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Abstract.  In this article, an approach to improving the performance of robot cenrinuous-path operatien is
proposed. This approach utilizes a muitilayer feedforward neural network to compensate tor model uncertainty
associated with the robotic operation. Closed-leop stability and performance are analyzed. It is shown that the
closed-loop system is stable in the sense that all signals are bounded; it is further proved that the performance of
the closed-loop system is improved in the sense that certain error measure of the closed-loop system decreases
as the network leaming process is flerated. These analytical results are confirmed by computer simulation. The
effectiveness of the propesed approach is demonstrated through a laboratory experiment.
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1. Introduction

In many industrial operations, a robot is required to follow a continuous path accurately.
An example of this 1ype of aperation is arc welding, where the end-effector of the rohaot
is required to follow a prescribed path with a prescribed velocity. Currently, industrial
robots for continuous-path operation {also known as trajectory tracking) are “programmed”
by the so-called “walk-through”™ method, where an aperator physically guides the rohot
through a sequence of desired movements which is then stored in the contreller’s memory.
Such a programming methed is time consuming and uneconomical, because during the
walk-throngh, the robot 1s out of production activity.

Analternative to the walk-through method i1s the so-called “off-line programming” method,
where a high-level programming language is used to write a control program which speci-
fies actiong of each actuator that would praduce the desired motion of the robot. Currantly
industrial robots arc PID-controlled. (A PID controller is a controller with three terms
in which the output of the coniroller is the sum of a proportional term, an integral term,
and a differentiating term, with adjustable gain for each term (Dorf, 1992).) Off-line pro-
gramming for continuous-path operation based on PID control may not produce the desired
robot motion for the following reason. Since the robot dynamics is nonlinear while PID
control is a linear-control method, applying PID control to the trajectory tracking problem
would require a gain scheduling approach using local models; that is, the robot dynamics 1s
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linearized about some operating points so that the control gains can be selected to achieve
certain performance specification. The trajectory, however, varies with time (as opposed ro
a set-point}, therefore the gains so selected may not be appropriate due to the linearization.
As a result, significant tracking error may occur.

A technique known as “computed 1arque” (Spong & Vidyasagas, 1980) has been shown
to be an effective alternative to PID control under a condition called “exact cancellation
of nonlinearity”. In the computed torque method, control actions are generated based on
a mathematical model of the robot. Fxact cancellation of nonlinearity would result in a
linear decoupled system, but it requires that the parameters in the dynamics model of the
robot be known exactly. Failure to meet this condition leads to certain undesirable signals
calied “uncertainty”, which must be compencated in order to improve the performance of
the robot in continuous-path operation,

Investigations dealing with uncertainty reported in the robotics literature can in principle
he classified under the following two approaches: robust control and adaptive conuol. The
premise of robust control (Corless & Letimann, 1981) is that although the uncertainty is
unknown, it is possible to estimate the “worst case™ bounds on its effect an the wracking
performance of the manipulator, The robust control law is designed with the objective (v
overcome the effect of the uncertainty (rather than to “cancel” the uncertainty so that a linear
decoupled system is obtained). In the adaptive control approach (Ortega & Spong, 1989),
the basic: premise is that by changing the values of gains or other paramecters in the control
law according to some on-line algorithm, the controller can find a set of values for these
gains or parameters so that the trajectory tracking error is reduced. Stability analysis of
these approaches often makes use of the Second Method of Lyapunov, which guarantees
that the tracking crror will be reduced to zero or a small neighborhood of zero as time
goes to infinity. Other than in the context of exponential stability, which is much more
difficult to obtain, T yapunov stability generally provides no clear insight about the transient
performance of the manipulator (Spong & Vidyasagar, 1989).

A class of computational models known as neural networks has been applied to system
control in general and to robot control in particular, ¢.g., (Miller, Sulton & Werbos, 1990).
(The use of the word “neural” to describe such computational models stems solely from
modern convention. Although their structure may have been derived from neuronal mod-
els of the central nervous system, the computational models discussed in this article are,
at most, only mathematical abstractions of biological neuronal systems.) Justification for
using neural networks for robot control is based on the following properties of neural net-
works: (i} The ability of the ncural network to “learn” (through a repetitive raining process)
(McCleltand & Rumelhart, 1986) enables a controller incorporated with a neural network
to improve its performance. (ii) The ability of the neural network to “generalize” what
it has learned (Denker, ot al., 1987) cnables the controller also 10 respond 10 unexpected
sitwations. (ii1) The structure of neural networks allows massive parallel processing, es-
pecially when the neural networks are implemented in hardware using VLSI technology
(Gelsner & Péchmiilier, 1994); such inherent cullective processing capability enables the
neural network to respond quickly in generating timely control actions.

Itis due to these properties that a neural-network-based approach to uncertainty compen-
sativn could be considered potentially advantageous over both robust control and adaptive
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control. The learning ability of neural networks is especially desirable in controlling robots
that perform repetitive manutacturing tasks. One reason for using robots instead of human
workers in manufacturing is that rebots can perform repetitive tasks with better quality and
consistency. Unavoidable in repetitive robotic operation in an industrial setting, however,
is the sustained “wear-and-tear” (c.g., joint friction, wear of gears, etc.) of the robot. Such
wear-and-tear inevitably effects the dynamic characteristics of the robot. In other words, the
wear-and-tear introduces uncertainty into the robotic systern, and consequently degrades
its performance. A ncural network that learns (iteratively) 1o compensate for the effect
ol such wear-and-tear would enable the manipulator 1o maintain satisfactory performance
consistently throughout its cxpected litetime.

In this article, we propose an approach tn rohot trajectory tracking using a multilayer
feedforward neural network. {(In the sequel, the term “neural network” or just “network” is
sometimes used instead of “multilayer feedforward neural network” for cenvenience.) The
neural network is used explicitly to compansate for the uncertainty in the manipulator. We
address the dynamical behavior of the manipulator in a two-step analysis. First we show
that the closed-loop system based on the proposed approach is stable in the sense that all
signals in the system are hounded. We then show that the neural network improves the
performance of the robot in the sense that certain error measure of the closed-loop system is
reduced as the learning process of the neural network is iterated. We subscquently present
simulation resnlts that confirm the analytical conclusions. and experimenial results that
demonstrate the effectiveness of the proposed approach.

The contributions of this work to the application of neural networks to robot control are:
(i) The insight obtained (through the analysis on the dynamics of the neural network) on
the stability and performance of the ctosed-loop system with the neural network learning
on-line is significant. The results of the analysis confirm that neural networks could be
used as plausible toals for robot control within the context of uncertainty compensation.
(ii) The experimental implementation of the proposed approach together with the positive
experimental results reported in this article clearly demonstraic the effectiveness of the
neural network as an uncertainty compensator for practical robotic tasks. Many studies
on the application of neural nctworks to system control in general and to robot control in
particular rely on numerical simulation to verify the conclusions therein; very few propesed
schemes have been physically implemented to verify their effectiveness. Exiensive and
conclusive experimental results arc needed in order to affirm neural networks as viable
tools for robot control. The experiment reported in this article represents an incremental
step in gathering such resalts.

This article is organized as follows. Section 2 reviews the literature on the applicaticn
of neural networks to robot trajectory tracking. Section 3 formulates the dynamics of
the robotic system and presents the control law that incorporates a compensating signal
from the neural network. Section 4 shows that a compensator exists in the form of a
multilayer feodforward neural network, and deseribes the ulgorithm used for nenral network
learning. Section 5 presents analysts of stability and performance. Scction 6 describes the
computer simulation conducted to verify the analytical conclusions, and presents the results.
Section 7 describes the experimental implementation of the proposed approach, and presents
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the experimental results. Section 8 discusses the implications of the results and suggests
dircetions for future research.

2. Literature Review

Various robot control techniques using neural networks reported in the literature can in
principle be classified into two general schemes according to the role of the neural network.
Figure | 1llustrates the first scheme.
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Figure 1. Neural Network as [nverse Dyvnamics Moedel.

In this first scheme, the neural network is to repetitively learn to represent the inverse
dynamics of the manipulator, so that by feeding the desired trajectory into the neural
network, the desired torque signal is produced as the output of the nctwork. The PD
controller 15 used mainly to stabilize the closed-loop system and to guide the repetitive
learning process of the neural network. (A PD controller is a controller with two terms in
which the output of the controller is the sum of a proportional term and a differentiating
term, with adjustable gain for cach term (Dorf, 1992).) Gomi and Kawato (1990) usc this
scheme for robot trajectory tracking, and present computer simulation results involving a
two-link manipulator. Ciliz and Igik (1990) utilize this scheme to control a manipulator
under payload variation. Yabuta and Yamada (1991) apply this scheme (without the PD
controller) to manipulator control, and demonstrate its effectiveness using an onc degree-of-
frecdom servomechanism. Arai, Rong and Fukuda (1993) study the possibility of increasing
the speed of the learning process.

In the second scheme, illustrated in Figure 2, the neural network is used to deal with
uncertamty in the model parameters. The inverse dynamics control law is used W gencerate
an approximate torque signal. This torque signal is then augmented by a compensating
signal generated by a neural network. The neural network is to learn to gencrate the proper
compensating signal by adjusting its weights so as to maximize soime performance measure,
such as reduction of the tracking error. Okuma and Ishiguro (1990) apply this scheme to the
control of a manipulator with consideration of joint friction, and present results of computer
simulation involving a twe-link manipulator, Kuan and Bavarian (1992) also swudy, again
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through computer simulation, the problem of dealing with joint friction using this scheme.
Zomaya and Nabhan (1993) apply this scheme, without the PD controller, to control a
manipulator, and conduct computer simulation using the dynamics moedel of a PU M A 560
robot.
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Figure 2. Neural Network as Compensator.

Although attempts have becn made, among the studies cited above, to analyzc the stability
and performance of these schemes, the results reported remain inconctusive, mainly because
they are obtained based on very restrictive assumptions. It appears that in the current
literature on the application of neural networks to robot control, the issues of closed-loop
stability and performance have not been resolved. The importance of reselving these issues
is underscored by the fact that, as part of the control system, the dynamics of the neural
network is coupled with that of the manipulator; censequently, the dynamical behavior of
the neural network, namety the process of weight adjustment, will inevitably atfect the
stability as well as the performance of the closed-loop system.

It also appears that many studies on the application of neural networks to robot control
rely on numerical simulation to verity the conclusions therein; very few proposed schemes
have been physically implemented to verify their effectiveness.

It is in the context of these observations that the work described in this article comple-
ments other studies reported 1n the hiterature. In this article, we show that the closed-loop
system based on the proposed approach is stable and that the neural network improves the
performance of the closed-loop system through iterative learning. Our analytical results
confirm that neural networks can be used as etfective tools to improve the pertormance
of a manipulator in continuous-path operation. We subsequently present the results of the
experimental implementation of our proposed approach involving a laboratory manipula-
tor. The experimental results clearly demonstrate the eftectiveness ol the neural network
in improving the performance of the robotic system. In short, the work presented in this
article complements other published studics both in analytical aspect and in experimental
aspect.
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3. Dynamics and Control

In general, the dynamics of a manipulator with n joints can be described by a set of nonlinear
differential equations, compacily expressed in the form (Spong & Vidyasagar, 1989)

M{g)j+ hig.q} =, (h

where ¢ € R™, ¢ € R", and § € R™ are respectively the joint position, joint velocity,
and joint acceleration vectors, A (-}) € R™*™ is the inertia matrix, h(-} € R™ is a vector
containing the Coriolis, gravitational, centrifugal and frictional terms, and 7 € R™ is the
input torque vectar. With regard to an industrial robot, the following characteristics usually
apply: (i} the manipulator is composed of serial links; (ii) the manipulator is not redundant;
and (iii) the links and joints of the manipulator are rigid.

Supposing that the terms A () and h(-) are known precisely, the inverse dynamics control
law can be written as

T = .FLC[(Q)U + h(g, (J)' @

where u 1s a control input to be specified. Substituting (2) into (1) yields; § = w. Let u be
a PD-type control of the form

w=§+ Ko (¢ — ¢) + K,(q% - q), (3)

where qd e R" g% e R™, and r'jd & R™ are respectively the desired joint position, joint
velocity, and joint acceleration vectors, and K, € R"™™™ and K, € R™" are diagonal

d
L N - 0 I . .
gain matrices. Let ¢ = [ i g ] and A = { K, -K, J . Then the error dynamics of
the closed-loop system can be expressed as
é = Ae, (4)

which represents a linear decoupled system whose dynamical behavior can be completely
specified by selecting appropriate values for the gains K, and K, (Dorf, 1992).

The inverse dynamics control law (2) is idealized because it results in « linear decoupled
system only if the the values of the parameters in M {-) and h(.) are known preciscly. In
praclice, such precise knowledge about a physical system is not available. Thus the realistic
inverse dynamics control law takes the fonn

7= M(gyu + hig, ), ®

where M{-) and k{.) are respectively the estimates of M(-} and h{-). Now with (3) and
(5), the resulting closed-loop error dynamics becomes

&= Ac + Bn(q,§, G}, (6)

where B = 0,1]", and n(q,4.4) = (M~"M — 1§ + M~Y(h — h). Note that for brevity,
the arguments of M, h, M, and /i have been omitted.
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The system (6) is exactly the same as the lincar decoupled system (4) if the term 0} is
identically zero. This term exists whenever M() # M and/or B{-) # h(.), and is referred
to as the uncertainry. Due 10 the presence of 7, the dynamical behavior of the system (6)
can no longer be “shaped” as desired by simply selecting appropriate values for the gains
K, and K.

‘lo reduce the effect of the uncerlainty, a compensating signal v is intoduced as part of
the control signal u as follows

w=§ + Ko(¢? @)1 Kylgt - g+ o )
Substituting (5) and (7) into (1) yiclds the error dynamics of the closed-loop system
é = Ae + BAw, (&)

where Av = (g, ¢, §) — v is referred to as the control error. 1f v is gencrated such that
Av — 0, then (8) becomes: ¢ = Ae, which is again the lincar decoupled system (4).
The benefit gained through uncertainty compensation (i.c., Ay — 0} is that, because the
robotic system is rendered linear and decoupled cven in the presence of the uncertainty 1,
the dynamics of the robotic system can now be contiolled to meel specific performance
requirements by selecting appropriate values for the gains. Figure 3 schematically depicts
the closed-loop system.

q- 4
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Figure 3. Uncertainty Compensation in Robot Control.

4. Uncertainty Compensation

The objective of uncertainty compensation is to generate the appropriate compensating
signal v such that the control crror Av vanishes, 1.e., Av -» 0. An ideal compensalor
is a function whosa mput « exactly equals that of the function n(-). Based on such a
premise, the problem of uncertainty compensation can then be considered as a functien
approximation problem. A multilayer feedforward neural network represents an attractive
mechanism for dealing with such a problem, because it is capable of approximating any
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centinuous function, and more importantly, it can learn to approximate any given continuous
function (McClelland & Rumelhart, 1986).

A multilayer feedforward neural network consists of a collection of processing clements
(or units) arranged in a laycred structure (MeClelland & Rumelhart, 1986) as shown in
Figure 4.

) <
k=Ky 7 Jda

fnput Hidden Gutput

Layer Layers Layer

Figure 4. Neural Network Struetire

For the neural network with two hidden layers, as depicted in Figure 4. the mapping
realized by the network can be described as follows. Let the number of units in the input
layer, the first hidden layer, the second hidden layer, and the output layer be L,,, K., J,,
and I, respectively. Let Tr.Fs, and 7 represent the input to the first hidden layer, the
second hidden layer, and the output layer respectively, and lct ¥k, 7; and v; represent
the corresponding output of these layers, then 7, = Zf;f’l Sz, U = g(Tr) 7y =
L afp-i1
and ¢ is a scaling factor. For convenience a gencralized weight vector © is defined as:
O =W, W.. . W, B Ry, .. Ry 8. 5, . Sk, 1, where (-}, represents the
a*" tow of the matrix (-). The mapping realized by the nctwork can then be compactly
cxpressed as: v = N(Z. @), where Z is the input vector, ie. 7 = (z1, 29, ...2, zp )
and V is used as a convenient notation to represent the mapping achieved by the network.

It has been proven that a multitayer fecdforward neural network with one hidden layer
(containing a sufficient number of units) is capable of approximating any continuous func-
tion o any degree of accuracy (Cybenko, 1989). It is in this scnse that multilayer feedfor-
ward neural networks have been cstablished as a class of “universal approximators”. Thus,
for the uncertainty function 5(Z}, where Z = (g, ¢, §), there exists a set of weights @™ for
aneural network (with a sufficient number of hidden units) with the output v¢ = N{Z, ©*)
such that, for some ¢ = 0, ||y — v¥|| < ¢, where ||(-)|| denutes thie supremum of {-).

Note that the above statement only assures that the weights ©* exist, it does not indicate
what their values are, or how to find them. To determine these weights 1s the objective of
neural notwork learning. Let the cost function w be minimized he: Ty = %A’UTL\U.

SR B, 0, — g7, ri — E‘j];] Wiy, and vy = g(r,}, where g{z) — ctanh{x),
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Applying the crror—hackpmpdgatlon algorithm (McClelland & Rumelhart, 1986) yields:

0= — A, r)jo = — A, AT 3;}_; where A, is the learning rate. Since Av = ¥ — v, where

v is the unknown desired output of the network, and ‘90 0, the weight update rule be-

comes: © = /\”A'HT;% Specifically, the dynalmus of the weights W33, £, and Sy, can

be cxpressed (Muller & Reinhardt, 1990) as: W,; = A, 1 A Ry = )\ L, u ,and Sy =

AL iz, where Ty = Awg' (1), T = '3, )v“ T, W, fk = g5 327 TRy, and

‘_J;—I

gy = %J(() The learning process is illustrated in Figure 5.

Z

A Uncertainty i

Figure 5. Neural Network for Uncertainty Compensation.

The control error Av can be determined in real-time, according to (8), as follows
Av =" — G+ Ko ("~ 4} + Kplg" — 4. (9)

The closed-loop dynamics of the rubotic systein with the neural network learning on-line
1s described by

{ £ = Ae - BAv(y, §.4, 6) a0
0= AT (q,¢. ¢, ©)L2HEL000

Stability and performance of the system (10} are exantined next.

5. Analysis

We first prove that the closed-loop system with the neural network learning on-line is
stable in the sense that all signals in the system are bounded. We then show that the
performance of the system is improved in the sense that certain measure of the control
error Av decreases as the learning process is iterated (i.c., as the number of learning trals
increases). The conjecture is that reduction in the control error eventually leads to reduction
in the trajectory tracking error. "This conjecture is verified by the results of the computer
simulation presented in Section A
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5.1. Stability

THEOREM 1 Given a continuous and twice-differentiable reference position trajectory
¢ (t), the system (10) is bounded-input bounded-output (BIBO; stable for sufficiently large
gains K, and K,

Note that a system is said to be BIBO stable if for a bounded input, the output of the
system is also bounded. This term is defined rigorously in Appendix A. Proof of the above
theorem is presented in Appendix B. It suffices to state here that this theorem asserts that
for sufficiently large gains, the control input v and the trajectory tracking error e in (10) are
bounded.

COROLLARY 1 The acceleration signal §(t) is bounded.
COROLI.ARY 2 The control error Av is bounded.

COROLLARY 3 The weights of the neural network remain bounded during a given trial.

Proofs for Corollaries 1.2, and 3 can be found in Appendix C, D, and E respectively. We
nextexamine how the network learning process affects the performance of the manipulator.

5.2, Performance Improvement
Preliminaries

Let ¢ represent the continuous time variable, i.e., 0 < ¢t < oo, Let learning start at time
t = 0, and let each trial last 1" seconds. Then the pt? trial spans the time period from
t={p— 1)T"tot = pT. Notc that p is thus implicitly defined as a positive integer.

Let £ be the time variable associated with one trial, i.e., 0 < & < 1. (The notation 7 from

here on means either %%” or %i as 1t should be clear from the comext.) Let z(p, £) denote
<

the value of the variable z at the £* second of the p*” trial. Then z(p, 0) represents the
value of the variable  at the beginning of the p** trial, and a{p, T} represents the value of
the variable x at the end of the p** trial. Note that x(p, ) = xz(p—1,7). Let ©,, be an
element of the weight vector ©. Let Ad,, (p, &) denote the change of ©,,, during the first £
seconds of the p™ trial, i.e., Af,,(p, £) = f(}g Onlp. o)do.

the LE -norm of a Lebesgue integrable function £{t) : R — R", denoted by || fllsos
15 defined as: | f|lo = €85 8UPrefo.) | f(E)] < oo, The extended L7 -space (with the
truncated L7 -norm (|(“)rffoc), denoted by L7, is defined as: L7, = {f - R. —

) t) fort € [0, T
R fr € LL V1 < oo}, where fr(f) = g( : o[hcrwi[se. |

. For convenicnce, the

notation [| f{| 7o is used to denote || f1!| .
Let C[0, T denote the family of Lebesgue integrable function fil§) forall € € [0,7].
The Lo-norm of a vector function f(€) = (f,. fs, ..., f, otk fi € Cl0,T), over the

L
time interval [0, 77 is defined (Vidyasagar, 1992) as: 1 Flfzr = (InT fT(E;)j(E)df) " For
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convenience, the notation || - || tnstead of || - |27 1s used to denote this norm in the subsequent
analysis.

PROPOSITION 1 For the closed-loop system (10), there exists some small A, > 0 such
that | A (p+ 1,6) — Al (P, &) Tee << 1, forall £ < [0, T).

The proof of this proposition is presented in Appendix F.

Remark: Since A8, (p + 1,&) represents the amnount of weight chauge during the first
¢ seconds of the {p + 1)* trial, and A6, (p, &) represents the amount of weight change
during the first & seconds of the pt* trial, this proposition (illustratcd in Figure 6) means
that, for A, << 1, the difference between the chiange in @, ol any two successive Uials
can be considered negligible, i.e., Ay, (p + 1,&) = Aby, (1, £,V € {0, T).

A qualitative interpretation for this proposition can be constructed based on observation
on the time-scale difference between the dynamics of the manipulator and the dynamics
of the on-line learning process of the neural network. With a small learning rate A, the
overall robotic system can be considered as a two-time-scale system with the manipulator
exhibiting a “fas1™ dynamics while the network exhibiting a “slow™ dynamics. As the
learning rate A,, approaches zero, the change in the weights per trial can be expected Lo be
infinitesimally small. Such small change in the weights will not have significant effect on
the state of the robot, Therefure, belween any two successive Wials, thie change in the stale
of the robot, and consequently the difference between the twoe amounts of weight change,
can be considered negligible. This proposition is verified by computer simulation presented
in Scctivn 6.

Omip+1,0) Aby(p+ 1,€)
Om(p,0)
Lol A

Figure 6. Weight and Weight Change.

Main Results

Recall from Section 4 that the objective of ncural network learning is to reduce the
control error Aw. The following theorem establishes rigorously that such an objective can
be achieved.
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THEOREM 2 The La-norm of the control error Av decreases as the number of trials p
increases, Le, [|Av(p 4+ 1| < |Au(p)].

Proof:  Since (from Section 4) Ja,(p.£) = JA07 (p, £}Au(p, €), from the definition of
the Ly-norm, we have ||Av(p)|® ZIOT Jao(p. £)dE. To prove that |Av(p + 1}]] <
| Au{p)|, it suffices to show that { Aw(p | D2 Au(p)]|? < 0. Now [|Au(p + 1}]% —
(Au(p)]? = 2 ]O (Tan(p+ 1.€) — Jau(p. &) d€. Based on the fact that the change in
the control ertor Av between any two successive trials pand (p— 1) is a direct consequence
of the change in the netwolk weights, we expand Ja..(p + 1, £) about Ja,(p. &), while
ignoring the higher order terms, 1o obtain

o [8da, . _
JAr(p‘Fl«fS)*JAu(psf) = Z I:E-)(_)A (@m([) + 1«5)_(7)m(f)-€)>J . (1)
T)’lzl T

where ¢g is the total number of weights, i.¢.. cp = 1. x J, + Jn x K, + K. % L., Becanse
an{p£} _ Aa.(p.f) HAu{p.) dAw(p.£)
Do) = Bhetpd) dontorr ~ AV () 5 gy s0 (1) becomes

Ins(p+1,8) = Jas(p,€)

Cy 0

dAu(p. £
= 3 AT, 0222 e~ enmen|. 2
m a1 ()(-)m(p-. E)
Note that ©,, (p+ 1, &) and €, (p, £} can be expressed as O, (p+ 1,&) = O, (p+1,0) +
Ay (p+1,€),and Op (p, €) = O (p, 0) + Al (p, €), where O, (p 1 1,0) = @, (p, 1)
represents the weight value at the end of the p** trial, while ©,,, (1, 0) represents the welght
value at the beginning of the p™ trial. From Proposition 1, we have |A6,,{p + 1,£) —
A (P, §)||ree € 1, hence O, (p + 1,6) — O4(p, &) = Opp + 1,0) — O (p, 0), and
consequently

1Au(p + 1)1 — | Awip))?

]
— 2/ (Fauwlp 1 1,8) — Jay(p. £)) dE

_ e s d/_\l(p ‘s) - ; A c
= /le {Af m(@( -L())—()m(p,O))}dg

i

2 Z [/ AuTip.€) gﬁ;((p ))(()m(p 1-1,0) — (—)m(p.()))d% . 4K

Since &, (p + 1,0) and &, (p. 0) are no longer functions of £, so (13) becomes
| Av(p + UH2 — il Au(p))?

€ ‘ AL (p f) _ o
|:( : AT p E ()Om (7, 5) ) (Om([) + 1,-[]) - Om(p-,o))} .

m—l

Note that ©,,(p + 1,0} — &, (p. 0) = jU O,,H {p.&€)dé. But from the tearning rule pre-

sented in Section 4, we have ©,,(p £} = - A, An! (p. &) g(‘;‘! (f;i. Thus ©,,(p + 1,0} —
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Om(p.0) = J§ Om(p.€)de = —A fy AvT(p,€)552LEL e Consequently,
Ifikb(;w1 Il = | Aw(p)]*
e ‘ am- I ()Aq (p, &)
- 2 / Av”(p,& 0(97,, p‘(;‘ ,,/} Avt(p, € O‘Om(p g)dﬁ
Ca 2
= =27, T / Ayt dAb(( 6))

m=1

< 0.

Now [|Av(p + )H2 — fAu{p)||? = 0if U f) Avt(p.€) {';{;‘”(‘;s df = 0. But this
implies that fo ,,,df = 0, which states that the total change in the weight &, for the
trial # is zero. This means that the gradient cearch conducted hy the error-hackpropagation
algorithm has reached cither a global minimum or a local minimum, If this is not the case,

Au(p + 1}? — Au{p)||? < 0, that is, '|Au(p + 1}|| < |Av(p)|], which

implics that the contraller error A decreases as the number of trials p increases.

Remark: An important practical issue concerning neural network learning is whether the
weights will remain bounded. This issue can be resolved (in the context of the above
analysis) by cbserving the facts that (i) the weights are bounded during a given trial (ie.,
Corollary 3), and (i1} from an implementation standpoint, the learning process can be
terminated once the Lo-norm of the control error no longer decreases from trial o trial.
Thus, if we start the learning process with a set of finite weights, and if the weight dynamics
condition {i.c., Proposition 1} is satisfied, then it is assured that the weight values are finite
at the peint when the learning process is ierminated.

6. Simulation

The purpose of cenducting computer simulation 1s to verify the analytical results presented
in Scction 3. Specifically, we conducted the simulation to confirm, through a numerical
example, that (1) tor a small learning rate A,,, the propesition that the weight change between
two successive trials can be considered negligible 1s valid, (ii) upon confirmation of (i), the
L,-norm of the control error Aw decreases as the number of learning trial p increases, and
(i) reduction in the control error Aw results in reduction in trajectory tracking crror ¢,

The manipulator considered in the simulation, as shown in Figure 7, consists of two links
with point masses; that is the mass of each link is assumed to be concentrated at the tip of
each link.

The dynamics of this manipulator can be formulated {Craig, 1986) as

T = 'TH,-gf.’;(fh o) + mmalila{2q) + o) cos gy + (g + '.'H;g)f%t'jl
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Figure 7. A Two-Link Manipulator.

*nglllzq% singe — 2malilagigo sings + malag cos(qy + qa)
+{m1 + mo)l1gcos gy,

To = mgﬂllgql Cos go + ?’Ilglllgq'% singo + mglgg COS(Ql + QQ) + 'fflﬂ%(fjl + (jg),

where g1 and g, are the angles ol the two joints (as indicated in Figure 7) with the corre-
sponding torques 7; and 75, ry and my are the mass of the links, { and I, are the length of
the links, and g = 9.8 m/s%. To simulate the dynamics of the manipulator, the following
parameter values were used: my = 5.0 kg, ma = 40 kg, &) = 0.7 m, and [, = 0.5 m,
In implementing the inverse dynamics conirol, the values for the masses were altered to
introduce uncertainty into the system by sctting: 7, = 4.5 kg and 7y = 5.0 kg. The
desired position trajectory for both joints, generated by a 5**-order polynomial, is as shown
in Figure 8.

08 |- =
0.6 .

[+ .
(rady 04 7]
0.2

0

\

0 0.5 1 1.5 2 2.5 3
Time (Second)

Figure 8 Desired Position Trajectory.

A network consisting of six input units, two hidden layers with twenty units in each layer,
and two output units was used in the simulation. The lcarning A, was set at a very small
value of 5 x 107%, so as (0 be consistent with the argument for Proposition | discussed in
Section 3. The initial weights of the neural network for the first trial were set to arbitrary
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values in the order of 10~ The control gains were sct 1o be: K, = diag[30, 30| and
K, == diag[10,10]. A series of simulation runs (i.e., trials) were carried out. The control
crror Aw was calculated according to (9), which requires the acceleration signal . In the
simulation, ¢ was estimated on-line based on ¢.

To examine the dynamical behavior of the weights between two successive trials, Figures
9 and 10 show respectively the dynamics and the difference between the change of a
connection weight R0 10y (the weight between the 10%" unit of the first hidden layer and
the 10" unit of the second hidden layer) during the 10°" trial and the 117" trial.

2722 - .

foom 2.718 -
(1=
2.714

271 : :
0 05 1 1.5 2 25 3
Time {Second)

Figure 9. Dynamics of Weight (14, 10,: 10** and 11** Trial.
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Ario,10) 0
R ) _
1077

(o i
-6 _
] | 1 I f 1

0 0.5 1 1.5 2 2.5 3

Time (Second)

Figure 10. Difference between Change of Weight 1o, ;0;: 10" and 11*"* Trial.
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[t is shown here, as an example, how the difference between the change in R0y of
the two teials, 104 and 117" is calculated. Using the uotations defined in Scetion 5, the
difference of weight change between trial 10 and trial 11 can be written as: Ar(1q 101(€) =
ARqo 10 (11,§) - AR10.10(10, §), where AR(19.1y(11,€) = Ryyg10y(11, £} — Rpo 10
{11,0), AR10,10)(10.€) — R16,10)(10,&) — R10,10)(10. 0}, and £ is the time variable,

ie., €€ 0.3

Figures 11 and 12 show respectively the dynarmics and the difference between the change
of the same weight during the 207" tial and the 21°° tial. From Figures 9-12, it can be
seen that the difference of the weight change between two successive trials (i.c., 10** and

1157, 20" and 21%%) is indeed negligible.
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Figire 11, Dynamics of Weight Ry 1)1 20°% and 21%¢ Trial,
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Figure 12, Difference between Change of Weight Tty o, 10 20" and 21+* Trial.
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Figures 13-16 show the dynamics and the difterence between the change of another weight
Wi 10y (the weight between the 10 unit of the second hidden layer and the 1% unit of the
output layer) during the same pair of trials (i.c., 104 and 11%*, 20" and 21%%).

Wiim
(10%)

0 0.5 1 1.5 2 2.5 3
Time (Second}

Figure 13. Dynamics of Weight Wy 1gy: 10" and 114" Trial.
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Figure 14 Difference hetween Change of Weight Hf(iﬁl())‘ 108 and 1180 Trial
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Figure 15, Dynamics of Weight Wiy 105: 20%" and 215 Trial.
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Figure 16. Difference between Change of Weight W, ;204 and 215* Trial.
£ (1,10}

Comparing Figures 9, 11, 13, and 15 with Figure 6 (which illustrates the proposition that
the difference between the weight change of any two successive trials is negligible), it is
cvident that, when the learning rate is souadl, the neural network does indeed possess the
dynamical behavior as predicted.

Recall that the analytical conclusion in Section 5 based on Proposition 1 is that the L-
norm of the conuvl error Aw decreases as the number of wials p increases. Figure 17 shows
the Ly-norm of the control error Aw versus the trial number p for this simulation.

It can be scen that the control error Aw indeed decreases as the number of trials p increases.
This confitns the theoretical conclusion presented in Section 5. It is conjectured that
reduction in the contrel error Aw eventually results in reduction in the trajectory tracking
error. Figures 18 and 19 show the joint errors without compensation (i.e., v = 0) and during
the 300" trial, Tt can be seen (hat the joint errors are reduced as the learning of the network
progresses.
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Figure 17. Control Error.
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From the results of the simulation, it can be scen that both the proposition (that with
a small learning rate, the weight change between two successive trials can be considered
negligible) and the analytical conclusion (that the Ls-norm of the control error decreases as
the number of trials p increases) are valid. It can also be seen that reduction in the control
error Aw indeed results in reduction in the trajectory tracking error. A laboratory experiment
conducted to demonstrate the cffectivencss of the proposed approach is described next.

7. Experiment

The robot used for implementing the proposed approach is of a five-bar parallel link con-
figuration vperaling in the horizontal planc {T.okhorst, 1990) as shown in Figure 2(0),

— Motor A

Figure 20. A Laboratory Manipulator.

Hightorque, brushless direct current motors are used to drive the manipulator without gear

ceduction. The motors used are manufactured by Yokogawa Corporation. < ~ations of
the moters are listed in Table |

Table 1. Direct-drive Motor Specification.

Specification Mntowr A Motor B
Manufacturer Yokogawa Yokogawa
Model DMA 12000 DMB 1045
Maximum Torque (/Nm) 200 45
Maximum Speed (rev/s) 12 2.4
Encoder Resolution (pulse /rev) 1024000 655360
Diameter {rrirn) 264 160
Length () 128 143
Weight {kg) 29 9.5

The dynamics of this manipulator can be formulated as (Lokhorst, 1990)

d) d3SpA A4 n '—(I,.:jijAéé n 3)19_4—&-3)35gn(9A) 74
dsSpa dz 7 d3Cpaty batlp + basgn{fp) |~ | T |’
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where Spa = sin(fg — 04), Cpa = cos(fy — 4), f4 and 6 are the angles of the twa
motors with the corresponding torques 74 and 75, dy = m I3 + malZy +malf + 1 + I,
ds = Tnzl‘.gg -+ m;;llf + 7!1,1!534 F o+ 1y, and dy — mglales — malydea. Heremy is the mass of
the i-th link, ; is the length of the 2-th link, {.; is the distance from the joint to the center of
mass of the i-th link, and I; is the mement of inertia of the #-th link. The lengths of the links
are: [y =3 = {4 = 0.5, and {p = (1.3 . The parameters &) and b, arc the coefficients
of viscous friction and the parameters by and by are the coefficients of static friction. The
values of the parameters have been experimentally determined {Lawryshyn, 1993) and arc
shown in Table 2 under the heading “Tiue”.

Tuble 2. True and Estimated Parameter Values for Robot Trajectory Tracking Experiment.

Parameter True Estimated
rty 3.4 kgm? 1.2 kgm?
o —0.1 kgm® —0.511 kgm*
da 1.2 kgrn? 0.772 kgm?
by 8.3 kgm? /s 8.3 kgm?/s
b LGkgm? /s 1.6 kgm?/s
by 2.3 Nm 2.3 Nm
ba 0.46 N 0.46 Nm

A neural network with six input units, two output units, and ten units in cach of its two
hidden layers was implemented in the form of a program written in the € programming
language for the experiment. Due to the limitation of hardware and computational resources
— the control laws were executed on a 386 microcomputer with a clock specd of 25MHz,
the learning process of the neural network was implemented off-line. This means that
during cach trial, only the static mapping of the network was activated, while the weights of
the network were fixed. Data required for neiwork learning were recorded during the trial.
Once a trial was completed, the weights of the network were updated using the recorded
data. Because netwuik learning was conducted off-line, Theorem 2 does not apply to this
experiment. The significance of the experiment lics in demonstrating the efflectivencss of
the proposed approach in the execution of realistic robotic tasks.

The weights ol the neural network were randomly initialized to be in the order of 1073,
The learning ratc of the neural network, initially sct at 1 x 1073, was gradually reduced
t0 5 » 1077 as the learning process was iterated. The input signals to the neural network
were ¢, ¢, and ¢. The joint aceeleration § was obtained by filtering the the joint velocity
signal ¢ on-line using a Kalman filter (Yanovski, 1991). The feedback gains were set to be:
K, = diag(15, 15]) and K, = diag[50,50]. The control law was executed at a sampling
frequency of 8GH z.

A task trajectory for the tip of the manipulator as shown in Figure 21 was planned in
this experiment. This trajectory was generated off-line and stored in memory, and retrieved
during real-time 1ask execution,
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Figure 21. Desired Task Trajectory.

To establish a basis for comparison, a baseline experiment was first conducted using the
“true” parameters of the manipulator as shown in Table 2. Figure 22 shows the results of
this experiment. This baseline experiment shows the performance of the system when there
Is presumably no uncertainty in the system parameters.

-0.3 , i | _
04 |- 4
Y 0.5 e ]
{m)
0.6 F |
0.7 t l |
) 0.3 0.4 0.5 0.6

X {(m)

Figure 22, Desired Trajectory and Baseline Trajectory.

Itis noted that even when the “true” parameter values were used in generating the control
signal, the trajectory of the tip of the manipulator still deviates from the desired trajectory
quite significantly. Such deviation can be accounted for by considering (1) the cffect of time-
delay in executing the control law with a sampling frequency of only 86 Iz, and (ii} the
fact that the control gains &, and K, were sct at low values. The reason for using such low
gdins in this experiment was to allow a larger initial tracking error (when uncertainty but no
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compensation was introduced) so that the cffect of neural network learning in improving the
performance of the manipulator could be more clearly seen. Since the key objective in this
experiment was o show performance improvement, the cmphasis was on showing reduction
in the “size” of the tracking error when a neural network was used as a compensator, as
compared (o the case where no compensator was used.

Upon obtaining the baseline trajectory, uncertainty in the systemn parameters was intro-
duced. The values of the three parameters, namely, dy, ds, and ds, of the manipulator
were altered, as summarized in Table 2 under the heading “Estimated”. Another (rial was
execuled with the uncertainty introduced in the manipulator parameters and without any
compensating signal incorporated into the control law. Figure 23 shows the results of this
trial (which is referred to as the initial trajectory) together with the baseline trajectory.

'*0.3 | | ]

04 - W
v.ooosy -
{m}

0.6 -]

-0.7 L L .

0.2 0.3 0.4 0.5 0.6

Figure 23, Baseline Trajectory and Initial Trajectory.

A scries of trials was then executed with the network weights being adjusted off-line after
each trial. Figures 24 shows the trajectory of the manipulator tip at the 20%% trial and at
the 30" trial. It can be scen that the incorporation of the neural network as an uncertainty
compensator indeed improved system performance in the sense that the actual trajectory
of the manipulator approached the baseline trajectory as the learning process of the neural
network was iterated.

8. Discussion
8.1. [Implication of Results

‘We have preposed an approach to improeving the performance of uncertain robotic systems
using neural networks. It has been shown that this approach is applicable to repetitive
continuous-path robot operation. In this approach, uncertainty in the robotic system is
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Figure 24 Task Trajectory; 20%% and 30¢% Trial.

quantified and a neural network is used to "nullify” the uncertainty so that performance
improvement can be achieved.

Using techniques frem nonlinear system theory, ¢losed-loop stability of the robotic system
(incorporated with a neural network) has been analyzed. Results of the analysis confirm
that the closcd-toop systein is stable in e sense that all signals in the sysiem are bounded.
Stability of closed-loop systems embedded with neural networks is a key issue that has nat
been adequately addressed in the literature. The stability analysis presented in this article
offers a possible solution in resolving this issue.

A method for analyzing the performance of the robotic system (incorporated with a neural
network) has been developed. Using this method, the effect of the dynamics of the neural
nctwork on the performance of the manipulator has been revealed. It has further been shown
that the performance of the robotic system is improved as the learning process of the newral
network 1s iterated.

The results of these analyses provide theoretical justification for the use of multilayer
teedforward neural networks with the error-backpropagation algorithin in a feedback control
system in which the dynamics of the network is coupled with that of the controlled plant. The
crror-backpropagation algorithm has been one of the most commonly used learning rules for
neural nerworks. Various schemes have been proposed in the literature on the application of
ncural networks to robot control using this algorithm, but the impartant question of how the
dynamics of the neural network affects the performance of the robotic system has not been
addressed rigorously in the literature. The performance analysis presented in this article
provides a plausible answer. The analysis confirms that, with a sufficiently small learning
rate, the error-backpropagation algorithm wilt not destabilize the closed-loop system and
will improve the performance of the robotic system as the learning process is lterated.
Numerical simulations have been conducted. Results of the simulation have confirmed the
cenclusions of the theoretical analysis.
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An experiment using a laboratory manipulator has been conducted. The results of the
experiment clearly demonstrate the effectiveress of the proposed approach in improving
the performance of the robotic system. The experimental implementation of the proposed
appreach, together with the positive experimental results, are important not only in demon-
strating the cffectivencss of the neural network as an uncenainty compensator, but also
in demonstrating the etfectiveness of a control system incorporated with a neural network
for realistic robotic tasks. Many studies on the application of neural networks to system
control in general and to robot control in particular rely on numecrical simulation to verify
the conclusions therein; very few proposed schemes have been physically implemented
to venify their effectiveness. Extensive and conclusive experimental results are necded 10
affirm ncural networks as viable engincering tools. The experiment reported in this article
represents a small step in gathering such results,

8.2, Research Directions
In the context of the work presented in this article, the following directions are suggested.

Comparison with Other Approaches

An important and nceessary extension of the work presented is an in-depth analysis in
comparing the proposed approach with varicus other approaches {such as adaptive control)
so that the full potential of neural networks for robot contrel (as discussed in Section 1)} can
be firmly substantiated and convincingly demonstrated.

Effect of Manipulator Link and Joint Flexibiliry

Throughout this work, the manipulators under consideration were treated as rigid mechani-
callinkages. Inreality, however, link and joint flexibility exist in industrial robots. 1t would
thus be practically meaningful to extend the proposed approach to account for the cffect
of Iink and joint flexibilivy of industrial robots. Such an extension will vield results that
Turther aftirm the utility of neural networks in practical robotic applications.

Reduction of the Number of Learning Trials
In analyzing the effect of neural network learning on the performance of the robouc system,
i.e., Theorems 2, the condition needed to guarantce the reduction of the control error
was that the difference between the weight change of two successive trials is negligible.
The justification of this conditioh was based on the requirement that the lcarming rate
be sufficiently small. A small learning rate, however, implies that to achieve significant
performance improvement, a large number of learning trials may be required.

Since the dynamics of the network weights also depends on the gradient of the “error
surface”, a technique that allows variation of the learning rate bascd on the “steepness” of
the gradient would be a potential solution to reduce the number of learning trials.

Determination of the Necessary Number of Learning Trials
The clanfication of the relationship between the reduction in the control error and the
reduction in the trajectery tracking error represents an important theorctical issuc in under-
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standing the utility of neural networks for system control in general and for robot control
in particular. It is important hecanse successful thearerical clarification nf this relatianship
would provide a definitive answer to the question of how many trials are required in order
to reduce the tracking error to within certain tolerance.

Learning Multiple Trajectories

In manufacturing operations, a robot is often required 1o be capable of performing more
than one task. This implies that the robot controtler must be able to execute more than
one trajectory. The scope of the present work has been limited to the case where the robot
controller is to learn 1o improve its performance for a single trajectory. Such a controller is
clearly inadequate in a production environment. Thus, a practical extension of the present
work is to develop methodologies which enable the neural-network-based controller 1o learn
multiple trajectories and Lo execute these trajectories without interference.

Effective Global Convergence

Currently there is no known method that guaranices global convergence of neural net-
work learning. This means that it is possible that the set of weights found by the error
backpropagation algorithm is optimal only locally. It is of course worthwhile to find a
learning algorithm that theoretically guarantees global convergence, but it is also practi-
cally meaningful to find a way to circumvent local optimality so as to achieve effective
global convergence. One plausible approach is to use multiple networks in such a way that
when one network becomes “trapped” in a local optimum, another network 1s activated to
continue the learning process. Conceptually, it can be argued that it is possible to reduce
the control error to any required tolerance by using a serics of networks. A method of im-
plementing such a series of networks would significantly enhance the pracucality of neural
networks in robot control,

Hardware Implementation of Neural Networks for Robot Control

Currently in studies reported in the literature on neural networks for robot control, the
neural networks are usually implemented in the form of software programs and executed
on general-purpose digital computers. Such software implementation, bowever, docs not
take full advantage of the parallel processing capability of neural networks. Thus, in
order to fully utilize the capability of neural networks for practical robotic applications,
it is necessary to investigate hardware tmplementation of neural networks. One plausible
hardware implementation of a neural netwock is in the form of a VLSI chip. It can be
anticipated that successful synthesis of “neuro-chips” and commercial robot controllers
would advance the application of industrial robots to a more sophisticated level,

Appendix A

Definitions

The following definitions arc based on material presented in (Vidyasagar, 1992), The
convolution of a Laplace transformable signal f(¢) and a transfer function matrix M {s) is
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denoted by M f, ie., Mf = (m = f)(t}, where = denotes the convolution operator. The
ly-norm of a vector & € R”, denoted by ||z||, is defined as: {|z] = (37, [x;/*)}. The
{z-norm of a matrix A € R™ ™, denoted by || Al], is defined as: || A = [max; )\i{ATA)}%,
where A; denotes the cigenvalue of the matrix A. The L7, -norm and the extended L7_-space
{for the truncated L -norm) are as defined in Section 5. A systermn with input 2 and output
¥ 1s said to be bounded-input bounded-output stable (or BIBO stable) if for every o € L.,
¥ € L. The L7 -norm of a transfer matrix P is defined as: || Plloo = supecrn o ”{E"F{“x .
Let 2 denote the norm [| P[], then [ Px||4oe < 3@/l 1o h

Appendix B
Proof of Theorem 1

The method presented in (Spong & Vidyasagar, 1987) is utilized in constructing this proof.
Through algebraic operations, the system (10) can alternatively be expressed as

€ = Ae+ B(f+u) (B.1)

d

gmgd], A= [g :;J B = [?}ﬁ =10+ Bu, ny = Eg% 4+ M~1AR,
w=Ketv, E =M 'M~-I[,Ah=h—h K =K, —K,], and v is the ncural
netwark output.

We make the following assumptions (Spong & Vidyasagar, [987) regarding the nominal
model of the manipulator. (A7} For the inertia matrix A of the manipulator, there exist
constants M5 and My such that M, < ||M"ll|1-?c. < My < oo. (A2), There exists
a nonncgative constant @ < 1 such that ||[M 'M — I|l7e < «a. (A3} There exist
nonnegative constants ¢ and p such that || — llrs < 8{lzli1es + o, where 7 = (g7, ¢7]7.

Let G(s) = (s — A)"'B. Then (B.1) can be expressed as: & = Ge, with e = 7 + u,
uw = K&+ v, and 7 = 1o + Eu. Through algebraic operations, we obtain € = (I —
GKY 'Gi+ (I - GK)"'\Gu,u = K{I - GKY'Gij + (K] - GK)Y“'G + Nv. Let
P ={I-GE}y G Py = K -GK)'G,and P, = K(I - GK}~! + I, then we
can express € and was: € = Py 4+ Pyv, and v = o] + Pyu. Now taking the truncated
L -norm yields

where & = [

Ellvoe = Bifiillroe + Oillviroc. b2
lllros < Bollillroc + Ballvzaen B9

where = (I - GE)Y 7 'Gre. J2 = K — GK) " 'Gl7oe, and 35 = || K(] —
GK) 'G + I|l7eo. Since mo = F§¢ + M ~1Ah, from the modeling assumptions, we
have [noll7ee < M2dE|lrao + b, where b = all§®|| 7o -+ Ma8||2%1700 + Map, and
x? = g7, (¢DT17. It follows (that {7l 7a < Mab||élTa + ltliTes + b. Since the
output of the neural network is bounded by construction (due Lo the fanh activation function

. S Al e Mad3: a | [ mellrse ||
of the output units), let ¢ = [[v]l7~. Hence {H“\’i‘oo } < [ % 0 } { Vil } +

v
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.-‘Tl‘fg 0;31 &)

[Mzé*'jl@ O L Q= [ PR J Then det(/ = Q) = 1 — MaéBh —afs = A,,.
H2

Baed
Il &, > 0, then
”ﬁ”i’x < L 1 (a3 1‘./[2(‘5,6’145 + b
[ lullroe | = AL, | B2 1— M5, 836 : (B.4)

From (B.2) and (B.4), we obtain [&)r,. < £ ¢ 22 (31 Mo -+ aBs). Therefore, if
the condition A,, > 0 is satisfied, then 7. 4. and £ are hounded. Now recall that 3, —
[{{ = GE) G| 70e, and 35 = K] — GK)7'Gf|rac. It can be seen that the condition
A, > Ocan be satisfied by sclecting sufficiently large values for K such that 31 approaches
zero-and B, approaches unity simultancously.

Appendix C
Proof of Corollary 1

From (1)and (5), we have Mg+ h = A?I(('jd +u)+h, where w = K,,(q'd—cj)+Kp(qd—q)+u
So ¢ = E(G* +u) + ¢% +u+ M~TAh, where £ and Al are as defined in (B.1). From
the modeling assumptions A.1-4 3, we have

I < I1ENrecil§® Fullrs + 11G7 + 6l + 184~ oo | AR 00

(L4 )1 lras + Nl roc) + Mas|Elizoe + Mab|a)|7me + Map,

AN

where 29 = [(q'i)q'. (cjd)T]T. Since » and @ have baen proved to be bounded (Theorem 1),
it can be concluded that § is bounded.

Appendix D
Proof of Corollary 2
From (9), we have Av = §® — § + K&, where K is as specificd in (B.1). Therefore,

1A rae < 169 7o + 1|61 0 + ([ K &l| 10 Since ¢ and & have been proven to be bounded,
it can be concluded that Av is also bounded,

Appendix E
Proof of Corollary 3

As described in Scetion 4 (with reference to Figure 4), we have

—

o

Wij = MAvg (v)v;, By = Mg/ (5,)

J

(Avyg' (v )Wy5) ,
a=1
: - e S e I, 7 : 7 _ 990
and S = A,g (Uk} Zj:l (Q’ (""3)21:1 (Avig ('”1)W£jRjk))’ where g'(-) = ary -

Since I/i-’ij deponds on A, Avy, g’, and 5, which are all bounded, it can be concluded
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that W;; and consequently W;; are bounded during a given trial. Similarly, it can be
concluded that Rﬂ” Ry, QM and 5y, are also bounded during a given trial.

Appendix F
Proof of Proposition 1

From Section 4, the dynamics of the neural networle can be cxpressed  as:
Wi = A Avig’ ()5, Ry = Ang'(5;) 21—1 (Av,g'{v )W), and Sy = Ang' (g )Zj_l
( g'(5;) Zé;l (Avig'(v) Wiy Rj;c)). During the subsequent development, the symbols A,
Ar, and A; are used (instead of the general notation A, ) to indicale that these learning rates are
specifically associated with Wy, Ry, and Sy, respectively. Since during a given trial p, the
signals driving the weights arc bounded, i.e., [[Av{p, &) 11ee < o < 00, 1 {p. )| 7. <

& 50, €l ree S &Nk Ellree < & and Jg'(Mlree < & where @ is the largest

VisE)llree = | Awleidp. €y (vi(p, )5 (0, oo < A,
and [ W (p, )|l ro = “TV”(p 0) + J£ Wiy (s )daH S A 1 = g Sim-
llaﬂya ”ng(P E)”Toc Ar & In I[)Ups ” _jk‘(ptg)HTOC < A L JT pr 2E A+ ,\,r = if)
and || S (. O liree < A, Javpy ¥y, From the dcﬁmtmns presented in Secuon 5,
we have Aw;;(p, €) :f Wi (p. 0)do, Ary(p.£) = fo k(p o)da, and Asg(p, &) =
f[f Sk,g(p,ﬂ')do’.

Now for two successive trials p and (p I 1}, ||Awy(p + 1,0) ~ Awg(p, )70 <

. [

ani Wi {p +1, (T)(LrO’[
satisfy || Aw;(p + 1, 5) Aw”(p E}llroe << 1, Ay can be chosen sun,h that A, <<
W Similarly, . and A, can be chosen as: A, << Ty and
- g b

1
Ay << o s e
s S 7 nidn (o 19, 00 U0

winfAy, Ar, Ay, the general condition, (A, (p + 1,£) ~ A8,,(p, £)ll10e << 1, can be
met,

N Wi, (p, a)de < A (o1 + ¥ j. Therefore, to
40 7 Teo ry »

a2r, {rot1 Ur,

T
It can be seen that by choosing A, 1o be X, =
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