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Abstract. We analyze the complexity of on-line reintorcement-learning algorithms applied 1o goal-directed
exploration tasks. Previous work had concluded that, even in delerministic state spaces, initially uninformed
reinforcement learning was at least exponential for such problems, or that it was of polynomial worst-case
time-complexity only if the learning methods were angmented. We prove that, to the contrary, the algoritkms
are fractable with only a simpie change in the reward structure (“penalizing the agent for action cxecutions™)
or in the initialization of the values that they maintain. In particular, we provide tight complexity bounds for
both Watkins' Q-leaming and Heger's Q-hat-learning and show how their complexity depends on properties
of the state spaces. We also demonstrate how one can decrease the complexity even further by either learning
action models or utilizing prior knowledge of the topology of the state spaces. Our resubts provide guidance
for empirical reinforcement-leaming researchers on how to distinguish kard reinforcement-learning problems
from easy ones and how to represent them in a way that allows them to he solved efficiently.
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1. Introduction

A goal-directed reinforcement-learning problem can often be stated as: an agent has 1o
learn an optimal policy for reaching a goal state in an initially unknown state space. One
necessary step towards a solution to this problem is to locate a goal state. We therefore
analyze the complexity of on-line reinforcement-learning methods (measured in action
exccutions) until the agent reaches a goal state for the first time. If' a reinforcement-
learning method 15 terminated when the agent reaches a goal state, then it solves the
following goal-directed exploration problem: the agent has to find some path to a goal
state in an inttially unknown or only partially known statc space, but it docs not need to
tind a shorlest path. Studying goal-directed exploration problems provides insight into the
corresponding reinforcement-tearming problems. Whitchead (1991a), for example, proved
that goal-dirccted exploration with reinforcernent-learning methods can be intractable,
which demonstrates that solving reinforcement-learning problems can be inrractable as
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policies, either expressed or imnplied, of NASA or the U S. government.
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well. In particular, he showed that the behavior of an agent that 1s controlled by an
minally uninformed (1.e. tabula rasa) reinforcement-learming algorithm can degenerate
to a tandoms watk until it reaches a goal state. In this case, it might have to cxecute a
number of actions that 18, on average, exponential in the size of the state space and cven
speed-up techniques such as Lin's action-replay technique (Lin, 1992) do not mprove
its pefonnance. This theorctical result contrasts sharply with cxpernimental obscrvations
of Kaelbling (1990), Whitchcad (1991b), Peng and Williams (1992), and Moore and
Atkeson (1993b), who reported good performance resulis.

These results mutivaled us o study how the petformance of reinforcement-learning
algorithms (n deterministic and non-deterministic state spaces is affected by different
representations, where a representation delermines both the immediate rewards that the
reinforcement-learning algorithis receive and the initialization of the values that they
maintain. We study versions of both Watkins’ (Q-learning and Heger’s Q-learning that
perform only a minimal amount of computation between action executions, choosing
onty whicl action o cxecute neat, and basing this decision vuly ow infunation local
to the current state of the agent. If these inefficient algorithms have a low complexity,
then we can cxpect other reinforcement-learning algorithms to have a low complexity
us well. One wain result of our analysis is that the choice of represcntation can have a
tremendous impact on the performance of these reinforcement-learning algorithms. ff a
poor representation is chosen, they arc intractable. However, if a good reward structure
(such as “penalizing the agont for action cxecutions’™) or suitable itialization is chosen,
the complexity of the same algorithms 1s only a small polynomial in the size of the
state space  Consequently, reinforcement-fearning algorithms can be tractable without
any need [ avgimentation. Que can decrease their complexity cven further by eithes
fearning action models or utilizing prior knowledge of the topology of the state space.
These resulis, the proofs of which are found in (Koenig and Simmons, 1995a), provide
guldance fur cinpuical wcinforcement-learning rescarchers on how to distinguish hard
reinforcement-learning problems from easy ones and how to represent them 1n a way that
allows them to be solved efficiently. They also provide the theoretical underpinmngs for

the caperimental tesults mentioned above.

2. Notation and Assumptions

We use the following notation: S denotes the finite set of states of the state space,
Satare O 5 is the start state, and & (with 0 % & C 8) 1s the set of goal states. A(s) 18
the finite set of actions that can be executed in state s € §. Excculing action ¢ ¢ A{s)
causes a (potentially nondcterministic) state transition into one of the states suce(s, o)
(with () # swecle,a) O Sy The size of the state space i« n = | S|, and the fotal number
of state-action pairs (loosely called actions} is e = > o |A(s)]. We assume that the
state space does not change over time and 15 completely obscrvable: the agent can always
determine tte current state with certainty. It also knows at every poinl in fime which
actions il can execute in its current state and whether its current swale 1s a goal state.

A stale space s deterministic iff the cardinality of succe(s. a) equals one for all & € .5
and a ¢ A(e). For deterministic state spaces, we use suce{s. o) o denote both the



THE EFFECT OF REPRESENTATION AND KNOWLEDC 229

set of successor states and the single element of this set. We call a state space non-
deterministic 1f we want 1o stress that we do not require it to be deterministic. In non-
deterministic state spaces, we view reinforcement learning as a two-player game: The
reinforcement-lcarning algorithm sclects the action to execute and is only constrained
by having to choose an action that is applicable in the current state of the agent. The
action determincs the posstble successor states, from which some mechanism, which we
call mature, chooses onc. We do not impose any restrictions on how naturce makes its
decisions (its strategy). In particular, its choice can depend on the state-action history (we
do not make the Markov assumpuion}. Nature might, for example, select a successor stale
randomly or deliherately, in the latter case cither to help or hurt the agent. Reinforcement
fcarning in deterministic state spaces is simply a special case of reinforcement learning in
non-deterministic state spaces where cvery action execution results in a unique successer
state and naturc has no choice which one to select.

The distance ¢{s, s') © [0, 00| between s € S and &' < S is defined to be the (unique)
solution of the iollowing set of equations

[0 for all .s" € 5 with 5 2= 5’
1 U ity e Ags) B R Cgueefs.q) A8, 8"} Torall 5,8 = 5 with 5 7 7.

dls, &) =

This means that an agent that knows the state space and acts optimally can reach s” from
¢ with at most {«, s') action executions no matter which stralepy nature uses. The goal
distance gd{s) of 5 © S is defined to be gd(s) := mingecr d(s s"). 1f the agent had to
traverse a state more than once i order to reach a goal state, then nature could foree it to
traverse thie cycle infinitely often, which would imply gd(s) — s, Thus, gd{s) < n — 1
if gd(s) is finite. We define the diameter (depth) of the state space with respect to (5
as d = maxgees gd(s). If d 1s finite, then d < 1 — 1. These definittons correspond to
a worst-case scenarto, in which nature 1s an opponent of the agent. For determinisiic
state spaces, the definitions of d(s, s") and gd(s) simphfy to the standard delinitions of
distance and goal distance, respectively.

We call a reinforcement learning algorithm uninformed 1if it mitially does not know
which successor states an action can lead to. By its complexity we mean an upper bound
on the number of actions that an agent conirolled by the uninformed reinforcement-
learning algorthm can execute in state spaces of a given siee until it reaches a goal state
for the first time. This bound has to hold for alt possible topologies of the stale space,
start and goal states, lie breaking rules among mdisunguishable actions, and strategies
ol nature. If gid(s4.0) — o0, then even completely nformed reinforcement-loarning
algorithms have nlinite compiexily, since there exasts a strategy of nature that prevents
the agent from reaching any goal state.  This problem could be selved by requiring
gid{ g ) < oo, but this is not a sufficient condition 1o guarantee the existence of
uninformed reinforcement-learning algonthms with finite complexity. We call a state »
lost ilf gd{s) - oo 1 the agent enters a lost staie during exploration, then nature can
prevent it from reaching a goal statec. Thus, the complexity can enly be finite it 0o
states are lost (Le. if ¢ < oc).! We call stale spaces with this property safely explorable
and limit our analysis to such state spaces. Moore and Atkeson’s parti-game algorithm
(Meore and Atkeson, 1993a), {or cxample, learns safely caplotable abstractions ol spatial
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Initially, the agent is in State Supar: € 5.

1. Set s: . the cumrent state.

]

If s € (4, then stop.

LS

Set u = argmaz, e a3, a’).

(Read: “Choosc an action a ¢ A(s) with the largest (s, a) value.”)

4. Executc action a.
{As a conscquence, nature selects a state s* © suec(s, a), the agent receives the immediate
reward »{s. a, ¢'), and its new state becomes .}

5. Updatc Q{s,a) using r{s a,s) and U/(s').

6. Gotol.

where L/(5) := max,r¢ags (s, 0"} (Le. the value of a state is the largest value of ils actions).

Frgure oA Dwswak (on L-siop Q-leatniny,

state spaces. Other examples of safely explorable state spaces nelnde fwo-player vero-
sum games where one player can force a win and the game is restarted if this player loscs.
For deterministic state spaces, researchers such as Whitehead (199 1a) and Ishida (1992)
usually make the more restrictive assumption that the state spaces are safely explorable
for all s — start € S and ¢ € 5, not just the s - start and & given (ie. that they are
strongly connected).

3. A General Q-Learning Framework

Reinforcement learning 1s learning from positive and negative rewards (costs). When
the agent cxecutes actron o In state s and successor state s results, it reccives the
immediate reward (s <y & R I the agent receives immeddiate reward r, when i
executes the (4 1)st action, then the total reward that it reccives over its lifctime
for this particular behavior s 3 ,c,v'r,. The discount factor v & (0. 1] specifies
the relative value of a reward received after t action executions compared in the same
reward received one action execution earlier We say that discounting is used i v < 1,
otherwise no discounting is used. Reinforcement learning algerithms solve goal-directed
retnforcement-learning problems by determining a behavior for the agent that maximizes
its Lotal reward. They specify such behaviors as state-action rules, called policies.

We analyze reinforcement-learning methods that are variants of (-lcarning. probably
the most popular reinforcement learning method. In particular, we siudy 1 step versions
of on-ling Q-learning. They perform only a minimal amount of computation between
action executions, choosing only which action to exccute next, and bhasing this decision
only on iformation local o the current state of the agent. A general framework for 1
step Q-lcarning (Figure 1) consists of a termination-checking step (linc 2} an action-
selection step (linc 3), an action-execution step {linc 4}, and a value-update step
{linc 5). The termination-cheoking step stops the agent when it reaches a goal state.
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This is possible, because we have limited ourselves to studying goal-directed exploration
problems. The action-selection step determines which action to execule next. This
decision is based on values that store information about the relative goodness of the
actions, one Q-value ()(s,a) € R for cach action a that can be executed in stale s.
€}(s, a) approximates the total reward that the agent receives if it starts in s, executes
a, and then behaves optimally. The action-sclection strategy is greedy: it chooscs the
action with the largest -value in the curent state of the agent. (If several actions tie, an
arbitrary one of the equally good actions can be selected.) Because the action-selection
step uses only those Q-values that are local to the current state of the agent, there is no
need to predict suce(s. a) for any a € A{s), which means that |-step Q-learning docs
not need to learn an action model of the state space. After the action-cxccution step
has dirceted the agent to exceute the desired action @ in its current state s, natwe sclects
the successor state s’ from the states suce(s, o) and the agent receives the immediate
reward r(s, . s} 1-step Q-learming then has temporary access to the Q-values of the
agent’s former and new state at the same time, and the valuc-update step adjusts (s, )
using v(s.a,s") and the values @(s", e’} for @’ € A{s"). This is done because a 1-step
look-ahead value of the total reward is more accurate than, and should therefore replace,
the current valuc of @{s,a). For now, we leave the initial Q-values unspecified.

Two well-known -learning algorithms fit this general Q-learning framework:

s A l-step version (Whitehead, 1991a} of Watking® Q-learning algorithm (Watkins,
1989) can be obtained from the Q-learning framework by making the value-update
step

“Set Q(s,¢) = (1 ~ a)@Q(s,a) + alr(s,a,s) + U,

where & € [0. | is called the learning rate. This Q-learning algorithm assumes that
nature always sclects the successor state 8 € swee(s, a) with some time-invariant
(but unknown} probability p(s, a, 7). Thus, nature sclects the successor states prob-
abilistically, and the agent plang for the average (i.c. risk-ncutral) case: il rics 1o
maximize its cxpected roral reward. Convergence results for Q-learning are given in
(Watkins and Dayan, 1992).

The learning rate determines how much (}{s, ¢) changes with every update. In order
tor the Q-values to converge in non-deterministic state spaces to the desired values,
it has to approach zero asymptotically — in a manner described in {Watking and
Dayan, 1992). Q-learning needs the learning rate to be able to average the values
r(s.0.8") + ~U(s") for all successor states s* € succ(s, ). In deterministic state
spaces, however, there 1 only one sinceessor state and, consequently, averaging 1
not necessary. Thus, the learning rate can be set to one.

o Heger's (i)-lmrning algorithm (Heger, 1994) (pronounced “Q-hat-learning™) can he
obtained from the Q-learning framework by making the value-update step

“Set (M a) r= min(Q{s. a). (s, a. &'y + ~L7 ("))
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and initializing the Q-values optimistically. Q-learning assumes that nature always
selects the worst successor state for the agent. Thus, nature is an opponent of the
agent, and the agent tries to maximize the toral reward that ir can receive in the werst
case. Tven if the successor states are determined probabilistically, the agent could
be extremely nisk-averse (in the sense of utility theory; see (Keentg and Simmons,
1994)) and believe in Murphy’s law (“anything that can go wrong, will indeed go
wrong””). It then assumes that an imaginary opponent exists that always makes
the worst possible successor state oceur that its action can result in. To this case, Q-
learning can be used to learn a behavior that reflects a completely risk averse attitude

and is optimal [or the agent provided that it accepts the axioms of utility theory.

Q--lce‘tming needs less information about the state space than Q-learning and converges
faster. In particular, il does not need 1o exceute each action ¢ ¢ A{~} 1n state ¢ often
enough to gel a representative distribution over the successor states suce(s, o) and
has no need for a learning rate; for details sce (Heger, 1996). Convergence results
for Q-lcarning arc gven in (Heger, 1994,

If the agent wants to learn an optimal policy, its risk attitude determines which Q-
lcarning algorithm it should use. In the following scclions, we analyrze the complexiry
of Q-icarning and Q-learning for different representations of goal-directed exploration
problems.

4, Representations

When modeling a goal-directed reinforcement-learning or exploration problem, one has o
decide on both the immediate rewards and the mitial ( values. So far, we have left thesce
values unspecified. In this section, we introduce possible reward structures and nitial-
izations, and discuss their propertics. All of these representations have been used in the
experimental reinforcement-learning literature 1o represent goal-girected reinforcement-
learning problems, i.e. for learning shortest paths to a goal state. Since we have restricted
owr analysis to goal-directed exploration problems, we have o decide on the tollowing
values: For the reward structure, we have to decide on the values ris, . s’y ¢ R for
50 5N G~ SN G e Als), and ¢ € suec{s ¢}, Tor the initial Q-valucs, we have
to decide on the values Qs 2} for s € 5% G und o ¢ A(x]. In both cases, the values
for 5 - (7 do not matier, because the remtforcement-learning methods terminate when the
agent reaches a goal state. For goal-directed reinforcement learning problems, we define

Qs ) Oforse Gandaaw e Als))

4.1. Reward Structures

Developing appropriate reward structures can. in general, be a complex enginecning
probiem (Matari¢, 1994). Since goal-directed reinforcement learning methods determine
policics that maximize the lotal reward, a reward structure for learming shortest paths
must guarantee that a state with a smaller goal distance also has a larger optimal total
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reward. Two ditferent reward structures have been used in the hiterature. Neither of them
encodes any information about the topology of the state space.

o In the goal-reward representation, the agent 15 rewarded for entering a goal state,
but not rewarded or penalized otherwise. This reward structure has been used by
Sutton (1990). Whitehead (19914), Peng and Williams (1992), and Thrun (1992b),
among others. Formally,

(s, ) 1 forse S\NG, ae A(s), and 8 £ &
s 0 forse S\ G, ae Als), and & € §\ &,

Discounting is necessary for learning shortest paths with this reward structure. 1f no
discounting were used, all behaviors that lead the agent eventually to a goal state
would have a total reward of one and the reinforcement-learning algorithms could not
distinguish between paths of different lengths, If discounting is used, then the goal
reward gets discounted with every action execution, and the agent trics to reach a
goal state with as few action executions as possible in order to maximize the portion
of the goal reward that it receives.

e In the action-penalty representation, the agent is penalized for every action that o
executes. This reward structure 1s denser than the goal-reward representation (the
agent receives non-zero rewards more often) if goals are relatively sparse. It has
been used by Barto, Sutton, and Watkins {1989), Koenig {1991), and Barto, Bradtke,
and Singh (1995), amoeng others. Formally,

s, a8 — =1 for s ¢ SNG, a e Als), and 57 < 5.

For learning shortest paths, discounting can be used, but is not nccessary. In both
cases. the agent tries to reach a goal state with as few action executions as possible
in order o minimize the amount of penalty that it receives. The action-penally
representation can he generalized to non-uniform immediate rewards; see Section 7.

4.2, Initial ()-Values

The complexily of Q- or Q-learning depends on properties of the initial (3 values. An
important special case of nitial Q-values are those that do not convey any information
about the state space, such as uniformly imtiahized Q-values.

Definition. Q- or (Q-learning is uniformly initialized with ¢ € R (0r, synonymously,
g-initalized), off mitially

) . [u forall s e & and ae Als)
Qs a) - : o P

) g forall se SN G and a € Afs).
If Q- or O-learning is g-initialized with g £ 0, then goal states are initialized differently
from non-goal states, N i important to understand that this particular initialization does
not convey any information, since the agent is able to distinguish whether its current
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goal

Figure 2. A state space (“reset state space”) for which random walks need 3 x 2% 2 — 2 action executions
on average to reach the goal stale (for n > 2)

state is a goal state or not and can therefore initialize the Q-values differently for goal
and non-goal states. Consequently, all uniformly initialized Q-learning algorithms are
uninformed. This includes both zero-initialized and (minus one) -initialized Q-learning
algorthms,

The following definitions characterize properties of (J-values for undiscounted Q- or
Q-learning with action-penalty representation.

Definition. Q-values are consistent for undiscounted Q- or Q—]carning with action-
penalty representation iff

0 < Qfs.a) <0 forall s € G and a € A(s)
=L+ ming egpease V(s [~ Far forall s ¢ &\ & and @ ¢ A(s).

Consistency means that (he triangle inequality holds. Tt corresponds to the concept of
consistency or monotonicity in heuristic search. Both zero-initialized and (minus one)
nitialized Q-values are consistent, for example.

Definition. Q-values are admissible for undiscounted Q- or Q-learning with action-
penalty 1opesentation T

0 w forall s ¢ & and a € A(s)
<< o) <l i :
L Max, e specis.as 9287 } @s.0) <0 { forall s € S\ G and a & Als).

Admissibility mcans that - Q(s.a) never overestimates the number of action executions
that the agent needs for reaching a goal state of it knows the state space, starts in state
&, execules action g, and then behaves optimally, but nature trics to keep it away from
a goal stale for as long as possible. This correspends to the concept of admissibility in
heuristic scarch. All consistent Q-values are admissible.

5.  An Intractable Representation

In this section, we assume that Q-learning operates on the goal-reward representation
and is zero-initialized. We show that this representation makes the exploration problem
intractable.
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The agent receives a non-zero immediate reward only if an action execution results
in a goal state. Thus, during the search for a goal state, all Q-values remain zero,
and the action selection step has no information on which to basc the decision which
action to exceute next.? If Q-lcarning had a systematic bias for actions, for example if
it always chose the smallest action according to some predetermined ordering,then the
agent could eycle 1n the state space forcver. We therefore assume that it selects among
the available actions with uniform probability, in which case the agent performs a random
walk. Although random walks reach a goal state with probability one in safely explorable
state spaccs, the required number of action exccutions can cxceed every given bownd.
This implies that the complexity of (-learning is infinite. In determimstic state spaces,
the expected number of action executions z, that the agent needs to reach a goal state
from statc s can be calculated by solving the following set of lincar equattons,

0 fors € &

1
Ts = 1 Eyuec s, for s € & \ G.
‘A(S)| {Jég(é) e

Although x . . is finite, it can scale exponentially with n. Consider for example the
{deterministic) reset state space shown in Figure 2. A reset state space is one in which
all states (except tor the start state) have an action that leads back to the start state.
It corresponds for example to the task of stacking n blocks if the agent can, in cvery
state, cither stack another block or scramble the stack. Solving the lincar equations
xy =140, 2, =1+0521 4+ 052, lorall se {2,3,.. ,n—1}, and z,, = 0 yiclds
Teo,, = T1 = 3x 2™ % 2 Since the complexity of Q-learning cannot be lower in
non-deterministic state spaces (a superset of deterministic state spaces), the following
result holds:

THreOorEM 1 The expected number of action executions that zero-initialized (-learning
with goal-reward representation needs to reach a goal state in deterministic or non-
deterministic state spaces can be exponential in n, the size of the state space.

Whitehead (1991a) made the same observation for the behavior of Q-lcarning in de-
terministic state spaces that have the following property: in every state {except for the
states on the perimeter of the stale space), the probability of choosing an action that
leads away from the only goal state is larger than the probability of choosing an action
that leads closcr to the goal state. This observation motivated him to explore cooperative
reinforcement-learnmg methods i order to decrease the complexity. Subsequently, Thrun
(1992a) showed that even non-cooperative reinforcement-learning algorithms can have
polynomial complexuty if they are extended with a directed exploration mechanism that
he calls “counter-based exploration ™ Counter-hased Q-learning, for example, maintaing,
in addition to the (F-values, a sccond kind of state-action values, called “counters.” Thesc
values are used exclusively during learning (exploration) and are meaningless afterwards.
Thrmn was able to specify action-selection and value-update rules that use these counters
and achieve polynomial complexity. There are other techniques that can improve the
performance of reinforcement-learning algorithms, such as Lin's action-replay technique
(Lin, 1992). However, this method does not change the Q-values before a goal state
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has been reached for the first time when it is applied to zero-imualized Q-learning with
goal-reward representation and, thus, cannot be used to reduce s complexity.

6. Tractable Representations

In the [ollowing, we show that one does not need te augment Q-learning algorithms
to reduce their complexity. They are tractable if one uses either the acbon-penally
representation or initial Q-values different from zero. The intuitive explanation is that,
in both cascs, the Q-values change immediately, starting with the first action execution.
This way, the agent remembers the effccts of previcus action executions. Our analysis,
that formalty shows by how much the complexity is reduced. also explains experimental
findings by Kaclbling (1990), Whitchcad (1991b}, Peng and Williams (1992}, and Moorc
and Atkeson (1993b), who reported good performance results for Q-learning when using
similar representations.

6.1. Deterministic State Spaces

We first analyze two representations that make (- or ()-learning tractable in deterministic
state spaces and then discuss how their complexity can be reduced cven further. Our
analysis of deterministic state spaces 18 very detaled, because we can then transfer its
results to Q-learning in arbitrary non-deterministic state spaces.

6.1 1. Zero-imniulized O-Values with Action-Penalty Representation

In this section, wo analyze zero-initialized @ or & learning that operates on the action.
penalty representation. Since the agent receives a non-zere immediate reward for every
action cxccution, the Q-values change immediately,

6.1 11 Complexity Analvsis

We first define admissible Q- or Q-learning, show that undiscounted admissible Q- ot 0-
learning is lractable in delerministic state spaces, and state how iis complexity depends
on propertics of the stale space. Then, we show how the analysis can be applicd to
discounted Q- or Q-learning.

Definition. Undiscounted Q- or Q-learning with action-penalty representation is admis.
sible in deterministic state spaces® iff either

[ its initial Q-values are consistent and its valuc-update step 15 “Set Qs 0) — —11
05" or

gd

its initial Q-values are admissible and s value-update step is “Set Q(s.a) -
min(@(s. o). — L4 (7
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The value-update step in the first part of the definition is the one of Q-learning with
lcarning rate one. The valuc-updaie step in the second part of the definition is the
onc of Q-learning If the Q-values arc vomsisteat, then eithor valus-upndate step can be
used, since consistent Q-values are always admissible. The most important property
of admissible Q- or Q-Icarning 1s that initially consistent or admassible (3-values remain
cansistent o1 admissible, respectively, after cvery action exesulion and are monotonically
nON-INCIeasing.

The correctness of admissible Q- or Q-learning for goal-directed exploration is easy to
show. The argument that it reaches a goal state eventually parallels a similar argument
for RTA*-type search algorithms (Korf, 1990) (Russell and Wefald, 1991) and is by
contradiction: Il the agent did not reach a goal state cventually, it would execute actions
forever. In this case, there is a time ¢ from which on the agent only executes those
actions that it executes mnfinitcly often. Every time the agent has excculed all of these
actions al Ieast once, the largest (Q-value of these actions has decreased by at least one.
Eventually, the Q-values of all these actions drop below every bound. In particular, they
drop below the (J-value of an aclion that - or Q—leaming considers mfinitely often lor
execution, but never exccutes alter time £, Such an action exists, since the state space is
safely explorable and thus the agent can always reach a goal state. Then, however, ()-
or Q—learning is forced to execute this action after time ¢, which is a contradiction.

To understand intuitively why admissible O- or O-learning is tractable, assume that it
15 zero-initialized and consider the set X = {s ¢ S : U(s} =0} 2 G X is always the
set of states in which the agent has not yet executed all of the available actions at least
once. At every point in time, the following relattonship holds:

-1 - mig disucc(s, a), s < Qs,a) <0 forall s € % ¢ and a & A(s).
s EX

The action-selection step can he interpreted as using (s, a) to approximate -1 —
minee v disuec{s, a), ') Since 1L always executes the action with the largest Q-value,
it tries (sometimes unsuccessfully) to direct the agent with as few action executions
as possible from its current stale Lo the closest state that has at least onc unexplored
action {an action that it has never exccuted before) and make it then takce the unexplored
action. Since any unexplored action can potentially lead to a goal state, 3- or Q—Ieaming
always cxccutes the action thal appears to be best according to its local view of the state
space. This suggests that admissible Q- or Q—]earning might have a low complexity. We
therefore conduct a formal complexity analysis. It 1s centered around the invariant shown
in L.emma 1. This lemma states that the number of executed actions is always bounded
by an expression that depends only on the initial and current Q-valucs and. morcover,
that “every action cxccution decreases the sum of all Q-values by one, cxcept for a
hounded number of action exccutions that feave the sum unchanged” {this paraphrase is
somewhar simplified) A time supersenpt of £ n [emmas 1 and 2 refers to the values of
S

the variables immediately before the agent executes the (f+ 1)st action {c.g. Sotar
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Figure 3. A state space for which uninformed Q- or (H-learning can need at least (e — n + 1}{n — 1} action
executions to reach the goal state (for n 2> 2 and e > n)

LEMMA 1 For all times t € Ny (until termination) of undiscounted admissible Q- or
O-learning with action-penalty representation in deterministic state spaces, it holds that

UHs"Y + Z Z Q%(s.a) —t > Z Z Qs,a) + UO5°) — loop'

sCS acA(s) SE5 0E A(s)

and

loop" < Z: Z; QY (s, a) —Z Z Q' (s,a),

sES5 peAls) sES a€Als)

where loop' = |4t € {0, .t — 1} : 5" = s"7'}| (the number of actions executed
before t that did not change the siate).

Lemma 2 uses Lemma | to derive a bound on ¢+ This is possible, because “the
sum of all Q-values decreases by ane for every executed action, -7 (according to the
invariant), but is bounded from below. That each of the e different Q-values i1s bounded
from below by an expression that depends only on the goal distances follows directly
from the definition of consistent or admissible ()-values and the fact that the Q-values
maintain this property after cvery action execution.

LEMMA 2 Undiscounted admissible Q- or Q-learning with action-penalty representation
reaches a goal state after ar most

2 Z Z [Q%(s,0) + gd(succ(s.a)) + 1] — U°(s%)

sE SN aC Als)
dction executtons m determunistic state spaces.

Theorem 2 uses Lemma 2 and the fact that gd{s) < d for all s ¢ S to state how the
complexity of Q- or O-learning depends on ¢ and 4. Theorem 2 also guarantecs that
admissible Q- or O-learning terminates in safely explorable state spaces, because d 1s

finite for such state spaces.
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siarl

A

goal

goal

Figure 4. An example of a rectangular gridworld

THEOREM 2 Undiscounted admissible Q- or O-learning with action-penally represen-
tation reaches o goal state after at most Ofed) action executions in deterministic state
spaces.

Theorem 2 provides an upper bound on the number of action executions that an agent
controlled by Q- or Q-learning needs to reach a goal state. (Such a worst-case bound is,
of course, also a bound on its average-case performance.) To demonstrate that O {ed) is
a tight bound [or uninformed Q- or Q-learning, we show that it is also a lower bound.
Lower bounds can be proven by e¢xample, one of which is depicted in Figure 3. In
this state space, uninformed Q- or Q-learning and cvery other uninformed exploration
algorithm can make the agent traverse a supersequence of the following state sequence
if ties are broken in {avor of actions that tead to states with smaller numbers: ¢ -9 + 1
times the sequence 123...n - 1, and finally n. Baswcally, atl ot the (X{e) actions n
state » — 1 are executed once. All of these (but one) lead the agent back to state |
and therefore force it to execute another O{d) acoons before it can execute the next
unexplored action, resulting in a fotal of (J(ed) action cxecutions before it rcaches the
goal state. Thus, the following corollary holds:

COROLLARY | Zero-witialized (or (minus onel-initialized) wndiscounted O- or (-
learning with action-penalty representation has a tight complexiry of Qed) action exe-
cutions jfor reaching a goal state in deterministic state spaces.

This complexity can be expressed as a function of the size of the state space: O(ed} <
Ofen), since d < n--1 in all safely explorable state spaces. A state space has ne duplicate
acthiong iff either @ — &’ or suce(s,a) / sucels.a’) for all ¢« © 5 and a,a’ ¢ A(s).
Ofen) < O(n*) for such state spaces, since ¢ < n? The complexity of uninformed Q-
or Q—learning 1s even lower 1n many slate spaces that are typically used by reinforcement-
leamning researchers, because (a) their number of edges often increases only linearly with
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the number of states, and/or (b} their diameter increases only sublincarly in n. Consider
for example deterministic gridworlds with discrete states. They have often been used
studying reinforcement learning; see (Borto, Sution, and Watking, 1989), (Sutton, 19903,
{Peng and Williams, 1992), (Singh, 1992), (Thrun, 1992b), or (Whitehead, 1992)_ In the
state space shown in Figure 4, for example, the agent can move from any square 1o cach
of its four ncighboring squarcs as long as it stays on the grid and the target square docs
not contain an obstacle. Thus, the number of actions increases at most linearly with the
number of states. A rectangular obstacle-free gridworld of size 1 x v has n — xy stales,

e — dry — 2z - 2y statc-action pairs, and diameter d -z +y 2. If the gridworld
is square (xr — ), then its diameter increases sublinearly in n, since d — 2ym 2,

and O(ed) = O(x*) = O{n*/?). Bven for safely explorable rectangular gridworlds that
vontain arbitrary obstacles, the complexity of - or Q-lcarning cannot be larger than
()(nE) action executions, since e < 4dn, d < n - 1, and consequently ed < 4dn? — dn.
Therefore, Q- or Q-learning actually has a very low complexity for finding goal states
in unknown gridworlds.

6.1.1 2 Ceneralization of the Complexity Analysis

We can reduce the analysis of discounted - or (-learning with action-penalty repre-
scntation 1o the one of undiscounted Q- or Q—lcurning with the samo reward structure.
Consider the following strictly monotonically ncreasing bijection trom the (3-values of
a discounted Q- or Q-learning algonithm to the Q-values of the samc algorithm with
discount rate one: map & Q value Q4 (s,a) C {L/(v 1),00 of the lormer algorithm to
the Q-value Q{s,a) = — log (1 + (L — v}Q{(s,a}) C Ry of the latter algorithm. 1f
this relationship holds initially for the Q-values of the two algorithms, it continues to
hold: il the execution of action @ in state = resulis in successor state s', then ecither none
of the Q-values changes or only the Q-values @2 (s,a) and Q2{s, ) change, in which
case

Q5 (s.a) = 1+ UL
= 14 max Q4(s",a")
a’EA{s")
= 14 max ( log (I~ {1 1Q(s.a)))
are Afs)
= —log (1+(1—v)( 1~ max Qs a})

a0 CA(s")
- 10\{?;7(1 - (1 h ’Y)( =1+ “L{("f)))
S e (1 (1 QY (sa)

Because both algorithms always execute the action with the largest Q-value in the
current state, they always choose the same action for execunon (if ties are broken in
the same way). Thus, they bchave identically and the complexity analysis of the latter
algorithm also applies to the former algorithm. ‘Fhis means thal one can proceed as
follows: Given initial Q-vatues QY{¢, @) for Q- or Gr-learning with discounting, ane first
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determines the corresponding Q-values Q9(s, a) according to the above formula. These
Q-values can then be tested for their consistency or admissibility and finally be used
in the formulas of Lemmas 1 and 2 to determine the complenity of discounted Q- or
(-learning with witial Q-values Q%(s. o). Tt the values QY (s, ¢) arc zero-initialized, then
the corresponding undiscounted Q- or Q-learing algorithm has the same initialization
which implies that it has a tight complexity of O{cd) action executions. Conscquently,
the following corollary holds-

¥

COROLLARY 2 Zero-initialized discounted Q- or O learning with action-penalty repre.
sentation has « tight complexity of O(ed) action executions for reaching a poal state in
deterministic state spaces.

The other results from Scection 6.1.4.1. can be transterred m the same way.

6.1.2. One-litialized O-Vialues with Goal Revward Representation

We have shown that uninformed Q- or Q—learning with action-penalty representation s
tractable i deterministic state spaces, because the (3 values change immediately. Since
the valuc-updaie step of Q- or (-learning updates the (Q-values using both the irmnediate
reward and the (values of the successor state, this result suggests that one can achieve
tractability not only by chanping the reward srructure, but also by imitializing the Q
values differcntly. In this section we show that, indeed, - or Q--learning 1s also ractable
it goal reward representation s used (which implics that discounting has to be used as
well, 1.~ 7 1} and the Q-values are 1/~ or one imtialized. The latter initialization
has the advantage that it does not depend on any parameters of Q- or (-learning

The complexiy analysis of 1/v-initialized Q- or Q-learning with goal-reward represen-
tation can be reduced to the one of zeoro initiabived & or Q learning with action penalty
representation. Similarly, the complexity analysis of one-initialized Q- or Q- teaming
with goal-reward representation can be reduced 1o the one of (minus one)-initialized Q-
or (J-learning with action-penaity representation. In both cases, we can proceed in a way
similar to ihe method of Section 6.1.1.2. Thie tnne, we consider the following striclly
monotonically increasing bijeciton from the Q-vatucs of a discounted Q- or Q-learning
algorithm with goal-reward representation Lo the 0 values of an undiscounted @ or Q
learning aleorithm with action-penalty representaiion: map a Q-value ¢4 {s, a) € {0.1/~|
(or zcro) of ihe former algorihm o the Q-value QL (s a) — -1 — log, 5 (s, a) « R
(or zero, respactively) of the laiter algorithm ® Similarly 1w the proot sketeh in the pre-
vious seclion, ong can now easily show that this relationship conticues to hold 1t o
holds for the nitial Q-values. If the vaiues Q'{s o) are 1/ or onc-ininalized, then
the corresponding Q- or @_—]cammg algorithm with action-penalty represcalation s rero-
or (minus onej-mnalized, which mmphes that it has a tight complexity of Ofed) action

executions. Consequently, the following corotlary holds:

CORCLLALY 3 One-imitialized discounted (- or O-learning with goal reward repre-
seniation has a tght complexity of Ofed} action execations Jor reaching a voal staie in

determuisiee ity spoaces
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The other results from Section 6.1.1.1. can be transferred in the same way.

6.1.3. Decreasing the Complexiry Further

We have thown that finding a goal state with aninformed Q- or Oklearning is tractable
if an appropriate representation is chosen. In particular, we identified both undiscounted
or discounted zero-initialized (-values with action-penalty representation and discountod
one-initialized Q-values with goal-reward representation as representations that make
these algorithms tractable (tractable representations}. In this section, we Investigate
how their complexity can be decreased even further by utilizing prior knowledge of the
state space or by learning and usging an action rnodel

6.1.31 Using Prior Knowledge

The larger the absolute values of consistent or admissible initial Q-values are, the lower
the complexity of Q- or Q-»lcarning is (i we assume without loss of generality thal
action-penalty representation and no discounting is used), as can be seen from Lemma 2.
For example, in the completely informed casc, the Q-values are inittalized as follows:

Ofs.a) = 0 for s « < and a ¢ A(s)
R b gdlsuce(s,a)) Tor s € SNG and o &€ Als).

Lemma 2 predicts in this case correctly that the agent necds at mosi - 17(s) - adls)
action cxecutions 1o reach a goal state from any given s € 5. Often. however, the
agent will only have partial prior knowledge ol the state space. Heuristic functions that
approximate the goal distances and are consistent or admissible for A*-scarch (Nilsson.
19713 can be used to encode such prior knowledge. Consistent or adinissible beuristics
are known {or many deierministic state spaces, for example for path planning problems n
spaual domains (Peart, 1981} If a heuristic A (ovith A{s) = 0 for all « & SY e consistent
or admissible for A¥-search, then the following (3-values are consistent or admissible,
respectively, as well:

o

o (i for s ¢ 7 and o & A(s)
e 1 hlsuce(s @) for s SN Cand o & Als)

Thus, consistenl or admissible heuristics can be used inttialize the Q-valucs, which
makes Q- or Q-learning better informed and lowers its complexily.

6.1.3.2 lising Action Models

Although the complexity of uninformed & or () fearning is a small polynomial in the
size of the state space +f 1L operates on a tractable representation, it ofien dircets the agent
to execule actions that are suboptimal when judged according to the knowledge thal the
agent could have acyuired had it memorized all of ws experience. In partcuolar the agent
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this part of the state space is totally connected

o I

Figure 5. A state space for which uninformed Q- or Q-leaming can need at Icast 1/ 160 — 3/16m2 - 1/16mn+
3/16 action executions to reach the goal state (even if it uses a traciable representation), but Qrnap-leaming
needs omly at most 3780 4 3/2n — Z23/% acton executions (tor odd 1 > 3)

can move around tor a long ume in parts of the stalc space that it has already explored.
This inefficiency can be avoided by increasing the amount of planning performed between
action executions, because it enables the agent to make more informed decisions about
which action to execute nexi. 'lo be able to plan between action executions, the agent
has 10 learn an action model. In this section, we show that learming and using an action
model can decrease the complexity of Q- or Q-learning.

Sutton’s DYNA architecture (Sutton, 1990 and 1991), for example, implements plan-
ning in the framework of Q- or Q-learning. The learned action model is used to simulate
action executions and thereby to creale experiences that arc indistinguishable from the
execution of actions in the world. This way, the world and its model can interchangeably
be used to provide input for (- or Q-lcarning. Actions are executed in the world mainly
te refine (and, in non-stativnary environments, 1o update) the model. Using the model,
the agent can opurmize its behavior according to its current knowledge without having to
execute actions i the world. In particular, the model allows the agent o simulate any
action at any time, whereas the world constrains the agent to execute enly actions that are
available in its current state, Various rescarchers, for example Peng and Williams (1992),
Yee (1992), and Moore and Atkeson (1993b), have devised strategies for choosing which
actions 1o stmulate i order (o speed up planning.

Qunup-learning 1s an algorithm that fits the DYNA framewaork. I remembers the action
model of the part of the state space that it has already explored and exceutes unexplored
achons in the wame order as - or (A:L'Iearning, but always chooses the shortest known
path to the next uncxplored action: Q,,,p-learning uses 1ts current (incomplete) action
model to simulate the behavior ol G- or Q]eaming until 1t would execute an uncxplored
actinn Ther, 1l uses the same acticn model to find the shortest known action sequence
that leads from its current stale in the world to the stale in which it can execuic thes action,
direets the agemt 10 exceule the aciton sequence and the unexplored action, and repeats
the cycle. Per construction, Q- learning cannot perform worse than Q or ") learning
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if ties are broken in the same way, but 1t can be more efficient: Consider, tor example, the
state scquence that umnformed - or O-learning on a tractable representation traverses
in a reset siate space (shown m Figure 2) of size n — & if tieg are broken i favor of
actions that lead to states with smaller numbers: 121231234123451 2123456, First, Q-
or Q-learning finds out about the effect of action @, in state 1 and then about ey in 2, @
N2, asin 3w, in 3, azind, e, ind, ¢y in 3, and ¢, in 5, 0 thie order. O,
cxplores the actions i the same order. However, after 1t has executed action . in state
5 for the first time and, as a consequence, gol reser inlo state 1, 1t reaches state 5 agam
faster than Q or Q learning: it goes from state 1 through states 2, 3, and 4, oy state h,
whereas (- or Q—lcaming goes through states 2, 1, 2, 5, and 4. Thus, Q. -learning
traverses the state sequence 12123123412345123456, and 18 two action execulions faster
than Q- or ) learning. Figure § gives an example of a state space [or which the big-()
complexities of the two algorithms differ: there is a tie-breaking role that causes Q- or
Q—lenming 10 need O(n®) action executions 10 reach the goal state (cven il it uses a

i

learmng

traclable representation). whoreas Qe learning needs al most ()(712) action axeculions
no matter how ties are broken; see (Koenig and Simmons, 1992) for the proot. This
shows that 1t 15 possible to augment (- or Q-tcarming with a component diat learns action
medels such that the resulting algonthm never performs worse than (3 or €)-learning,
but oficn performs better In some state spaces, one can reduce the aumber of action
exceutions cven hy more than a constant factor. There are “hard” stale spaces. however,
for which no uninformed slgorithm can have a lower big-€3 complexity than utintormed
Q- or Q—Iuaming with & traclable representation {an example 15 the siale space shown in
Fieure 2.

Note that we have not included the planning tine in the complexity measare. When
leartung an z2ction model and using i1 for planning, the agent has 1 keep more infor-
mation arcund and perform more computations between action executions However,
Chances are thal e increased deliberation time teduces the number of action exeoubons
that arc needed lor reachine a goul state. Consequently, using an action mode! can be
advantageous if executing aciions in the world is slow (and expensive;, bt stmalating the
execalion of acrions m a model of e workd s fast (and mesponsived. I plannmg time
is not neghgible compared s cxecution time, then there 1§ a trade offt simalating actiony
allows the ageat o wilize s current knowledge better, whareas exceuting actions in ihe
world increases 118 knowledyze and allows it 1o sturmble across a goal. Also. ihe tower ac
tions arc wimulated between action excoutions the less opparlunily & non-slawonary siatc
gpace has 1 change and the closer the mode! sl retlecis reaiity. Planning approaches
that take these kinds of rrade-olfs inlo account have, for example. boen myestugated by
Boddy and Dean (1989), Russell and Wefald (1991), Goodwin (1994 and Zilherstein
{1963,

6.2.  Nen-Deterministic State Spaces

So far. we have stadicd reprosentations that make Q- or (-learning ractable i deternon
istic state spaces, We now show thal oor analysis can casily be generahzed 0 Or-learning
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in non-detenministic state spaces. In non-deterministic state spaces, admissible Q- learning
15 defined as follows:

Definition. Undiscounted Q-learning with action-penalty representation ts admissible in
non-deterministic state spaces iff its initial Q-values are admissible and its value-update
step s “Sct (s, 0} 0 min(Q(s,a), =1+ U(s"})."

This definition uses the valuc-update step of undiscounted Q-learning and is identical
10 the second part of the definition of admissible ¢ or § learning in the deterministic
case (Page 236). It allows us w transfer the complexity analysis from deterministic fo
non-deterministic state spaces. [n particular, our complexity analysis continues to hold if
we replace gd(suce(s, a)) With Xy ¢ guee(s,0) 98(47), which reflects that we perform a
worst-case analysis over all strategies of nature; and undiscountied admisstble Q—learni'ng
with action-penalty representation reaches a goal state after at most

2 x X Qs )+ max  gd(s) + 1] — U (%)

- T . 5 Csuce(s,a)
sCSVGaC Als)

action execubons in non-deterministic state spaces no matter which strategy nature uses,
Thercfore, its complexity 1s at most Oed) action executions, just like in the deterministic
case. (This is duc to our definition of d that assumes that nature (s an opponent of the
agent and cncompasses deterministic state spaces as a special case.) The complexity
is tight for uninformed Q-learning, because it is tight for deterministic state spaces and
cannot be lower in non-determimstie state spaces. We can use the transformations of the
{J-values that we used in Sections 6.1.1.2. and 6.1.2 to show that the same complexily
result holds for discounted (-learning in non-deterministic state spaces il either zero-
inttialized Q-values and action-penally representation or one-inttialized ( values and
goal-reward representation is used. Consequently, the following corollary holds:

COROLLARY 4 Zero-initialized undiscounted or discounted Q-learning with action-
penalty representation and one initialized discounted O-learning with goal reward rep-
resentation have a tight complexity of Oled) action executions for reaching a goal state
in non-deterministic staie spaces.

This complexity result is farly general, since it provides an upper bound on the number
of action executions that holds for all strategies of nature. For example, it holds for
both nature’s strategy to select successor states randomly (the assumption anderlying
Q-learning) and 1its strategy i select successor states deliberately so thai 1t hurts the
agent most (the assomption underlying Q-tearning).  But il also applies o scenarios
where the agent cannot make assunptions about nature’™s strategy. Assume, tor example,
a deterrinistic world which the agent can only maodel with low granularity. Then, 1t
might not be able to identity 1ts current state uniquely, and actions can appear to have
non-deterministic effects: sometimes the execution of an action results 1 one successor
state, sometimes in another. The agent has no way of predicting which of the potential
successor states will occur and could attribute this to nature having a strategy that 18
unknown to the agent. Our complexity bound hoelds cven in this casc.
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7. Extensions

Space himitations forced us to limit our presentation to an analysis of the goal-dwected ex-
ploration behavior of two reinlorcement-learning algorithms (Q-learning and O—]earning)
for two ditferent reward structures (action-penalty and goal-reward representation). We
have generalized this analysis in three orthogonal directions:

¢ Reward Structure: In our analysis, we have assumed that one can choose an ap-
propriate reward structure when represcating a reinforcement-learming or exploration
problem. Although this is usually true, sometimes the reward structure is given. In
this case, even if the reward structure 1s dense, the immediale rewards might not
all be uniformly minus one, as assumed by our analysis ot ()- or Quleaming with
action-penally representation. The results presented in this article have been gencr-
alized to cover dense reward structures with non-uniform costs. The complexity of
zero-mitialized Q- or Q-learning with a non-umiform actien-penalty represcntation,
for example, is tight at O(ed) action executions, where d is now the weighted diam-
eter of the state space divided by the smallest absolute value of all immediate costs;
sce (Koenig and Simmons, 1992).

s Exploration Algorithm: We have restricted our analysis to two reinforcement-learning
algorithms, Q-learning and Q—lca.rning_ Q-learning behaves very similaily w value-
teration {Beliman, (937}, an algorithm thal does not use Q-values, but vather the
U-values directly. l-step on-line value-iteration with action-penalty representation
behaves in deterministic state spaces identically to Korf’s Learning Real-Tine A*
(LRTA*) search algonthm (Korf, 1990} with search horizon one.  Korf showed
that LRTA* is guaranteed to reach a goal state and, if it is repeatedly reset inta
the start statc when it reaches a goal state, eventually delcnuines a shoriest path
from the start state to a goal state. Subsequently, Barto, Bradtke, and Singh (1995)
generabized these results to probabilistic state spaces. Since on-line value-iteration
and, conscquently, LRTAY behave like 1-step Q-lewmnimg ur a nnedified state space
(Kocmg and Simmons, 1992), we have been able to wansfer our complexity results
to [LRTA* and, in the process, generalized previous complexily results tor LRIA®
by Ishida and Korf (19913, see (Koonig and Siomons, [9950), The complexily of
zero-mitialized LRTA* and uninformed value-iteration that operates on a tractable
representation is tight at O{nd) action executions; see (Koenig and Simmons, 1995h).

o Tusk: We have analyzed goal-directed exploration problems, because these tasks need
to be solved af one wants to solve goal-directed reinforcement-learning problems in
unknown state spaccs. Our analysis gencralizes to finding optimal policics, boecausc
this problem can be solved either by repeatedly resetting the agent into ifs start state
when 1t reaches a goal state (1f the task 15 to find an optirnal behavior from the
start state) or, 1f such a resct action 1s not available, by iteratively cxecuung two
independent exploration algortthms: one Q- or Q-tearning algorithm that finds a goal
stale, and another one that finds a state for which the optimal action assignment
has not yet been determined. (The latter method determines optimal behaviors from
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all states n strongly connected state spaces.) In both cases, we have been able to
show that the complexity of uninformed Q- or (-lcarning that operates on a tractable
representation emains tight at O{ed), sce (Koewg and Simmons, 1993). (For nou-
deterministic state spaces, one has 1o make assumptions about how long nature 1s
allowed to “trick™ the agent by never choosing a bad action outcome and therehy
hiding its existence.)

8. Conclusion

In this article, we have analyzed how 1-step reinforcement-learning methods solve goal-
directed reinforcement-learning problems in safely explorable state spaces — we have
studied their behavior until they reach a goal state for the first time. In particular, we
studied how the complexity of (Q-lcarning methods {measured in action executions), such
as Watkins” Q-learning or Heger's Q—learning, depends on the number of states af the
state space (n), the total number of state-action pairs (e), and the largest goal distance
{¢). When formulating a goal-directed reinforcement-learning problem, one has to decide
on an appropriate representation, which consists of both the immediate rewards that the
reinforcement-learning atgorithms receive and their initial Q-values. We showed that
the cheice of representation can have a tremendous impact on the performance of Q- or
Q-learning.

We considercd two reward structures that have been used in the literature to learn
optimal policics, the goal-reward representation and the action-penalty representation.
In the action-penalty representatinn, the ageni s penalized for every action that ir ox-
ccutes. In the poal-reward representation, it is rewarded for enlering a goal state, but
not rewarded or penalized otherwise. Zevo-initialized Q-lcarning with goal-reward rep-
resentation provides only sparee rewards Fven m deferministic state spaces, it pesforms
a random walk. Although a random walk reaches a goal state with probahiiity ome, 1ts
complexity is infinite and even its average number of action exccutions can be expo-
nential 1n n. Purthermore, speed-up techniques such as Lin’s action-replay technique do
not improve its performance. This provides motivation for making the reward structure
dense. Since the value-update step of Q- or (-learning updates the Q-values using both
the immediate reward and the Q-values of the suceessor state, this can be achicved by
either changing the reward structure or imtializing the Q-values differently. And indeced,
we showed that both (undiscounted and discounted) zero-initialized Q- or (“}learning
with action-penalty representation and (discounted) one-initialized Q- or Q-learning with
goal-reward representaticn are tractable. For the proot, we developed conditions on the
initial Q-values, called consistency and admissibility, and - for initial Q-values with
these properties  a time-invariant relationship between the number of executed actions,
the imual Q-values, and the current Q-values. This relationship allowed us to express
how the complexity of Q- or Q-lcarning depends on the initial Q-values and properties
of the state space. Our analysis shows that, if u wactable representation 1s uged, the
greedy action-selection strategy ol Q- or O-learning always exceutes the action that lo-
cally appears to be best, and even uninformed (3- or (-learning has a complexity of at
most ({ed) action cxecutions in deterministic state spaces. The same result holds for
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Q—Ieurning in non-deterministic state spaces, in which we viewed remnforcement fearning
as a game where the reinforcement-learning algorithm sclects the actions and “nature,” a
fictitious sccond agent, sclects their cutcomes. (The bound holds for all possible outcome
selection strategies of nature.)

If a safcly explorable state space has no duplicate actions, then O{ed) < O(n*). The
complexaty of (- or Q-learning is even lower in many state spaces, since e often grows
only linearly i m and/or d grows only sublinearly in 7. Examples of such state spaces
are gridworlds, which are pepular reinforcement-learning domains. The complexity can
be reduced f{urther by using prior knowledge of the state space and by learning action
models. Prior knowledge can be encoded in the initial Q-values by utilizing henristics that
are consistent or admissible for A*-search. Action models predict what would happen if
a particular action were executed. We showed how to augment Q- or (Q-lcarning with a
component that Jearns action models such that the resulling algorithm, which we called
Qi uap-icarning, never performs worse than Q- or O-learning, but reduces the complexity
by at least a factor of n (1.e. by more than a constant faclor) in some Stats spaces.

To summarize, reinforcement learning algorithms are tractable if a smlable represen-
tation is chosen. Our complexity results provide puidance for empincal rewnforcement-
learning rescarchers on how to model reinforcement learning problems 10 a way that
allows them to be solved efficiently — even for reinforcement-learning tasks that cannot
be reformulated as goal-directed reinforcement-learning or exploration problems n safely
explorable stalc spaces: the performance can be irproved by making the reward structure
dense. Our results also characterize which propertics of state spaces make them casy to
solve with reinforcement-learning methods, which helps empirical reinforcement-learning
researchers o choose appropriate stale spaces f[or their experiments.
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Notes

|, To be precise: it does not matler whether states thal the agent cannot possibly reach trom its slart state
are lost. Furhermare, for goal-dirscted exploration problems. we cun disregard all states that the agent
can only reach by passing through a goal state, since the agent can never occupy those states. We assurme
without 10se ot generality that all such staies have becn removed from the state space.

!\.2

A similay stajement also holds for Q-lcamingr it never changes a (Q-value. However, since the Q-values are
net nitatized optimistically. zero-lnitialized O leaming with goal-reward represemarion cannot be used to
learn shodest paths Studying the goal-directed exploration problem for O-fearning with this representation
therefore does nol provide any insight inmo te comesponding winfoieement learmng problom.
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3. Our analysis can be generalized o goal-directed reinforeement-leaming probleras. For goal-directed ex-
pleratien problems, the definition of admissible Q- or Q-karning can be broadened, since otc can add the
same constant Lo all O values withour changing the behavior of (- or O-learning until it reaches a goal
state for the firer time. Given initial Q-values for a goal-direcied exploration problem, one can thersfore
add a constant o all Q-values before defermining whether they are consistent or admissible.

4. In other words: the value update step is “Set Q(s, @) 1= {1 - a)Q{s,a) + alr{s, a, &) + U (s
where (s, a, 7] — 1 and o — ¢ — 1.

5. Our analysis can be generalized to goal-directed reinforcemeni-learning problems. For goal-dirccted ex -
ploration preblems, the statement can be broadened as follows: According to Note 3, one can add the
same constant 10 all valoes QS(H @) without changing the behavior of undiscounted Q- or O-learning with
achion-penally répresentation untl it reaches u goal state for the first time. Since Q5(s. a) — log e =
(L depn@Qiisa)) —logae = 1 log. et (s a). one can multiply all values ©9(s, a) with
some positive consiant ¢ without changing the behavior of discounted (- or Q-lcm‘ning with goal-reward
represeniation until 1i reaches a goal staie lor the first time.
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