditions of the I'-TAEN and looping constructs, the advisor
lists logical combinations of conditions (basic “sensors” and any derived teatures). To
make e language casier o use, we also allow the observer to stale “fuzey” conditions
{Zadeh, 1963), which wc believe provide a natural way to articulate wmnprecise advice.

Step 3. Convert the advice into a usable form. As will be seen in Step 4, most ¢f the
concepts expressible in our grammar can be directly translated into a ncural notwork. The
fuzzy condimions, however, require some pre-processing. We must first “operationalize”
them by using the traditional methods of luzzy logic to create an explicit mathematical
cxprossion that determines the fuzzy “rruth value™ of the condition as a {unction of the
sensor values. We accomplish this re-representation by applying the methed of Berenji
and Khedkhar (1992), adapted shghtly (Maclin, [995) to be consistent with KBANN'S
wapping algoithm.

Though fuzzy logic is a powerful method that atiows humans to express advice using
intuitive terms, 1t has the disadvantage that someone must explicitly define the fuzzy
terms tn advance. However, the definitions need not be perfectly correct, since we mscrt
our fuzzy conditions into the agent’s neural network and, thus, allow their definifions to
be adjusted during subsequent training.

Al present, Ra1ir onby accepts fuzzy terms of the fornx

quantifier object 15/ ARE descriptor
where the gquantifier is a furry term specifying numbar (e g A, No, Few, Many), the
object is the type of object being sensed (e.g., Blocks, Trees. Enemies) and the descriptor
is a property of the roferenced objects (e.g., Near. Big). For example, a fuzzy condition
could be “Many Trees ARL Near.”
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Currently we use only sigmoidal membership functions. To operationalize a fuzzy
condition, RATLF. determines a set of weights and a threshold that implement the given
sigmaidal membership funetion, as a function of the current sensor readings. The exact
details depend on the structure of a given domain’s sensors (sec Maclin, 1995, for
additional details) and have not been a major focus of this rescarch. The result of this
process essentially defines a perceptron; hence, operationalized fuzzy conditions can be
dircctly inserted inw the agent’s neural network during Step 4.

Step 4. Integrate the reformulated advice into the agent’s knowledge base., After
RATLE operahicnahizes any fuzzy conditions, it proceeds to insert all of the advice into
the agent’s current neural-network utility function. To do this, we made five extensions
to the standard KizANN algorithm: (i) advice can contain mult-step plans, (i) it can
contain loops, (11) 1t can reter to previously defined terms, (iv) it may suggest actions 1o
not take, and {v) it can involve fuzzy conditions (discussed above). We achieve each of
these extensions by following the general approach illustrated earlier in Figure 2.

Consider, as an cxample of a multi-step plan, the first entry in Table 1. Figure §
shows the network additions that represent this advice. RATLE first creates a hidden unit
{lahecled A) that represents the comjunction of (1) an enemy being near and wecet and (ii) an
obstacle being near and north. It then connects this unit to the action A ove Fast, which
is an existing cutput unit (recall that the agent’s utility function maps states to values
of actions); this constitutes the first step of the two-step plan. Barie alsa connccts
unit A to a newly added hidden unit called Statel that records when unit A was aclive
tn the previous state. [t next connccts S#atel to a new input unit called Statel.. .
This recurrenr unit becomes active (“trne’™) when Statet was active for the previous
input {we need recurrent units to implement multi-step plans). Finally, it constructs a
unit (labeled B} that is active when Stafel_q is true and the previous action was an
castward move {the network’s inpit vector records the previous action taken in addition
to the current sensor vatues). When active, unit B suggests moving north - the second

Other Ontpots MoveRast MoveNorth

iF An Enemy 15 (Near & West) A Starc}
An Obstacle 15 {Near ~ North)
THEN
MULTIACTION
MovekEast
MoveNorth
ENT

END,

Enemy Obstacte
Near, West MNear NMorcth

————

Other Inpuis Movebast MuoveNorth - Suatel i

Figure 5. On ne ICIt is the Tirst plece of advice from Table 1. On the nght 18 RATLES anslation ot thus pece
of advice. The shaded cllipse represents the original hidder units. Arcs show units and weights that are ser
o implement a conjuncuon. RATLR also adds zero-weighted links (not shown here - see Figure 4d) between
the new units and other parts of the current notwork: these links support subsequent refinement.
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PushEast MoveEbasi

WHEN Surrounaed A
OKioPushEast A

An Fnemy 18 Near
REFEATL
MULTIACTION
PushEast
MoveEast
FNT o _
unrn. — OKtoPushEast v Surropnded OKioPyshEast Enemy
+ Surrounded
LEXND;

Other [nputs

Pushliast | MoveRast | SL

1
i

Figure 6. On the left is the second picce of advice from Table 1. OUn the right is IRATLE's wanslation of 10
botted lincs indicaie negative weights, These new units are added to the existing network (not shown}.

step of the plan. {In general, RATLE represents plans of length N using &V — 1 state
units.)

RATLE assigns a high weight! to the arcs coming out of units 4 and 2 This means
that when either unit 1s active, the total weighted input to the corresponding output unit
will be increased, thereby increasing the utility value for that action. Note, however, that
this does not guarantee that the suggested action will be chosen when units 4 or £ are
active. Also, notice that during subsequent training the weight {and thus the definitiorn)
of a prece of advice may be substantially altered.

The second piece of advice in Table 1 also contains a multi-step plan, but this time it
is cmbedded in a REPEAT. Figure 6 shows RATLE's additions to the network for this
advice. The key to translating this construct is that there are two ways 10 nvoke the
two-step plan. The plan executes if the WHEN condition is true (unit € and also it the
plan was just run and the UNTIL condition 1s false. Umit D 15 acltive when the uNTIL
condition 15 met, while unit £ is active if the Un1In is unsatistied and the agent’s two
previous actions were pushing and then moving east.

A third issue for RATLE is dealing with advice that involves previously defined terms.
This frequently oceurs, since advice generally indicates new siteations 1n which o per-
form existing actions. There are two types of new detinttions: (1} new preconditions
of actions, and (i1) new definitions for derived featurcs. We process the two types
differently, simce the former involve real-valued outputs while the latter are essentally
Boolean valued.

For new preconditions ol actions, RATLE adds a highly weighted link from the unit
representing the definition to the oufput unit representing the acuon. This s done so
that in the sttuations where the advice is applicable, the utility of the action will then
be higher that it would otherwise be. When the advisor provides a new definition of a
derived feature, RATLE operates as shown in Figure 7. [t first creates a new hidden unit
that teprescuats the new delinition, then wakes an R node that combioes the old and
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Ol Definition Surmundcd
Surrounc
\ / \\e w Lefinirion

Figure 7. Incorperating the definition ol a texm that already exisis.

new definitions. This process is analogous to how KITANK processes multiple rules with
the same consequent.

A fourth issue is how to deal with advice that suggests aor doing an action. This is
straightforward i our approach, since we connect hidden units fo “action™ units with a
highty weighted ink. For example, for the third piece of advice shown m Table 1, RATLR
would create a unit representing the fuzzy condition “An Faemy 18 (Near and East)” and
then connect the resulting unit to the action MoveEast with a negatively weighted link.
This would have the effect of lowering MoveEast’s utility when the condition is savisfied
{which is the effect we desire), This technique avoids the question of what to do when
one piece of advice suggests an action and another prohibits that action. Currently the
conflicting pieces of advice (unless refined) cancel each other, but this simple approach
may not always be satisfactory.

Maclin (1995) fully describes how each of the constructs in RATLE'S advice language
is mapped into a ncural-network fragment.

4. Experimental Study

We next empirically judge the value of using RATLE 10 provide advice to an R agent.

4.1, Testbed

Figure 8a illustrates the Pengo task. We chose Pengo because it has been previously
explored in the Al Interature (Agre & Chapman, 1987; Tin, 1992) The agent in Penpo
can perform ninc actions: moving and pushing i cach of the directions East, North,
West and South; and doing nothing. Pushing moves the obstacles in the environment. A
moving obstacle will destroy the food and enermies it huts, and will continue 1o slide until
it encounters another ohstacle or the edge of the board. When the obstacle 15 unable o
move (because there s an obstacle or wall behind 1), the obstacle disintegrates. Food s
collected when 1ouched by the agent or an enemny.

Each cnemy follows a fixed policy. It moves randomly unless the agent Is in sight.
which casc it moves toward the agent. Encmics may move oft the board (they appear
again after a random interval), but the agent 15 constrained 1o remain on the board.
Foenmues do not push obstacles.
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8) s — o b,
S . Key i ®
. |
S A e
S ' —] |
E L o ®  Food
P @ Fremy
N
—__t i()hﬂllcln
P Empty
; (©) i) ACTIONS
No Action MoveEast PushEast MoveNorth

Hiddon
" Units
X X0
i
tmen 0 smset
i igz ¢ :
H iZxzd H
E RCITTTFTTTTILT T IS PP 4
Previous Action
SENSOR INPUTS

Figure 8 Our sample test environment: {a) sample configuration; (b) sample division of the environmeat nto
sectors; (¢) distunces to the nearest occluding object along a fixed set of arcs (measured trom the agent}; (d) a
neural network that computes the utifity of actions.

The initial mazes are generated randomly using a marze-creation program (Maclin,
1995} that randomly lays out fines of obstacles and then creates connections between
“rooms.”  The percentage of the total board covered by obstacles 1s controtled by a
parameter, as are the number of cnemies and food items. The agent, cncmies, and food
are randomly deposited on the board, with the caveat that the enemes are required to be
mitiadly at least a fixed distance away from the agent at the start.

The agent recetves reinforcement signals when: (i) an enemy eliminates the agent by
touching the agent (—1.0, (ii) the agent collects onc of the food objects (+0.7), or (in} the
agent destrovs an enemy by pushing an obstacle into 1t (+(1.9).

We da not assume a global view of the enviranment, but instead nse an agent-centered
sensor model 1t is based on partitioning the world into a set of sectors around the agent
{see Figure 8b). Each scctor i defined by a minimum and maximuom distance from the
agent and a minimum and maximum angle with respect ta the directinn the agent i
facing. The agent calculates the percentage of each sector that is occupied by cach type
of object — food, enemy, obstacle, or wall. To calculate the sector occupancy, we assume
the agent is able to measure the distance to the nearcst occluding object along a fixed
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set of angles around the agent (sce Figure 8c¢). This means that the agent is only able to
represent the objects 1n direct line-of-sight from the agent ({for example, the enemy to the
south of the agent is out of sight). The percentage of cach object type in a scctor is just
the number of sensing arcs that end in that sector by hitting an object of the given type,
divided by the maximum number of arcs that could end in the sector. So for example,
given Figure 8b, the agent’s percentage for “obstacle” would be high for the sector to
the east. The agent also calculates how much of cach sector is empty and how much is
occluded. These percentages constitute the input to the neural network (sec Figure 8d).
Note that the agent also reccives as input, using a 1-of-NV cncoding, the action the agent
took in the previous state.”

4.2.  Methodology

We train the agents for a fixed number of episodes for cach experiment. An cpisode
consists of placing the agent into a randomly generated, nitial cnvironment, and then
allowing 1t to explore until it is capturcd or a threshold of 500 steps is rcached. We
report our results by training episodes rather than number of training actions because we
believe episodes are a more uscful measure of “meaningful” training done — an agent
having collected all of the food and eliminated all of the enemies could spend a large
amount of tme in useless wandering (while receiving no reinforcements), thus counting
actions might penalize such an agent since it gets o experience fewer remnfercement
sitations. n any case, lor all of our results the results appear gualitatively similar when
graphed by the number of traimng actions (1.c., the agents all take a similar number of
actions per episode during training).

Each of our environments contains a 757 grid with approximately 15 obstacles, 3 ene-
mies, and 10 {ood items, We use three randomly generated sequences of nitial environ-
ments as a basts for the training episodes. We train 10 randomly initiatized networks on
cach of the three ssquences of cnvironments; hence, we report the averaged results of
30 neural networks. We estimate the future average total reinforcement (the average sum
of the reinforcements received by the agent)® by “freezing” the network and measuring
the average remforcement on a testset of 100 randomly generated environments; the same
testset 1s used for all our experiments.

We chose parameters for our Q-learning algorithm that are similar to those investigated
by Lin {1992). The lecarning rate for the network is 0,15, with a discount factor of 0.9.
To establish a baseline system, we experimented with various numbers of hidden units,
settling on 15 since that number resulted in the best average reinforcement for the baseline
systern. We also cxperimented with giving this systemn recurrent units (as in the units
RATLE added for multi-step and loop plans), bat these units did not lead ro improved
performance for the bascline system, and, hence, the bascline results are for a system
witheut recurrent inks. However, recall that the input vector records the last action
taken

After choosing an initial network topology, we then spent time acting as a user of
RATLI. observing the behavior of the agent at various nimes. Based on these observations,
we wrote several collections of advice. For use 1n our experirnents, we chose four sets
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of advice (sce Appendix A), two that use mulu-siep plans (referred to as ElimEnemies
and Surrounded), and two that do not (SimpleMoves and NonLocalMoves).

4.3. Results

In our first experiment, we cvaluate the hypothesis that our approach can in fact take
advantage of advice. After 1000 episodes of initial learning, we judge the value of
{independently) providing each of the four sets of advice to our agent using RATLE. We
train the agent for 2000 more cpisodes after giving the advice, then measure its average
cumulative retnforcement on the testset. (The baseline is also trained for 3000 episodes).
Table 3 reports the averaged testset remnforcement; all gains over the baseline system arc
statisticalty significant®.  Note that the gain is higher for the simpler pieces of advice
SimpleMoves and NonLocalMoves, which do not incorporate multi-step plans.  This
suggests the need for further work on taking complex advice; however, the multi-step
advice may simply be less uscful.

Each of our pieces of advice to the agent addresses specific subtasks: collecting lood
(SimpleMover and NonLocalMoves); elimmating enemies (ElimEnemiesy, and avoiding
enemics. thus surviving longer (SimpleMoves, NonbocalMoves, and Surrounded). Hence,
1t 1s naturai to ask how well cach piece of advice meets its intent. Table 4 reports statistics
on the components of the reward. These statistics show that the picces of advice do
indeed lcad io the expected improvements. For example, our advice EfimEnenues leads
to a muach larger number of enemics climinated than the baseline or any of the other
picces of advice.

Suble 30 Tostsel wsules Gor the baseline and e feun different types ol advice. Each of dwe four gains over the
baseline 15 stanstically significant.

Advice Added Average Total Remforcement on the Testse
None (baseline) 1.32
SimpleMoves 191
NonlecalMoves 2.1
FlimEnemies 1.87

Surrounded 172

Tuble 4. Mean number of enemics caprured, tood coliccied, and number of actions taken (Survival dme) for
the expertments summarized in Table 3

Advice Added Femies Caplured Fuod Collected Survival Time

None (haseling) 015 3.09 27
SimpleMiove .31 174 EI RS
NonLoecalMovey (.26 395 351
ElimEnemies 044 350 EL %)

Surrounded 0.30 348 46.2
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Figure 9. Average ioial reinforcement for oar four sample pieces of advice as a function of amouni of iraining
and point of insertion ot the advice.

In our second experiment we investigate the hypothesis that the observer can benefi-
cially provide advice at any time during training. To test this, we insert the four sets of
advice at different points in training (after 0, 1000, and 2000 episodes). Figure 9 contains
the results for the four pieces of advice. They indicate the learner does indeed converge
to approximately the same expected reward no matter when the advice is presented.

Qur third experiment investigates the hypothesis that subsequent advice will lead to
further gamns in performance.  To test this hypothesis, we supplied each of our four
pieces of advice 1o an agent afier 1000 episodes (as in our first experiment), supplied
onec of the remaining three preces ol advice after another 1000 episodes, and then tramned
the resulting ageni for 2000 more cpisodes. These results are averaged over 60 neural
networks instcad of ithe 30 networks used in the other cxperiments in crder to obtain
statistically signilicant results. Table 5 shows the results for thes test.

In all cases. adding a second picee of advice leads to improved performance. However,
the resulting pains when adding the second piece of advice are not as large as the original
gains over the bascline system. We suspect this occurs due to a combination of factors:
(1) there s an upper Himnit to how well the agents can do — though it s difficall 1o quantily;
(i1) the preces of advice interact - they may suggest different actions in different situations,
and in the process of resolving these conflicts, the agent may use one picce of advice
less alten: and (i) the advice peces are related, so that one piece may cover situallons
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Table 5. Average testset reinforcement for cach of the possible pairs of our four sets of advice. The first piece
of advice is added after 1000 episndes. the second plece of advice after an additional 1000 episedes, and then
traincd for 2000 more episodes (total of 4000 training episodes)  Shown in parentheses nexi to the first picces
of advice arc the performance results from our first experiment where only a single picce of advice was added.
All of 1he resuliing agents show statistically significant gains in performance over the agent with jost the first
piece of advice.

Second Piece of Advice

First Piece of Advice SimpleMoves NonLocalMoves ElimEnemies Surrounded
SimpleMoves (91 - 217 210 205
MNonlLocalMoves {2.01) 227 - 218 213
FlimEnemies {1.87) 2.0 2.26 - 2.06
Surrounded {1.72) 2.04 2.11 1.95 -

that the other alrcady covers. Also interesting to note is that the order of presentation
affects the level of performance achicved in some cases {(e.g., presenting NonLocalMoves
followed by SimpleMoves achicves higher performance than SimpleMoves followed by
NonLocalMoves).

In our fourth experiment we evaluate the usefulness of combimng our advice-giving
approach with Lin’s “replay” techmque (1992). Lin introduced the replay method to make
usc of “good” sequences of actions provided by a teachet. In replay, the agent trains on
the teacher-provided sequences frequently to hias its utility function towards these good
actions Thrun {1494, personal communication) reports that replay can in [act be useful
even when the remembered sequences are not teacher-provided sequences — in cffect, by
training multiple times on cach state-action pair the agent is “leveraging” more valuc out
of each example. Hence, our experiment addresses two related questions: (i) does the
advice provide any benefit over simply reusing the agent’s expertences multple tmes?,
and (i) can our approach benefit from replay, for example, by needing fewer traiming
episodes to achieve a given level of performance? Our hypothesis was that the answer
to both questions is “yes.”

Tov test onr hypothesis we implemented two approaches to replay in ®RATLE and evalo-
ated them using the NonlocalMoves advice. In one approach, which we will call Action
Replay, we simply keep the last AV state-action pairs that the agent encountercd, and on
each step train with all of the saved stale-action pairs in a randomized order. A second
approach (similar to Lin’s), which we will call Sequence Replay. is more complicated.
Here, we keep the last N sequences of actions that ended when the agent reccived a
non-zero reinforcement. Onee: a sequence complates, we rain on all of the saved se-
quences, again, in a randomized order. 'To train the network with a sequence, we Drsl
train the network on the stute where the reinforcement was recerved, then the state one
step before that state, then two steps betfore that clate, efc, on the theory tha the stares
nearest reinforcements best estimate the actual vubity of the state. Resulis for keeping
250 state-action pairs and 250 scquences® appear m Table 6; due 1o time constraints we
trained these agents for onty 1000 episodes.
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Table 6. Average total reinforcement results for the advice NonLocalMoves using lwo forms of weplay. The
advice is inserted and then the network 1s trained for 000 episodes. Replay results arc the best resulis
achieved on 1000 episodes of traimng {(occurring at 600 episodes for Action Replay and 500 episodes for
Sequence Replay). Results for the RATLF approach without replay are also shown; these results arc for
1000 training episodes

Training Method Average Total Testsot Reinforooment
Standard RATLE (no replay) 1.74
Action-Replay Method 1.48
Sequence Repluy Method 145

Surprisingly, replay did not help our approach. After examining networks daring replay
training, wc hypothesize this occurred because we are using a single network to predict
all of the Q values for a state. During waining, to determine a target veclor for the
network, we first catculate the new () value for the action the agent actually performed.
We then activate the network, and set the target output vector for the network to be equal
1o the actual output vector, except that we use the new prediction for the action taken.
For example, assume the agent takes action two (of three actions) and calculates that
the Q value for action two should be 0.7. To create a target vector the agent activates
the network with the state (assume that the resulting output vector is [0.4,0.5,0.3]), and
then creates a target vector that 1s the same as the output vector except for the new
value for the action taken (re., [0.4,0.7.0.3]). This causcs the network to have error
at only one output unit {the one associated with the action taken). For replay this is a
problem because we will be activating the network [or a stale a number of times, but
only trying to correctly predict one output unit (the other outputs are essentially allowed
to take on any value), and since the output units share hidden units, changes made to
predict one output unit may affect others. If we repeat this training a number of times,
the Q vatues for other actions in a state may become greatly distorted. Also, 1f there s
unpredictability in the outcomes of actions, it is important to average over the different
resulls, replay focuses on a single outcome. One possible solution to this problem 1s
to use separate networks for each action, but this means the actions will not be able
to share concepts learned at the hidden units. We plan to further investigate this topic,
since replay Intuitively scems to be a valuable technique for reducing the amount of
experimentation an RE agent has to perform.

Our final experiment mvestigates a naive approach for using advice. This sumple
strawman algorithm follows the observer’s advice when 1t applics; otherwise it uses a
“traditional” connccuiomist Q-learner to choose 1ts actions. We use this strawman 1o
evaluate if 1t 18 important that the agent refine the advice it receives. When measured on
the testset, the strawman employs a loop similar to that shown n Table 2. Onc difference
for the strawman’s algorithm is that Step 6 in Table 2’s algorithm 1s left out. The other
difference is that Step 2 (selecting an action} is replaced by the following:

Evatuate the advice to see it it suggests any actions:
If any actions are suggested, choose one randomly,
Ebse cloose the action thae the petwork predicts has maximuam utility.
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Tuble 7. Average testset reinforcement using the strawman approach to using advice compared to the RATLE
method.

Advice STRAWMAN Rarie
SimpleMoves 1.6% 191
NonLoculMoves .46 2.0
ElimFnemies .24 1.87
Surrounded 1.24 1.72

The performance of this strawman is reported in Table 7. In all cases, RAVLE performs
better than the strawman; all of these reinforcement gains are stanstically significant.
In fact, m iwo of the cases, ElimEnemies and Surrounded, the resulting method for
selecting actions is actually worse than simply using the baseline network (whose average
perflormance 1s 1.32).

4.4. Discussion

Our expeniments demonstrate that: (1) advice can improve the performance of an RL
agent. (11} advice produces the same resulting performance no matter when it is added:
{1i) a sccond piece of advice can produce further gains; and (iv) it 1s important for the
agent to be able to refine the advice it receives. In other experiments (not reported here),
we demonsirale that an agent can quickly overcome the effects of “bad”™ advice (Maclin.
1993). We corroborated our Pengo results using a second testhed (Maclin, 1995). A
significant feature of our sccond testbed 1s that its agent’s sensors record the compleie
state of the environment. Thus, the results in ouwr scecond testbed support the claim that
the value of advice in the Pengo testbed is not due solely to the fact that the teacher sees
the complete state, white the learner only has linc-of-sight sensors (and, hence, is trying
to learn a partially observable Markov decision process: Monahan, 1982).

One key question arises [rom our Pengo results: will the bascline system eventually
achieve the same level of performance that the advice-taking system achieves?  After
all, Q-learnming converges to the optimal Q) function when a Q) table 18 vged o represent
the function (Watkins & Dayan, 1992). However, a backpropagation-trained network
may only converge 10 a lecel minimum in the weight space defining the Q function. To
further answer the performance in-the-limit question, we will address a more general one
— what effect do we expect advice to have on the agent?

When we introduce “good™ advice into an agent, we expect 1l 1o have one or more of
severul poussible effects. One possible effect of advice 15 that the advice will change the
network’s predictions of some of the Q values to values that are closer to the desired
“optimal™ values. By reducing the overall error the agent may be able to converge more
quickly towards the optimal (@ [unction. A sccond related effect s that by nercasing
{and decreasing) certain @ values the advice changes which states are explored by the
agent. Here, good advice would cause the agent to explore states that are useful
finding the optimal plan (or ignoring states that are dewmental). Tocusing on the slates
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that are important to the optimal solution may lead to the agent converging more quickly
Lo a solution. A third possible effect is that the addition of advice alters the weight space
of possible solutions that the learner 1s exploring. This is because the new weights and
hidden units change the set of parameters that the learmer was exploring. For example,
the advice may construct an intermediate term (represented by a hidden unit) with very
large weights, that could not have been found by gradient-descent scarch. In the resuliing
altered weight space the learner may be able to explore [unctions that were unreachable
before the advice is added (and these functions may be closer o the optimal).

Given these possible effects of good advice, we can conclude that advice can both cause
the agent to converge more quickly to a solution, and that advice may causc the agent
to find a better solution than it may have otherwise found. For our experiments, we see
the effect of speeded convergence in the graphs of Figure 9, where the advice, generally
after a small amount of training, leads the agent to achieve a high level of performance
quickly. These graphs also demonstrate the effect of convergence to a better solulion, at
least given our fixed amount of training. Note that ithese effects are a result of what we
would call “good” advice. It 1s possible that “bad” advice could have equally deleterious
effects. So, a related question 1s how do we determine whether advice is “good” or not?

Unfortunately, determining the “goodness” of advice appears to be a fairly tricky prob-
lem, since cven apparently useful advice can lead to poor performance in certain cases.
Consider for example, the simple problem shown in Figure 10, This example demon
strates a casc where advice, though providing useful mformation, could actually cause
the agent to take longer 1o converge to an optimal policy. Basically, the good advice
“masks” an even better policy. This example suggests that we may wani to rcthink the
stochastic mechanism that we use to select actions. In any case, it appears that defining
the properties of “good” advice s a challenging topic for future work. As a first (and
admittedly vague) approximation we would cxpect advice to be “good” when it causes
one of the effects mentioned above: (1) it reduces the overall error in the agent’s predicted
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Figyre 10. A sample problem where good advice can fatl to enhance performance. Assume the goal of the
agent 13 to go from Work to Home, and that the agent will recerve a targe reward for taking Nakoma Road, and
a shghtly smaller reward for taking University Avenue followed by Midvale Boulevard. If the agent receives
advice that University followed by Midvale 18 a good plan, the agent, when confronted with the problem
of going from Work w Home will likely follow this plan (even dunag training, since actions are selected
proportional to thetr predicted utiliy). Thus 1t may take a long e for the learner (o try Nakoma Road often
enough to learn thar 1018 a better route. A learner without advice maght vy beth routes cqually often and
quickly learn the cocrect wality valee for cach rowre.
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Q values, (i) it causes the agent to pick actions that lead to states that are important in
(inding a solution, or (ii1) it transforms the network so that the agent is able to perform
gradicol descent w a botter solution.

5. Future Work

Based on our initial experience, we intend to expand our approach in a number of
directions. One important future topic is to evaluate our approach in other domains. In
particular, we intend to explore tasks involving multiple agents working in cooperation.
Such a domain would be interesting in that an observer could give advice on how a
“oromp” of agents conld solve a task. Another domain of interest 1s software agents
{Riecken, 1994). For example, a human could advise a softwarc agent that looks for
“Interesting” papets on the World-Wide Web.
We see algorithmic extensions as fitting into the three categories explained below.

Broadening the Advice Language

Our experience with RATLE has led us 1o consider a number of extensions te our current

programming langnage. Examples include:

s Prefer action — Ict the teacher indicate that one action is “preferred” n a state. Here
the advisor would only be helping the learner sort through its options, rather than
specifically saying what should be done.

e Forget advice — permit the advisor to retract previous advice.

s  Add/Subtract condition from advice - allow the advisor to add or remove conditions
from previous rules, thereby fine-funing advice.

¢ Reward/Punish state — let the teacher specity “internal” rewards that the agent s to
receive 1n certain states. This type of advice could be used to give the agent a set
of internal goals.

s Remember condition — permit the advisor to indicate proposittons that the leamer
should remember (e.g., the location of some important site, like a good place to hide,
so that il can get back there again). We would implement this using recurrent units
that recocd state information. This remembered information conld then be used in
future advice.

We also plan to explore mechanisms for specifying multi-user advice when we explore
domains with multiple agents.

Improving the Algorithmic Details

At present, our algorithm adds hidden units to the learner’s ncural network whenever
advice 1s received. Hence, the networl's size grows monotonically.  Although recent
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evidence (Weigend, 1993) suggests overly large networks are not a problem given that
one uses proper training techniques, we plan to cvaluate techniques for perniodically
“cleaning up” and shrinking the learnor’s network. We plan to use standard neural
network techniques for removing network links with low saliency (e.g., Le Cun, Denker,
& Solla, 1990).

In our current implementation, a plan (i.e., & sequence of actions) can be interrupted if
another action has higher utility (see Figure 5). Recall that the advice only increases the
utiltty of the actions in the plan, and that the learner can choose to execute another action
if it has higher utility. Once a plan is interrupted, tt cannot be resumed from the point of
interruption because the necessary state unit is not active. We intend to evaluate methods
that allow plans to be temporarily interrupted; once the higher-utility tasks complete, the
interrupted plan will resume, We anticipate that this will involve the use of exponentially
decaying state units that record that a plan was being cxccuted recently.

The networks we use in our current implementation have numeric-valued output units
{recall that they represent the expected utility of actwns). Hence, we need to more
thoroughly investigate the setting of the weights between the Boolean-valued advice
nodes and the numeric-valued utility nodes, a topic not relevant to the original work
with KBANN, since that research only involved Boolean concepts. Currently, advice
simply increases the utility of the recommended actions by a fixed amount. Although
subsequent training can alter this initial setting, we plan to more intelligently perform
this initial scuing. For example. we could reset the weights of the network so that the
suggested action always has the highest utility in the specified states. This approach
would guarantee that the suggested action will have the highest utility, but can be faulty
if the action is already considered the best of several bad choices. In this case the
alternate approach would simply leave the current network unchanged, since the advised
action is already preferred. But the teacher may be saying that the action is not only
the best choice, but that the utility of the action 1s high (i.e., the action 15 “good™ in
some sense). Therefore, simply requiring that the action be the “best” choice may not
always capture the tcacher’s intentions. This approach also requires that RATLE find an
appropriate set of welghts to insure that the suggested action be selected first (possibly
by solving a non-linear program).

In another form of reinforcement fearning, the agent predicts the utility of a state
rather than the utility of an action in a state (Sutton, 1988); here the learner has a modcl
of how its actions change the world, and determines the action to take by checking
the utility of the strares that are rcachable from the current state. Applying RATLE to
this type of reinforcement-learning system would be difficult, since RATLE statements
suggest actions to take, In order io map a statement indicating an action, RATLE would
first have to determine the set of states that meet the condition of the staicment. then
calculale the set of states that would result by following the suggested action. RATLE
would then increase the utility of the states that follow from the suggested action. Other
types of advice would be more straightforward nwnder this approach. For example, if the
teacher gave advice aboul a goal the agent should try to achieve (L.e., as m Gordon and
Subramanian’s, 1994, approach), RATLE could determine the set of states corresponding
10 the goal and simply increase the utility of all of these states.
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Finally, our system maintains no statistics that record how often a piece of advice was
applicable and how often it was followed. We intend 1o add such statistics-gatherers and
use them ro inform the advisor that o given pieco of advice was seldom applicable or
followed. We also plan to keep a record of the ariginal advice and compare its statistics
to the refined version. Significant differences between the two should cause the learner
to inform s advisor that some advice has substantially changed (weo plan to use the
rule-extraction techniques described below when we present the refined advice 1o the
advisor).

Converning Refined Advice wnto a Human-Comprehensible Form

Onme intercsting area of future research 1s the “extraction” (i.e., conversion to a casily
comprehensible form) of leamed knowledge from our connectionist ulility function. We
plan to extend previous work on rule extraction (Craven & Shavlik, [994; Towell &
Shavlik, 1993) to produce rules in RATLE’s language. We also plan 1o investigate the
use of rule extraction as a mechanism for transfering learned knowledge between KL
agents operating in the same or similar environments.

6. Related Work

Our work relates to a number of recent research efforts. This related work can be roughly
divided into five groups: (1} providing advice to a prohlem <olver, (n) giving advice
to a problem solver employing reinforcement [earning, (ifi} developing programming
languages for interacting with agents, (iv) creating knowledge-based neural nctworks,
and (v) refining prior domain theories

Providing advice 1o a problem solver

An early example of a system that makes use of advice is Mostow’s (1982} 100 system,
which operationalizes general advice by reformulating the advice into search heuristics.
These search heunstics are then applied during problem solving, In FOO the advice 18
assumed (o be correct, and the learner has to convert the general advice into an execulable
plan based on its knowledge about the domain. Qur system s different in that we try
to dircetly incorporate general advice, but we do not provide a sophisticated means of
operationalizing advice. Also, we do nol assume the advice 1s correct; nstead we use
reinforcement learning 1o refine and evaluate the advice.

More recently, Laird, Hucka, Yager, and Tuck (1990) created an advice-taking system
called ROBO-S0OAR. In this system, an observer can provide advice whenever the system
is at an impasse by supgesting which apeeaiors te explore in an attempt 1o resolve the
impasse. As with o0, the advice presented is used to guide the learner’s reasoning
process. while in RATLE we directly incorporate the advice nto the learner’s knowledge
hase and then refine that knowledge using subsequent experience. Hoffman and Taved
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(1993} developed the INSTRUCTO-SOAR system that allows an agent to interpret simple
tmperative staternents such as “Pick up the red block”™ INSTRUCTO-SOAR cxamines
these instructions 1n the context of ite current problem solving, and uses SOAR’s form
of explanation-based learning to generalize the instruction into a rule that can be used in
similar situations. RATLE differs from INSTRUCTO-SOAR in Lhat we provide a language
tor entering genoral advice rather than attempting to generalize specific advice.

Providing advice to a problem solver that uses reinforcement learning

A number of researchers have introduced methods tor providing advice to a remforcement
learning agent. Lin {1992) designed a technique that uses advice expressed as sequences
of teacher’s actions. In his system the agent “replays” the teacher actions peniodically
to bias the agent toward the actions chosen by the teacher, Qur approach differs in that
RATLE mputs the advice in a general form; also, RATLE directly installs the advice into
the learner rather than using the advice as a basis for training examples.

Utgoff and Clouse (1991) developed a learner that consults a set of teacher actions if
the action 1t chose resutied in significant crror. This system has the advantage that it
determines the situations 1n which 1t requires advice, but 1$ limited 1 that it may require
advice more oftcn than the obscrver 1s willing to provide it. In RATLE the advisor
provides advice whenever he or she feels they have something to say.

Whitehead (1991) examined an approach similar to both Lin's and Utgoff & Clouse’s
that can learn both by receiving advice in the form of critiques (a reward mdicating
whether the chosen action was optimal or not), as well as leaming by observing the
actions chosen by a teacher. Clouse and Utgoff {1992) created a second system that
takes advice in the form of actions suggested by the teacher. Both systemns are similar
tes ours in that they can incorporate advice whencver the tecacher chooses to provide it
but unlike RATLE they do not accept broadly applicable advice.

Thrun and Mitchell (1993} investigated a method for allowing RL agents to make use
of prior knowledge in the form of neural nctworks. These neural networks are assumed
to have been trained to predict the resutts of actions. This proves to be efiective, but
requires previously trained neural networks that are related to the task being addressed.

Gordon and Subramanian (1994) developed a sysiem that is closely related to ours.
Their system employs genetic algorithms, an alternate approach for learming from re-
inforcements. Their agent accepts high-level advice of the form IF conditions THEN
ACHIEVE gocl. It operationalizes ihese rules using its background knowledge about goal
achievement. Our work primartly differs from Gordon and Subramanian’s in that RATLE
nses conanecttonst (-learning instead of genetic algorithms, and in that RATLE's advice
language focuses on actions to take rather than goals to achicve. Also, we allow advice
to be given at any time during the training process. However, our system does not have
the aperatinnahzation capabtlity of Gordon and Subramaman’s system.
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Developing robot-programming languages

Many rescarchers have introduced langunages for programming robot-like agents (Chap-
man, 1991; Kaelbling, 1987; Nilsson, 1994). Thesc systems do not generally focus on
programming agents that learn to refine their programs. Crangle and Suppes (1994)
mvestugated how a robot can understand a human’s instructions, expressed in ordinary
English. However, they do not address correction, by the learner, of approximately
correct advice.

Incorporating advice into neural networks

Noelle and Cottrell (1994} suggest an alternative approach to making use of advice in
neural networks. One way their approach differs from ours is that their connectionist
model itself porforms the process of incorpomating advice, which conliasts w our approach
where we directly add new “knowledge-based”™ units to the neural network. Qur approach
leads to faster assimilation of advice, although theirs is arguably a better psychological
model.

Siegelman (1994) proposed a technique for converting programs expressed in a general-
purpose, high-level language into a type ol recurrent neural networks. Her system 18 espe-
ciatly interesting in that it provides o wnechanisu for perfonning arithmetic calculaons,
but the learning abilities of her system have not yet been empincally demonstrated,

Gruau (1994) developed a compiler that translates Pascal programs into neural net-
works, While lius approach hay so fan only been wsted on simple programs, his iechnigue
may prove applicable to the task of programming agents, Gruau's approach includes two
methods for refiming the networks he produces: a genetic algorithm and a hill-climber,
The main difference between Gruau’s system and vws is thatl e networks we produce
can be refincd using standard connectionist techniques such as backpropagation, while
Gruau’s networks require the development of a specific learnimg algorithm, since they
require integer weights (-1,0,1) and inceiporate functivas that do nol have derivalives.

Diederich (1989) devised a method that accepts instructions in a symbolic form. He
uses the mstructions to create examples, then traing a ncural network with these cxamples
to incorpomate the wstuctions, as opposed w dircctly installing the instructions.

Abu-Mostata (1995) uses an approach similar to Diederich’s to encode “hints” in a
neural network. A hint 15 a picce of knowledge provided to the network that indicates
sowie nuportant general aspect for the nctwork to have. For example, a hint mght indicare
to a network trying to asscss people as credit risks that a “monotoncity” principle should
held (i.e., when one persen 18 a good credit risk, then an identical person with a higher
salary should also be a good risk). Abu-Mostafa uses these hints (o generale cxamples
that will cause the network to have this property, then mixes these cxamples in with
the original traiming examples. As with Diederich’s work, our work difters from Abu-
Mostala’s in that RalLE directly instatls the advice into the network.

Suddarth and Holden (1991) investigated another form of “hint” for a ncural network.
In their approach, a hint s an extra output value for the neural network. For example, a
neural network using sigmoidal activation units to try to learn the ditficult XOr function
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might receive a hint in the form of the output value for the ORr function. The OR function
1s useful as a hint because it is simple to learn. The network can use the hidden units it
constructs to predict the OR value when learning XOR {1.e., the hint serves to decompose
the problem for the network). Suddarth and Holden’s work however only deals with hints
in the torm of useful output signals, and still requires network lecarning, while RATLE
mncorporates advice immediately.

Our work on RATLE is similar to our carlier work with the FSKBANN system (Maclin &
Shavlik, 1993). FSKBANN uses a type of recurrent neural network introduced by Elman
(1990} that maintamns information from previous activations using the recurrent network
links. FskBANN extends KBANN o deal with state units, but 1t does not create new state
units. Similarly, other researchers (Frasconi, Gori, Maggini, & Soda, 1995, Omlin &
Giles, 1992) insert prior knowledge about a finite-state automalon into a recurrent ncural
network. Like our FSKBANN work, this work does not make use of knowledge provided
after raming has begun, nor do they stody RL tasks.

Lin (1993} has also investigated the idea of having a learner use prior state knowledge.
He uses an RL agent that has as mput not only the current inpul state, but also some
number of the previous input states. The difference between Lin's approach and ours is
that we use the advice to determine a portion of the previous information to keep, rather
than frying 1o keep all of it, thereby focusing learning.

Refining prior knowledge

Thete ltas been a growing literature on automated “theory refinement”™ (Fu, 1989 Gins-
berg, 1988; Oursten & Mooncy, 1994; Pazzani & Kibler, 1992; Shavlik & Towecll, 1989),
and 11 is from this research perspective that our advice-taking work arose. Our new work
differs by its novel emphasis on theory refinement in the context of multi-step problem
solving in multi-acter worlds, as opposed to refinement of theories for categorization
and diagnosis. Herc, we view “domain theories” as statemcnts in a procedural program-
ming language, rather than the common view of a domain theory being a collecrion
of declarative Prolog statements. We also address reinlorcement learning, rather than
learning-from-cxamples. Finally, uniike previous approaches, we allow domain theories
to be provided piecemeal al any time during the training process, as the necd becomes
apparent to the advisor. In complex tasks it is not desirable to simply restatt lcarning
from the beginning whenever one wanls to add something (o the domain theory.

7. Conclusions

We present an approach that allows a connectionist, retntorcesnent-learning agent w take
advantage of instructions provided by an external observer. The observer communicates
advice using a simple imperative progiamining language. one that does not require that
the observer have any knowledge of the agent’s internal workings, The reinforcement
learner applies techmigues from knowledge-based ncural networks to directly insert the
observer’s advice wito the Tearner’s ulility function, thereby speeding up its learning.
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Importantly, the agent does not accept the advice absolutely nor permanently. Based on
subsequent expenence, the learner can refine and even discard the advice.

Experiments with our RATLE system demonstrate the validiy of this advice-taking
approach, each ot four types of sample advice lead to statistically significant gamns
expected future reward.  Tnierestingly, our cxperiments show that these gains do not
depend on when the observer supplies the advice. Finally, we present results that show
our approach is superior to a naive approach for making use of the observer’s advice.

In conclusion, we have proposed an appeating approach for learning from both instruc-
tion and experience in dynamic, multi-actor tasks. This work widens the “information
pipeline” between humans and machine learners, without requiring that the human pro-
vide absolulely correct information to the learner.
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Appendix A

Four Sample Pieces of Advice

The four pieces of advice used n the experiments in Section 4 appear helow. Recall
that in our testbed the agent has two actions (moving and pushing) thal can be executed
in any of the four directions (Bast, North, West, and South). To make it easier for an
observer to specify advice that applies in any direction, we defincd the special term dir.
During parsing, dir 1s expanded by replacing each rule conlaming 1t with four rules, one
for cach dircenion. Similarly we have defined a set of four terms {aheud back, sidel,
side?}. Any rule using these terms leads to eight rules - two for each case where ahead
is Bast, North, West and South and back is appropriately sct. There are two [or cach case
of ahead and back because side/ and side2 can have two sets of values for any value
of ahead (e.g.. if ahead is North, sidel could be Fast and side2 West, or vice-versa).
Appendix A in Maclin (1993) contams the definittons of the fuzzy terms (c.g.. Near,
Many, An, and East).
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SimpleMoves

iF An Obstacle 13 (NextTo A dir)
THEN INFER OKPushdir END;
I No Obstacle s (NextTo A dir) A
No wall 15 (NextTo A diry
THEN INFER OkMovedir cND;
I An Enemy 15 (Near A dir}
THEN DO_NOT Movedir END;
IF OkMovedir ~ A Food 15 (Near A dir) A
No Enemy 15 (Near /A dir}
THEN Movedir END;
IF OkPushdir A An Enemy 15 (Near A dir)
THEN Pushdir EnD

NonLocalMoves

¢ No Obstacle 15 (NextTo A din) A
No wall 15 (NexiTo A din
THEN INFER OkMovedir END:

1IF OkMovedir A Many Bnemy ARE (- dir) A

No Enemy 15 {Near & dir)
THEN Movedir END;

17 OkMovedir ~ No Enemy 18 {dir A Near) A

A Food 15 iy A Near) n
An Enemy 18 (fir A {Medium ¥ Far})
THEN Movedir END

ElimEnemies

1¥ No Obstacle 1s (NextTo A dir) A
No Wall 15 (NextTo A dir
THEN INFER OkMuovedir BN,

17 OkMoveahead A An Enemy 15 (Near A back) A

An Obstacle 15 (WexiTo A sidel)
THEN
MULTTACTION
Moveahead
Moveside
Maoveside
Moveback
Pushyide?
END
END

Girab food next to you: run trom
enemes next to you; push obstacles
at enemies behind obstacles. [This
leads to 20 rules.)

Run away if many encmies in a di-
rection (even if they are not close),
and move towards foods even il
there 1 an ¢nemy in (hat direction
(as long as the enerny 15 a ways off).
112 rules. |

When an cnemy 18 closely behind
you and a convenient obstacle s
nearby, spin around the obsiacte and
push 1t at the enemy. {12 rules.]
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Surrounded
1F An Obstacle 18 (NextTo A dir) When surrounded by obstacles and
THEN INFER OkPushdir w1y, cnemics, push obstacltes out of the
ir An Enermy 15 (Near A diry v way and move through the holes.
A wall 18 (NextTo A diry v 113 rules.]

An Obgtacle 15 (NextTo A dir)
THEN INFER Blockeddir ENI;
» BlockedEast A BlockedNorth A
BlockedSouth A BlockedWest
THEN INFER Surrounded eND;
WHEN Surrounded A OkPushdir A An Encmy 18 Near
REFEAT
MULTIACTION Pushder Movedir END
UNTIL - OkPushdir
END

Appendix B
The Grammar for RATLE’s Advice Language

The start nonterminal of the geammar is rules, Grammar rules are shown with vertical
bars (|} indicating alternate rules for nonterminals {e.g., rules, rules, and ante). Names
like 117, TaLN, and WHILE are keywords in the advice language. Additional details can

be found in Maclin (1995).

A piece of advice may be a single construct or multiple constructs.
rufes  + rule | rules ; rule

The grammar has three main constructs: [F-THENS, WHILES, and REPHATS.
ritle « - IF anfe THEN corc else ENT
WHILE ante DO act [){)SIGC‘I END
| pre REPEAT act UNTIL arfe posiac! ENT

else < £ | BELSE act
postact « - £ | THEN ac!
pre — = | WHEN ante

A MULITACTION construct specifies a series of actions to perform.
conc  +— ael | INFER Term _Name | REMEMBER Term_Name
et c- gons | MULTIACTION clist BND
clist < cons | cons clist
cons  « Term_Name | DO_NOT Term Name | { corlst )
corlst + - Term_Name | Term _Name V cortst
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Antecedents are logical combinations of terms and fuzzy conditionals.
ante  « Term_Name | { ante ) | — ante
fanle e | amte V' oanie

| Quantifier Name Object_Name 13 desc

The descriptor of a fuzzy conditional is a logical combination of fuzzy terms.
desc +- Descriptor Name | — desc | { dlist } | ( dexpr )
dlist  — Descriptor_ Name | Descriptor_Name , dlist
dexpr  «- desc | dexpr N dexpr | dexpr v dexpr

Notes

L Through empinical mvestigation we chose a value of 2.0 for these weighis. A wpic of our future research
is to more intelligently select this value. See the discussion in Section 5.

2. The agent needs this information when emptoying multiple-step plans (see Section 3) We include this
information as input for all of the agenis used in our experiments so that none wiil be at a disadvantage.

3. We report the average total reinforcernent rather than the average discounted reinforcement because this is
the standard for the RL cormunity. Graphs of the average discounted reward are quabtatively similar (o
those shown in the next section.

4. All results reported as stanbstically significant are significant at the p o0 003 level (e, with 05%
confidence).

5. We also experimented with keeping only 100 pairs or sequences; the results asing 250 parrs and sequences
were better.
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