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Abstract. Reliable vision-based grasping has proved elusive outside of controlled environments. One approach
towards building more flexible and domain-independent robot grasping systems is to employ learning to adapt
the robot’s perceptual and motor system to the task. However, one pitfall in robot perceptual and motor learning
is that the cost of gathering the learning set may be unacceptably high. Active learning algorithms address this
shortcoming by intelligently selecting actions so as to decrease the number of examples necessary to achieve good
performance and also avoid separate training and execution phases, leading to higher autonomy. We describe the
IE-ID3 algorithm, which extends the Interval Estimation (IE) active learning approach from discrete to real-valued
learning domains by combining IE with a classification tree learning algorithm (ID-3). We present a robot system
which rapidly learns to select the grasp approach directions using IE-ID3 given simplified superquadric shape
approximations of objects. Initial results on a small set of objects show that a robot with a laser scanner system can
rapidly learn to pick up new objects, and simulation studies show the superiority of the active learning approach
for a simulated grasping task using larger sets of objects. Extensions of the approach and future areas of research
incorporating more sophisticated perceptual and action representation are discussed
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1. Introduction

Vision-based grasping and retrieval of objects is an important skill in many tasks. A robotic
system having the ability to perceive pertinent target object features, and the ability to select
viable grasp approach and preshape values for a robotic hand would be able to carry out
many useful functions. Possible scenarios for such as system would range from the handling
of toxic materials in dangerous environments to the assistance of people with physical
disabilities in relatively benign household environments. While significant progress has
been made in the development of machine perception, highly dextrous robotics hands, and
robotic grasp analysis and synthesis, limitations in the state of the art in vision and robotics
still preclude the availability of “off-the-shelf” robot systems with truly effective vision
and manipulation capabilities. This is primarily due to limitations in the reliability of
machine perceptual systems in varied environments, as well as the difficulties in the control
of dextrous manipulators. The environments into which a robot system is placed may have
a variety of unfamiliar objects, materials and lighting conditions, making the perceptual and
manipulation task difficult without the use of a significant number of domain-dependent
techniques.
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1.1. Previous Work

Previous work in robotic grasping may be divided into two major approaches: analytical
approaches based on detailed theoretical analysis of the mechanics of contacts and heuristic
approaches inspired by the research of neuropsychologists (Jeannerob & Biguer, 1981,
Jeannerod, 1988) and orthopedic medicine (Schlesinger, 1916, Napier, 1956).

Analytical approaches to grasping have analyzed grasp selection based on mechanics,
most often in terms of maximizing some objective function such as grasp stability, slip-
resistance, or minimizing some objective function, such as internal forces (see(Cutkosky,
1989) for a survey). These approaches have given a great deal of theoretical insight into
grasp planning, although they incorporate simplifying assumptions in order to be tractable
and assume essentially perfect perception of relevant object properties such as shape and
mass. Unfortunately, thesea-priori assumptions may not be valid in all situations and
may become less accurate as a system changes over time due to mechanical wear or other
factors.

An alternative approach to selecting grasp approach and preshapes is to use a heuristic
approach which employs domain-dependent rules based on objects and selections that are
empirically observed. Heuristically-based grasp generators almost always include some
equivalent of major grasp preshape types as categorized by Schlesinger (Schlesinger, 1916)
including the fingertip, hook, cylindrical, palmar lateral and spherical grasp types. These
different categories were formed based on functional analysis of human grasping behavior
where different characteristics classes of hand shapes were observed to be associated with
the prehension of different object shapes and tasks combinations.

A number of rule-based systems for grasp selection (Iberall, et al., 1988, Liu, Iberall &
Bekey, 1989), were subsequently developed based on how skilled individuals chose grasps.
These systems incorporate production rules that capture how humans choose particular
preshapes and grasp sites. These approaches share a significant limitation with the analytic
systems discussed so far in that they treat grasp selection as a completely separate process
from perception, assuming perfect perception of object shape and other object properties.
For these techniques to be practical, they require the machine perception system to provide
descriptions at a level of detail and accuracy that is far beyond what can be provided by
existing vision systems, especially if the variability of objects and the environment is taken
into account.

One approach to solving the perceptual bottleneck is to retreat from general purpose
systems and constrain the domain in which the autonomous system is to perform. Given
sufficient constraints, a system may be engineered by taking advantage ofa priori knowledge
to simplify visual reconstruction of the scene and motor processing. Stansfield (1990)
describes a heuristic rule-based system for grasp selection that uses a symbolic multi-
component representation of object views derived from a range scanning system. If 2-D
object contours can reliably be extracted from vision processing in a particular domain, then
techniques employing analytical grasp point selection for optimal grasp on smooth closed 2-
D contours can be used (Taylor, Blake & Cox, 1994). Alternative approaches such as Bard
(1991, 1995,in press) compute ellipsoidal decompositions of voxel description that rely
on fusing multiple stereo vision views in a space occupancy grid of voxels. The preshape
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generation process attempts to identify feasible ellipsoid parts for grasping according to
heuristics based on part size and accessibility, followed by a physics-based simulation to
verify a grasp before execution.

Unfortunately, retreating from a truly general purpose system by hand selecting reliable
domain-dependent perceptual attributes (e.g. smooth object contours), feature extractors
and special purpose grasping routines requires custom programming and engineering which
can add significant cost to robot systems. Additionally, it is a great burden on the engineers
and programmers to guarantee system reliability over a combinatorially large number of
possible scenarios. Each time the system is deployed in a different domain, significant
re-engineering effort may be necessary to adapt the system to function correctly. This
additional cost makes it difficult to justify the use of robots as a truly flexible task solution.
In future situations that may require true long-term autonomy, such as space exploration,
there may not be engineering personnel available to carry out the required adaption.

1.2. Learning Approaches to Vision Based Grasping

One approach to avoiding the pitfalls of domain-dependent systems is to employ perceptual
and/or motor learning techniques. Many researchers (Kuniyoshi, Inaba & Inoue, 1989,
Kang & Ikeuchi, 1993, Dunn & Segen, 1988, Bennett, 1991, Kamon, Flash & Edelman,
1994, Salganicoff, 1992, Salganicoff, 1993) have taken the approach that it is preferable
for robotic systems to learn a grasping strategy. The learning approach has the benefit that
the system adapts to the characteristics of objects in its domain as well as to its perceptual
and motor system, providing a system with higher autonomy. Robot learning systems can
incorporate the true idiosyncrasies of their sensing and motor apparatus rather than rely on
possibly inaccurate or outdated expectations of the system’s designers. By taking a learning
approach to vision-based robotic grasping (and robotic tasks in general), the noisiness and
variability of both the perceptual, action systems and the environment can be incorporated
into the robotic system to better ensure success, since many learning algorithms can handle
noisy or missing inputs. Secondly, gradual drift or even catastrophic failure in sensor and
motor systems and in the properties of the environment may be compensated for using
learning without additional programming effort, leading to systems that are more robust
and autonomous. If a sufficiently rich perceptual and motor representation is chosen,
then the learning system can use these representations as needed over the many different
environments where the robot might be placed.

Techniques in learning to grasp have taken both supervised and unsupervised approaches.
Supervised approaches are exemplified by a rote learning or “teaching by showing” ap-
proached developed by Kuniyoshi et al. (1989) and Kang and Ikeuchi (1993). The observed
history of actions is used to form a plan composed of action primitives that the robot can
carry out. In general, these systems require significanta priori knowledge about the task
and controlled environmental conditions in order to enhance the speed and reliability of the
vision system in recognizing actions and objects in real-time.

Unsupervised learning approaches do not require human intervention and so are better
suited for high autonomy. A number of systems have used the output of computer vision,
primarily in the form of two dimensional edge contours, to drive either recognition and
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indexing of previously grasped objects, or to use the local object contour information as the
basis of features for classifiers. Dunn & Segen (1988) employed an unsupervised memory-
based learning approach with a vision derived two dimensional polygonal representation;
grasp was coded by relative location and orientation to the object. During execution, a 2-D
model matcher was used to index the presented object to a previously manipulated object
and to invoke the previously successful grasp.

Kamon et al. (1994) used a contour-based two dimensional representation of the perimeter
of objects and measured grasp location and human selected heuristic quality parameters for
the object. During on-line learning the system tried to apply previously attempted grasps
to the current object and then compared their predicted fitness using a nearest-neighbor
learning rule. If no grasp had high predicted fitness, a randomized domain-specific heuristic
was used to select a new grasp.

A knowledge intensive approach to learning to grasp was taken by Bennett (1991) who
worked in robotic grasping of polygonal 2-D puzzle piece tasks using explanation-based
learning and simple domain theories about uncertainty and grasping.

Tan (1990, 1993) employed a feature-based sonar depth representation and cost-sensitive
learning (CSL) extension of ID-3 (Quinlan, 1986) to learn to recognize object labeled by
high-level grasp-approach combinations (e.g. approach object from top gripping rim in
pinch grasp).

Stansfield has also investigated replacing expert system production rules for grasp selec-
tion (Stansfield, 1990) with the batch-learning of associations using a connectionist rep-
resentation with back-propagation learning (Rumelhart, Hinton & Williams, 1986). The
system was trained to associate feature/view bindings to grasp categories and grasp sites.

Salganicoff (1992, 1993) developed a system for grasping objects based on full three-
dimensional information from a laser range scanner and a parameterized superquadric
representation. It learned to select from a predetermined set of canonical approach directions
using a density-adaptive learning algorithm along with a forgetting component to allow
learning set updates to incorporate changes in the task.

1.3. Motivation for Active Learning

The advantages of a learning approach to vision-based grasping, such as increased auton-
omy, and self adaptation to limits in sensing, action and the particulars of a given domain,
are, of course, not without tradeoffs. In robot learning, as in many other learning tasks, the
costs of acquiring the learning set may be the single greatest barrier towards the application
of learning in a task. The acquisition costs for each exemplar can be particularly expensive,
since each sensing and/or motor action often takes a significant amount of time to execute,
and has other concomitant risks as well. In fact, the computational complexity of invoking
the learning algorithm may be small in comparison to the cost in time and material of gath-
ering the learning set (Tan, 1993). Therefore it is imperative to decrease learning set cost,
and active learning provides an unsupervised way of doing so. Active learning systems
allow the learner to control where in the input space their exemplars are drawn. They thus
permit the learners to use strategies which balance the costs of gathering exemplars for
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learning (exploration) against the cost of misclassification during the execution of the task
(exploitation).

Another way of looking at active learning is to view it as an optimization problem in
which one is simultaneously building a model of a process and optimizing its performance.
These problem has been studied by several different sets of researchers. In applied statistics,
e.g. for the chemical process industries, evolutionary optimization (EVOP) has long been
influential (Box & Draper, 1969). In EVOP, one fits a local linear or quadratic model to the
available data, moves the process toward an optimum, fits the model again, moves again
and iterates. These active learning methods are being applied today in large chemical plants
(see (Moreno & Yunker, 1992)).

A second line of research comes from statistical decision theory and multi-armed bandits,
and uses methods such as the Sequential Probability Ratio Test (SPRT), which rigorously
computes whether one should collect further data points (see (Berger, 1985), and Gittins
indices (Gittins, 1988)), which allow one to compare multiple arms (courses of actions)
against a single reference arm, and thus avoid pairwise comparisons. As with all Bayesian
methods, one must assume models of the distributions of the observations, including their
correlation structures (if any) and one needs priors on the parameters in the models. The
computations become exceedingly difficult for complex models of the probability distribu-
tions or costs.

A third line of research comes from the machine learning community, in particular workers
in reinforcement learning and robot learning. Because of the unique demands of robot learn-
ing a number of active exploration approaches have been developed (Thrun & Moller, 1992,
Moore, 1990, Schneider, 1993, Sutton, 1990, Atlas, et al, 1990, Cohn, 1994) to accelerate
learning in those domains. Reinforcement learning researchers have also developed a vari-
ety of active exploration heuristics (Sutton, 1990, Kaelbling, 1990, Thrun & Moller, 1992)
that tradeoff exploration and exploitation during adaptation.

This article presents a general technique and evaluation for active learning. The ap-
proach combines the Interval Estimation (IE) (Kaelbling, 1990) exploration heuristic
with the ID-3 inductive learning algorithm (Quinlan, 1986) and does not require sepa-
rate training and performance phases. Actions are then chosen using an indirect indexing
scheme (Salganicoff & Bajcsy, 1992) which indexes the leaves on the ID-3 tree that have
a high expected probability of success (reward) conditioned on the current perceived at-
tributes.

We apply this framework to a simplified version of the vision-based grasping problem,
where the approach axis for a two fingered grasp must be selected based on the extents of
the three semi-major superquadric axes of the target object. The result is a learning system
that smoothly combines its training and exploitation of learned knowledge, decreasing the
number of failures encountered until good grasping rules are induced. This allows the learner
to benefit from learning as it occurs instead of forcing the system to wait until the end of the
learning phase to take advantage of the acquired knowledge. The general framework for the
active learning algorithm IE-ID3 is described in section 2. The specific grasping problem
instance, representation, experimental setup, and empirical and simulation results for the
method are elaborated upon in section 3. In experimental trials with a robotic system with
a set of 6 objects, the system learns to select reliable approach direction in a small number
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of attempts; convergence occurs in approximately 30 attempts per object. Simulations give
a qualitative picture of the system’s asymptotic performance as it interacts with a large
number of objects. In simulations the IE-ID3 algorithm performs at almost twice the level
of an open loop non-active learner, and also results in a higher classification accuracy.
Section 4 compares IE-ID3 with other active learning and grasp learning approaches, and
points out areas of future research, limitations and possible improvements. Finally, section
5 concludes with a synopsis of the approach and results.

2. An Active Learning Algorithm for Real-Valued Domains

Many approaches for action selection in active learning keep statistics relating to a particular
discrete state or state/action pairs (Thrun, 1992). A number of different rationales have
been used. For example, inversely weighing the raw number of times a state has been
visited (Thrun, 1992) as a factor that favors execution of an action results in a system that
is generally exploratory in nature, attempting to search the entire input space. Taking
recency of a state visitation (Sutton, 1990) as a positive weighting for action selection
gives a system which attempts to evenly visit the entire state space and track changes in
the environment. These types of algorithms have been developed in the context of delayed
reinforcement problems (Sutton, 1988, Watkins, 1989) with Markovian frameworks having
discrete action and state framework, making them poorly suited for operation in continuous
state and action spaces. However, it is possible to adapt techniques such as reinforcement
learning to continuous domains through adaptive input-space partitions of those spaces.
For example, Moore (Moore, 1991b) describes a modification to discrete state dynamic
programming by the use of an adaptive resolution tree that partitions a continuous state-space
into intervals. We employ a similar tree-based partitioning approach by using a classification
tree algorithm (ID-3) (Quinlan, 1986, Quinlan, 1992) to form a partition over the continuous
space, yielding an adaptively discretized space over which the Interval Estimation (IE)
exploration algorithm ((Kaelbling, 1990), pp. 56), a discrete-space approach, can be applied.

The IE algorithm (Kaelbling, 1990) works by keeping statistics on the number of times
a given action has been executed and the proportion of times that it has succeeded. A
confidence interval is computed for the underlying probability of success for each of the
feasible actions in a given context. The action whose upper-bound confidence interval is
highest is chosen. The rationale is that an action may have a higher upper-bound for two
reasons: either because the action is actually a good one to take, or because very few trials
of the action have been executed, in which case there is insufficient empirical evidence to
decide the goodness of the action in that context. Most importantly, this approach rapidly
stops executing actions which have a very low likelihood of success and focuses on sampling
those actions whose conditional probability of success cannot statistically be ruled out as
best. If two actions share the same upper-bound, then they are chosen with equal probability.

We generalize the IE algorithm from its original formulation for a finite number of dis-
crete actions to continuous valued perceptual and action spaces by combining it with the
ID-3 algorithm (Quinlan, 1986) incorporating real-valued attribute splits. ID-3 automati-
cally constructs decision trees by determining what questions (real-valued feature thresh-
old values) give maximum information gain at each level of the tree. ID-3 and enhanced
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methods such as Classification and Regression Trees (CART) (Breiman, et al., 1984) and
C4.5 (Quinlan, 1992) are widely used and can handle high-dimensional feature spaces, ig-
noring irrelevant features, and, when the trees are pruned to eliminate spurious branches,
are relatively insensitive to noise in the data. The resulting ID-3 decision tree induces a
hard partition on the real-valued attribute space with its leaves.

Consider an agent that perceives the world through a perceptual vector of continuous
attributesP , and can continuously control the value of its action parameters through an
action vectorA, to yield a binary outcomeO. The agent attempts to learn the mapping
O = f(P,A) over some sub-domain of possibleP andA values. This function can then be
used to maximize its reward by selecting actionsA that maximize the probability ofO = 1
given what is currently perceived inP . Therefore, rather than have an input space that
consists solely of action attributes, we use an extended representation which consists of a
combined perception-action space(P,A) = ((p1, . . . , pl), (a1, . . . , am)), wherepi andai
are the individual perception and action attributes for an agent.

At each step in the execution of the overall algorithm, we select an action as described
below, execute it, ascertain its outcome, and then compute a classification treeT using ID-3
with real-valued splits, based on the distribution of binary outcomesO in the combined
perception-action space. This cycle is repeated for the duration of the task.

2.1. Indirect Prediction

To select actions in the combined perception-action space, the system uses the treeT
as an indirect predictor (Salganicoff, 1993) along with the IE method. First, the system
senses the perceptual vectorP . Let F be the set of leaves of the ID-3 tree that have
perceptual interval values that intersect the currently sensed attribute values ofP . The set
F represents a partitioning or binning of the action space by the current decision tree subject
to the perceived attributes,P , of the current object. As we varyA over all possible values
with P fixed, we move over all possible leaves which predict outcomes for different action
parametersA (see Figure 1). Indirect prediction is similar to the idea of using indirect
control by taking the reward gradient of the reward function approximation with respect to
the action space in order to hill climb to the action with maximum utility (Thrun, 1992).
However in our case, the function representation is in terms of a tree decomposition, and is
not differentiable, therefore we must do a partial-match search to maximize the probability
of rewards over the feasible leaves of the tree.

Given this partitioning into bins in which different actions lead to different outcomes (all
conditional on the perceptual vectorP ), we can directly apply the IE algorithm to choose
among the possible actions. The statistics necessary for computing the confidence intervals
(the number of success and failures contained in a leaf partition) are already available
because they are needed to form the tree using the ID-3 algorithm.

For each leafli in F we compute the upper-bound probability of success according to the
binomial confidence interval formula (Larson & Marx, 1986). To calculate a probability
interval that contains the true probability value with confidence(1− α) givenx successes
(rewarding outcomes) out ofn exemplars in the leaf so that
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Figure 1. A schematic of the representation. The solid lines represent the ID-3 partitioning of the joint perception-
action space (P,A). For the purposes of illustration assume a single degree-of freedom actionA and a single
sensed valueP , although the approach generalizes to an arbitrary number of dimensions. When a new percept is
sensed, this determines the discrete intervals for action values (the dotted line) and their associated statistics of task
success (+) and failure (-). The feasible set of leavesF , is shaded. All feasible leaves are then compared in terms
of the upper-bound confidence interval. An action is randomly selected from within the interval corresponding to
the leaf with the highest upper-bound confidence interval.

P− ≤ Psuccess ≤ P+ (1)

where,P− andP+ are the lower and upper-bounds of the probability interval estimate,
respectively, one uses:

P± =

zα
2

2

2n + x
n ±

zα
2√
n

√
zα

2
2

4n + x
n2 (1− x

n )

1 +
zα

2
2

n

(2)

wherezα
2

is the confidence interval coefficient. The confidence interval coefficient is the
deviation from 0 which is exceeded by a random variable with standard normal distribution
with probability α2 . Intuitively, the smallerα is chosen, the more exploratory the character
of the learner, since more experiences are required to drive the confidence intervals down.
In the limit, asα→ 0, the system becomes completely exploratory and picks all actions as
equally good, since the confidence interval upper-bounds approach1. At the other extreme,
asα → 1 the system become completely exploitational, since the upper-bound of the
estimate approaches the raw empirical probability of the action succeeding.

The selected action leafl∗ is the leaf inF with highest upper-bound confidence interval
as prescribed in the IE algorithm. LetAmin, Amax be the lower and upper action attribute
intervals forl∗. The next action is chosen as random withinl∗ using a uniform distribution
bounded by the intervalsAmin, Amax.
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3. Applying IE-ID3 to the Selection of Grasp Approach Directions

Robotic grasping and retrieval of unknown objects in unstructured environments is an impor-
tant problem, and has many applications as discussed in the introduction. It is particularly
suitable for learning-based approaches since the deployment of the system may occur in
various environments. Many of those domains may be difficult to characterize ahead of
time, making it difficult to guarantee the existence of specialized domain-specific perceptual
and motor strategies that will succeed for all possible scenarios.

In our approach to vision-based grasp learning, we adopt the framework of the two phase
model of grasping, consisting of ballistic approach and preshape phases as suggested by the
work of (Jeannerod & Biguer, 1981, Jeannerod, 1988). Looking at learning as applied to
the both phases leaves many free parameters to be set in both the ballistic approach phase
that determines the direction of approach and finger contact locations, as well as in the
preshape phase, where preshape category (e.g. pinch) is chosen and parameterized in terms
of characteristics such as aperture, inter-finger span and finger stiffness. Similarly, from the
perceptual standpoint, many other superquadric shape parameters and other sophisticated
shape representations, including taper and bending, can be part of the perceptual represen-
tation. Because we had only a parallel jaw gripper available for the experimental setup
we simplified our action representation to controlling only the approach direction of the
gripper relative to the centroid of the object and held other action parameters fixed. We also
simplified the perceptual representation to just the extents of the object’s three semi-major
axes, since we were most interested in exploring feasibility of the active learning approach
using the simplest possible representation (see Figure 2).

This simplified representation was chosen for a number of reasons. Our previous expe-
rience with our grasping system showed that running experiments with the our laboratory
setup up was a frustrating process, due to the unreliability that is typical of laboratory pro-
totype setups. This frustration motivated us to pick minimal representations of perception
and action to see if our active learning approach could succeed with a very small number of
grasping attempts during a single session of grasping. It is important to note that this does
not imply a fundamental limitation of the learning system we developed, since the decision
tree learning algorithms used are designed for higher dimensional spaces and can easily
accommodate the addition of richer descriptions of object shape, both for categorical and
real-valued attributes (this is further discussed in section 4).

3.1. Experimental System

The robotic system which carried out the experiments consists of two PUMA 560 robots:
the perceptual robot and the grasper. The pertinent aspects of the system are summarized
in Figure 3. The range image provided by the scanner (see Figure 4) is processed using a
superquadric data reduction procedure (Solina & Bajcsy, 1990) which fits a superquadric
to the dense range data. The superquadric is a necessary data reduction step, as the range
image can contain thousands of points. It was chosen as a representation since it yields a
compact set of parameters that attempt to approximate the overall geometry of the object to
be manipulated; implications of this perceptual representation are addressed in section 4.
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Figure 2. The perceptual and action representation for the grasping system.

Figure 3. The experimental system, (a) consisting of the perceptual robot (left) and the grasping robot (right). The
perceptual robot first scans the unknown object to yield a range image. A set of parameters is found which best
fits the range data and this is used as a perception input to the learning system. The grasper then attempts to pick
up the object based on the percept plus its acquired knowledge about the effectiveness of different grasp approach
directions.
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Figure 4. The vision system consists of a mobile laser range scanner mounted on the end of the perceptual robot
which is swept over the object to be grasped. This yields a sequence of height values which can be combined into
a complete range image. This range image is then processed by fitting a parameterized surface (a superquadric)
to the height values in the range image. The resulting parameters for the surface are then the input attributes to
the learning system along with the chosen action.

Our Laser Range Imaging System consists of two components: TheLOOKERand the
GUSprocessing unit (see Figure 4). TheLOOKERis composed of a laser stripe generator
and SONY XC-39 camera which generates video signal of the images obtained under the
illumination of the laser stripe, and theGUSunit (Tsikos, 1991) processes the continuous
sequence of laser images and generates a static range image of the scene.

The range image is first cleaned by morphologically eroding it in order to remove any
spurious outlying measurements and then sub-sampled (see Figures 5 (a,b)). The result-
ing range points then form the constraints for the numerical optimization to extract the
parameters for a surface which best-fits the range points. This yields the superquadric
transformation and shape parameters in the image coordinates (see Figure 5 (c)). These
values are then transformed into the scanner robot task frame by using the scanner-to-
world transformation matrix. The resulting superquadric is put into canonical form, with
ax ≤ ay ≤ az and with theax, ay andaz values bound toh,w andl depending on the pose
of the object to gravity. It is assumed that the object is placed on a flat surface perpendicular
to the gravity vector. An object-centered action frame is chosen so that theθ andφ are
relative to the direction of thew andh major axes and aimed at the visual centroid of the
object.

The success or failure of a grasp is assessed by using the force-torque sensors on the
gripper. During the grasp attempt, the system moves the gripper fingers inward from their
full open position to an inter-finger distance of 5mm (see Figure 6). After the approach and
grasp phase, the robot moves the gripper upwards, hopefully lifting the held object. It then
measures the normal forces on the gripper fingers. If the force is below a threshold value,
then the fingers are characterized as empty, otherwise if there is a large normal force, the
grasp is labeled a success.
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(a)

(b) (c)

Figure 5. Acquired 3 dimensional Range Points (a) for the stapler, the sub-sampled and eroded points (b) and the
resulting Superquadric fit to the range points (c).
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Figure 6. The gripper is a simple two finger gripper with force torque sensors to sense grasp force. During the
grasp attempt the hand attempts to close the fingers to their minimum aperture. The finger motion is guarded, so
that if an above threshold force is detected, the motion stops. After a grasp attempt, the hand is brought upward
and the force sensors are used to measure whether the object has been successfully grasped by again monitoring
the reaction forces on the fingertips. Compliant foam is placed under the object to prevent damage to the gripper
or object in situations where the fingers would be stubbed and possibly damage the object or gripper.

3.2. Experimental Protocol

In summary, the operation of the system consists of the following sequence:

1. The laser scanner scans the object.

2. Data reduction algorithms refine the data and produce theh,w andl of attributes that
describe the object (Solina & Bajcsy, 1990).

3. A full decision tree is regenerated based on the database of points using the ID-3
algorithm for real-valued attributes (Quinlan, 1986, Quinlan, 1992)1.

4. The tree is pruned (α = 0.025, see below). In practice, the tree pruning parameter did
not seem to have a significant impact on system performance for reasonable values.

5. Interval estimation is used (with confidence levelα = 0.125) to select the bestθ, φ
using the approach described in section 2. HereP = (h,w, l) andA = (θ, φ).

6. The robot attempts the grasp and assesses the outcome.

7. The new data point(P,A,O), of attributes and the outcome, is recorded in the database.

8. Goto step 1.

Pruning is done using Quinlan’s (Quinlan, 1992) C4.5 pessimistic binomial upper-bound
method. For each leaf the(1 − α) upper-bound on the estimated error rate is computed
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Figure 7. The set of common objects for which learning was attempted.

based on the misclassification incidences for each of the children nodes below a node being
evaluated for collapse. If the weighted average of the upper-bound error rates is greater
than the pooled upper-bound error rate, then the child nodes are collapsed.

3.3. Experimental Results

A total of six objects were chosen for grasping: a balsa block, white-board eraser, small
flashlight, wire spool, screwdriver and a stapler (see Figure 7). For each of these objects,
the protocol of section 3.2 was carried out, starting with an empty learning set for each new
item.

Figure 8 shows the average success (or hit) rate over the thirty trials for the balsa block.
The hit rate is the windowed proportion of successful grasps to attempts using a sliding
window 10 attempts wide over the 30 instances in a learning run. For example, the computed
hit rate for trial 10 consists of the proportion of consecutive grasp attempts numbered 10
through 19 that succeeded. It can be seen that the robot rapidly converges on a strategy for
selecting approaches that succeeds reliably.

The scatter plot of Figure 8 also illustrates the effect of the exploration strategy. This
figure shows the selected azimuthθ and elevationφ values for the balsa block trials in the
range0◦ < θ < 90◦ and0◦ < φ < 60◦. Each point in theθ, φ space is marked by its
outcome, 0 for failure or 1 for success. As is evident by the plot, the action parameters
are not uniformly distributed in the space, but concentrated in the region which has a small
θ value, which is the constraint for alignment for this object. Outside of the constraint
values there are very few grasping attempts. The exploration algorithm has rapidly focused
exploration on the region of success.
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Figure 8. The hit rate for the balsa block over 30 trials and (b) corresponding scatter plot of chosen actions in
the action space. The cumulative probability for successful grasping is .83 for the learning condition and .43 for
random approach.

In the case of the flashlight, the learning curve increases more slowly (see Figure 9) since
the width of the screwdriver is quite close to the maximum width of the gripper and it takes
more attempts to find a first successful grasp which can form the basis of a tree partition.

The learning curve for the stapler is rapid (see Figure 10), converging after about 20 at-
tempts. The system succeeds almost at once and maintains a high level of performance. The
scatter plot once again shows that the actions are highly concentrated in the favorable part
of the action space. Similar learning performance and action distributions were observed
for the eraser and screwdriver objects.

The spool (rightmost object in Figure 7) was an interesting case, since it has a significant
concavity from the end-pieces attached to the center shaft, which makes it difficult to
represent accurately using the convex superquadric representation that we have chosen.
Nevertheless, the learning algorithm is able to learn the constraints for grasping this object
(see Figure 11), and identifies a region in the action space that succeeds (namelyφ <
30 degrees) by picking an approach direction which avoids approaches that hit the end-
cap, which was the main cause of failures in grasping this object. Unfortunately, the
system cannot describe concavity with its given shape representation. This may lead to
the generalization that other objects with similar parameter values have constraints for
approach directions that are overly restrictive when compared to a truly convex object.
Another scenario has a convex object with the same extents as the spool presented first
in sequence. This will lead to approach constraints which are not restrictive enough, and
upon interactions with the spool, the system may err by selecting poor approach directions.
Upon further interactions, the system will begin to restrict the approach directions. Unless
the representation is extended to include some measure of concavity, this problem cannot
be avoided. The only solution is to adopt more sophisticated representation for perceptual
parameters into the active learning approach (see section 4).
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Figure 9. The hit rate for the flashlight over the first 30 trials and (b) the distribution of actions in the action space.
The cumulative probability for successful grasping is .67 for the learning condition and .23 for random approach.
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Figure 10.The hit rate for the stapler over the first 30 trials and (b) the distribution of actions in the action space.
The cumulative probability for successful grasping is .83 for the learning condition and .4 for random approach.
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Figure 11.The hit rate for the spool over the first 25 trials and the distribution of actions in the action space. The
cumulative success probability is .8 for the IE-ID3 learning condition and .27 for the random condition.

3.4. Simulation Studies

A simulation study was undertaken to explore the scaling properties as the number of objects
presented increased. In the simulation the gripper was modeled by taking the necessary
coordinate transformations on the gripper of rotation(θ, z) followed by rotation(φ, x) and
determining if the projection of the object in the two dimensional plane orthogonal to the
approach direction was smaller than the maximum span of the fingers. If the gripper cleared
the object, it was taken to be graspable.

The objects for the simulation had dimensions that were selected from a uniform distri-
bution of 35-90mm and the maximum gripper width was taken as 70mm. Additionally, to
make the task more difficult, objects were generated so that only one of the aspects of the
object,w or l would clear the gripper. For the aspect that did clear the gripper, a minimum
of 5mm clearance was guaranteed. The allowable approach directions were in the range
0◦ < θ < 90◦ and0◦ < φ < 90◦.

For the IE-ID3 algorithm, the learning protocol was to give a randomly generated object
from the above distribution to the learner and then have it attempt to grasp the object 10
times, or until it succeeded 5 times in a row, whichever came first. Each trial consisted of
running ID-3 on the exemplars generated so far and then selecting an action using the IE
algorithm on the resulting tree. For the simulation curves, the horizontal axis represents
the interaction number as they occur in each independent execution epoch, and the vertical
axis represents the estimated hit rate (the probability of a grasp attempt succeeding) based
on the average success rate at each trail interaction in the epoch. The estimated hit rate
(success) is computed by counting up all successful attempts for the given trial numbers
across all epochs and dividing by the total number of epoch runs.

For comparison, open loop (OL) alternating learning was performed in which each cycle
consisted of first executing a random action to acquire the next point in the exploration
set. Then ID-3 was run on that exemplar plus any previously acquired exemplars and a test
action was executed to form a trial for the performance curve. The test action was chosen by
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Figure 12.Comparison of system performance over first 300 trials (averaged over 200 runs). The IE-ID3 driven
learner (black) exhibits much better performance than the open loop learner (gray) which suffers because it always
alternates between the random training action mode and test.

searching for the leaf with the highest raw probability of success given the current perceptual
vector constraintP . The OL plot depicts the average of the exploration and exploitation
outcomes. As Figure 12 shows, the IE-ID3 based learner (the black curve) performed
almost twice as well the OL alternating strategy. This large difference in performance was
primarily due to the fact the in the OL case 50% of the grasp attempts were randomly chosen
because of the random selection used in OL.

Figure 13 depicts the cumulative average number of successes for three conditions of
learning: IE-ID3, OL and random. Again we can see that the performance of the IE-ID3
mode learning far exceeds the alternating OL explore/exploit paradigm again because of the
wasteful random search of the open loop learner. This can be seen in Figure 14 which shows
the performance curve (black) and exploration curve (light grey). Since the performance on
the exploration is low, the combined performance of the alternating explore/exploit strategy
is quite low; as expected, random exploration is expensive. IE-ID3 learning performs much
better since it begins to exploit knowledge and abandon exploration as soon as is judged
possible. Subsequent actions are guided to focus on more promising parts of the action
space. Figures 15(a) and (b) give representative projections of the distribution of actions
for the IE-ID3 and OL conditions along theθ and l axes and show that, as in the actual
experiments, the data is concentrated in the high success regions for the IE-ID3 condition,
as expected.

We would expect that along with better on-line performance, the classification accuracy
for the active learner would be better than the open loop, since it would concentrate its
data gathering in relevant regions of the input space, leading to better approximations of
task-relevant concept decision boundaries by the learner. In order to test this hypothesis,



    

ACTIVE LEARNING FOR VISION-BASED ROBOT GRASPING 269

IE-ID3 OL Alt. Random

Strategy

0

50

100

150

200

250

300

C
um

ul
at

iv
e 

# 
S

uc
ce

ss
es

 (
30

0 
T

ria
ls

)

Figure 13. Comparison of the cumulative number of grasp successes for the IE-ID3, alternating explore and
exploit open loop (OL) and random conditions over 300 trials.
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Figure 14. The exploration and exploitation performance of the open loop learner. Since these two strategies
alternate, the combined performance is penalized by the random exploitation.
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Figure 15.The projection of the location of actions (θ) vs. the length aspect of the object (l). We can see that the
exemplars generated by the active learning case (b) are much more concentrated in the success regions than the
open loop case (a).

we ran the OL strategy and measured the probability of successful classification during
the performance cases of each cycle. We also formed an equivalent independent test set
for IE. Although a test set is technically unnecessary while using the IE-ID3 method, for
the purposes of comparison it is useful to examine the use of raw probabilities for action
selection of both methods. Figure 16 shows that the IE-ID3 formed classification is more
accurate. In another test, IE-ID3 versus OL were run over 250 interactions using the same
protocol as above. Looking at the average number of correct classifications for the 250
interactions for IE-ID3 (µOL = 151.121 andµIE = 175.12) showed that IE-ID3 lead to
significantly higher number of correct classifications. The 99% confidence interval for the
difference between the meansµIE − µOL was[18.35, 29.4657] using a Student’s-t small
sample confidence interval test. Thus, the simulation results indicate that IE-ID3 does
somewhat better than OL from a classification standpoint, but is markedly better from a
performancestandpoint, which is the key issue for real-world efficiency.

4. Discussion

We adopted the framework of the two phase model of grasping, and used learning to
determine free parameters for the ballistic approach phase that determines the direction of
approach of the robot hand. Our results show that the IE algorithm provides an efficient
mechanism for focusing the data-gathering activity of an ID-3-based learner on successful
areas of the action space. The method learns to grasp new objects very rapidly, usually
within about 20 attempts for this simplified problem. The scatter plots for both the real
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Figure 16.Comparison of the Classification Rate for IE-ID3 (black) Test vs OL. Test. (Grey)

learning trials and the simulations illustrate the fact that actions are concentrated in the high
success areas of the attribute space.

4.1. Extending the Approach to More Complex Objects and Effectors

Our work represents a first step, where we are controlling only the approach direction of
the gripper relative to the centroid of the object, and holding other parameters fixed. Our
active learning approach to grasping performed well with a small parameter set, but further
trials with richer perceptual descriptions are needed to verify to the approach with the more
complex representation needed to represent general real world objects. In particular as more
complex objects with multiple parts and other protuberances are presented for grasping,
a global deformation approach such as the superquadric will smooth out these possibly
important features (see the discussion of performance on the spool test object in section
3.3). Objects that might be graspable from handles, but too wide to clear the gripper might
be found ungraspable using the global deformation approach of superquadrics, leading to
decreased performance.

Fortunately other superquadric shape parameters and more sophisticated shape represen-
tations including taper and bending parameters for superquadrics could also be used within
this framework. In particular, the multi-component aspect polyhedron described used by
Stansfield (Stansfield, 1990) seems a particularly suitable candidate. This representation
supports symbolic 3-D attributes of object patches such as curved or flatness properties,
as well as 3-D positions and extents in space and other predicates that express the spatial
relations between patches for a given view. These views from different directions of the
object can be combined to form an aspect polyhedron. The aspect polyhedron permits
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the representation of objects with multiple parts, rather than the single global deformations
permitted by superquadrics. It allows a more sophisticated representation of both of percep-
tion and action, since grasp sites can be associated with segmented surface patches on the
object. In order to apply learning to this representation, the different slots of the multi-part
perceptual representation could be bound to the input attributes of the decision tree (similar
to the input bindings to the input nodes in (Stansfield, 1992)) but using the same protocol
and active learning approach described in this work instead of an off-line back-propagation
approach. A similar approach could be taken with Bard’s hierarchical ellipsoid representa-
tion (Bard, Troccaz & Vercelli, 1991), if it were augmented with spatial-relation predicates
between the component ellipsoids.

The IE-ID3 approach should scale well if these more sophisticated representations are
adopted since all of its components are known to scale well. The ID-3/CART family
of classification tree algorithms have proven effective in applications with much higher
dimensionalities than what we have used here, and support both real-valued and categorical
variables, both of which may be present in grasping tasks. Future implementations should
include symbolic values, such as the grasp preshape (e.g. pinch, hook, cylindrical, spherical
etc.) for more complex dextrous hands, along with real-valued parameters for those grasp
categories such as finger stiffness and extent of preshape. Additionally, ID-3 and related
techniques such as CART and newer non-axis parallel techniques (Murthy, et al., 1993) are
very well-suited to rejecting irrelevant attributes because of the information gain splitting
heuristic utilized, and so should scale well to more complex representations. Another
advantage of using classification trees is that although the action space is continuous, using
the indirect indexing method with the ID-3 partitioning affords a natural and meaningful
partition of that space. The resulting intervals provide a range of feasible action which can
be intersected with other high-level constraints, such as approach limits that might be due
to obstacles around the object.

Further phases of grasping that follow the preshape and approach would also benefit from
active learning. These include the contact phase and lifting phases (Howe, et al., 1990), re-
grasping, transport phases and release or insertion for assembly (Gullapalli, Barto & Grupen,
1994), each of which is indicated by specific sensory markers, such as tactile forces, that
invoke differing control modes. An interesting problem is to learn reliable markers from
this stream of sensory information that would indicate state transitions, as well as the correct
control parameters that would hold during these states, as has been demonstrated is some
initial work by (Pook & Ballard, 1993) using hidden Markov models.

One possible drawback of the approach is that it is possible that other potentially successful
areas of the perception/action space might be missed, since the method could greedily
identify a good region and cease exploration in other regions. For example, an initial split
based on the trials seen so far might yield a partitioning which covers only a subset of the
true success region. Subsequent attempts would then be focused in that restricted region.
There is no way to guarantee not missing a small region with higher success probability
unless one is willing to exhaustively explore the entire perception-action space. Generally,
the space is sparse in success for non-trivial problems, and it is not worth the cost of doing
so.
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Another possibility is that the IE algorithm may get stuck in actions which are sub-optimal
due to pathological data orderings (Kaelbling, 1990). Consider the case two actions,a1

anda2, with Psuccess(a1) > Psuccess(a2). When samplinga1 anda2 sequentially using
the IE strategy it is possible that a pathological ordering of outcomes may occur leading to
P+(a2) > P+(a1) andP+(a1) < Psuccess(a2) at the same time. In this case the algorithm
will be stuck in a vicious cycle:a2 will alway be selected, since its upper-bound will
converge toPsuccess(a2) anda1 upper-bound will never rise since it is never selected since
a2 has the best upper-bound. Sticking may also occur in Bayesian-optimal systems; it is
an unavoidable consequence of the exploration/exploitation tradeoff. Fortunately, sticking
becomes less probable as the difference in the underlying probability of success between
actions increases. Therefore, for practical purposes, if the sticking phenomenon occurs, it
is likely that the efficacies of the different alternatives will be small.

4.2. Comparison to Other Methods

Active learning approaches have taken two overall approaches. Knowledge-directed ap-
proaches select actions which maximize overall knowledge gain about a domain model,
independent of a particular task. Task-directed approaches concentrate on actions that
yield a maximum of information about the domain that is relevant to a particular task in
a domain, rather than a general domain model. For example, Cohn has proposed two
methods for control of experimentation to maximize overall information gain. Selective
sampling (Atlas, et al, 1990) attempts to identify the region of uncertainty between the most
general and most specific concepts that are consistent with the training set. The distribution
of query points is then biased to favor those points that lie within the region of uncertainty.
Actions can also be chosen to be maximally informative in terms of minimizing the ex-
pected generalization error over the entire domain, for example, using optimal experimental
design (Cohn, 1994). Whether a task-directed or knowledge-gain directed gain approach
is taken for learning is a function of the costs of experiments and the expected amount of
the domain that will be visited by the learning agent during its lifetime, and how desirable
it is to front-load learning of the entire domain, versus learning it on an as needed basis as
new tasks are encountered.

The system presented is the first grasp learning system to incorporate active learning
to intelligently select manipulatory actions. Previously developed grasp learning systems
adopt random action search, or rely of domain specific heuristics. For example in Dunn &
Segen (1988) if no similar object is found in the data base, a randomized trial and error search
for successful grasps is undertaken. In Kamon et al. (1994) if no match is found, a domain
dependent heuristic is used to pick a grasp with a random component. Similarly in Tan
(1993), although consideration is given towards picking good sensing actions, manipulatory
actions are chosen randomly if no classification is predicted. Bennett’s explanation based
system (Bennett, 1991) uses domain knowledge to choose its next grasping attempt, which
requires explicit human provided knowledge regarding the general characteristics of the
sensing and motor apparatus of the robot, limiting its flexibility and true autonomy. Our
approach represents a domain-independent and principled technique for selecting actions.
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Our work can be compared Tan’s Cost Sensitive Learning (CSL-ID3) (Tan, 1993) at sev-
eral levels. Both CS-ID3 and IE-ID3 are similarly concerned with decreasing the cost of
learning, but differ philosophically on how they decrease this cost. If one examines the
overall costs encountered by a learning system during its lifetime, these costs can arise either
from measuring the attributes of each case processed, or due to errors that occur by acting
on the wrong classification output by the learning system (executing the wrong action).
Consider a hypothetical system that attempts to learn to grasp and retrieve Ming Dynasty
vases. Certainly, we would want the system to converge as quickly as possible, since each
dropped vase has very high penalty. Secondarily, if certain perceptual features, such as the
color of the vase, were rapidly computable and relevant to deciding where to grasp the vase,
we should prefer those over difficult to sense and unreliable object features. If the cost of
failure is high in comparison to sensing costs, then we want the system improve its classifi-
cation accuracy on encountered cases as rapidly as possible. This can be done by intelligent
selection of the next action, as in IE-ID3 and other approaches (Thrun & Moller, 1992,
Moore, 1990, Schneider, 1993, Sutton, 1990, Atlas, et al, 1990, Cohn, 1994) so as to im-
prove the classification accuracy as much as possible per each fixed cost exemplar. Until it
reaches convergence CS-ID3 seems to require many more interactions with the object than
a standard ID-3 and encounters many more classification errors than a standard ID-3 ap-
proach ((Tan, 1993),pp. 27), which can be problematic in tasks with high misclassification
costs. On the other hand, if misclassification costs are small in comparison to sensing costs,
the CSL-ID3 approach of decreasing average sensing costs makes sense. In fact, CS-ID3
achieves rough parity with ID-3 regarding total cost until convergence by decreasing the
average sensing cost per each case.

Although initially developed as a supervised learning system (Tan, 1990) CSL-ID3 can
technically be run in either a supervised or unsupervised mode (Tan, 1993), where either
a teacher suggests the appropriate grasp for a sensed object, or the robot randomly tries
grasps from a finite set of available alternative grasping procedure until a grasp succeeds.
However if size of the action set is large, then the random experimentation approach can be
unduly expensive and even hopeless. Secondly, if an object is not graspable by any of the
preset grasp actions in CS-ID3, the system cannot synthesize a new action that succeeds.
The IE-ID3 approach, on the other hand, allows for continuous actions, which do permit
truly novel actions to be discovered. Secondly, because of the probabilistic nature of the
confidence intervals we use, we can have a measure of reliability of an action, which is not
captured the recognition tree generated by CSL-ID3

Since CSL-ID3 achieves a decrease in the on-going sensing costs of the learning agent
after it has converged, it can lead to much lower costs during the lifetime of the system. To
truly minimize costs during the life of the agent, the sensing and misclassification costs, as
well as the expected number of times the gathered knowledge will be used (e.g. the lifetime
of the agent) must be taken into account. An interesting avenue of future research would be
to combine a technique such as CS-ID3 with IE-ID3 in a multi-objective approach, taking
into account both of the above considerations.
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4.3. Extending the IE-ID3 Approach to Other Learning Algorithms

The key to the approach described here is the combination of learning mappings from
perception and action to reward with selecting actions which improve the expected reward
over all future trials. Above, we used ID-3 to build decision tree mappings and the IE
algorithm to select actions. Other learning methods such as radial basis functions, nearest-
neighbor approaches and hierarchically gated mixtures of Gaussians could equally well be
used to build the mappings since they also can, in principle, provide confidence intervals
for the quantities they predict.

One immediate extension would be to apply the IE-ID3 approach toward learning func-
tion with continuous outputs. This could be done by employing the real-valued exten-
sion to IE as suggested in (Kaelbling, 1990), (pages 74-75), along with using regression
trees (Breiman, et al., 1984) in place of classification trees. The real-valued extension for
IE-ID3 involves building confidence intervals for the estimate of the true mean reward for
the learner, again picking actions with the highest output upper-bound. The statistics for
the upper-bound would be available in the nodes of the regression trees.

Additionally, one can use exploration approaches other than IE, for example, those sug-
gested by statistical decision theory (Berger, 1985). These can incorporate priors on the
distribution of reward in the attribute space in order to control exploration in a less heuristic
fashion than IE, and allow a more formal analysis of the properties of the IE approach. Also,
a wealth of results from multi-armed bandit problems (Gittins, 1988) become applicable
once the real-valued space is partitioned and can lead to even more efficient solutions to
problems (Salganicoff & Ungar, 1995).

4.4. Other Application Areas

We expect the IE-ID3 method to be broadly applicable in robotics and in many other do-
mains. A variety of other robotic skills have been subjected to learning approaches through
parameterization of the perceptual and action spaces, such as throwing (Schneider, 1993),
juggling (Aboaf, Atkeson & Reinkensmeyer, 1988) and playing billiards (Moore, 1991a)
and the IE-ID3 active learning approach should be applicable those domains as well.

Chemical plant control and optimization provides a second example of a class of problems
with the right characteristics for such active learning, particularly IE-ID3. The plants are
often nonlinear, and complete, accurate, models are rarely available. Many control actions
can be taken - e.g. adjusting the temperatures, pressures, and flow rates of the plant. It
is far too expensive to explore the whole range of possible actions (controls), since most
of them are suboptimal - and expensive. Thus, it is necessary to trade off exploration of
actions against exploitation of the best actions found to date. Similarly, in many batch
production environments, such as semiconductor processing, it is difficult or overly ex-
pensive to build detailed and accurate models of the production process that may permit a
principled enhancement of yield as a function of the variation of the process parameters.
By using the IE-ID3 active learning approach an efficient search of the parameter space
of the process may be made, even for environments with combinations of real-valued and
categorical parameters.
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5. Conclusion

We have presented a technique for active learning which combines the Interval Estima-
tion (IE) exploration heuristic (Kaelbling, 1990) with a classification tree algorithm, ID-
3 (Quinlan, 1986). We demonstrated the success of this technique in selecting parameters
for the grasp approach direction during the ballistic phase of grasping. The active learning
approach was motivated by the fact that gathering each exemplar (interaction with an object
to attempt a grasp) has significant costs, similar to many learning tasks. Thus, minimizing
the number of trials before good performance is attained is crucial. The resulting learner
avoided random exploration and focused its data acquisition areas with effective actions.
Empirical tests on a small set of test objects using a laser ranger scanner and simplified
superquadric shape descriptions of the objects showed that the system was able to learn to
select successful approach direction rules in a small number of real interactions with the
objects. Simulation results for a scenario with many more objects and trials showed that
using the active learning exploration strategy dramatically improved performance over an
uninformed batch learner. The representation and learning algorithms employed are extend-
able to more sophisticated perceptual and action representations for grasping. Although
the approach is promising, much work remains to be done in verifying the scalability of
the approach through experiments and in tackling learning as it applies to other aspects of
vision-based robotics and grasping.
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Notes

1. The ID-3 algorithm with single partitions per attribute has worst case time complexity ofO(n2+log k) (this
solves the recurrence relationTn = 2Tn/2 + kn2 ) wheren is the number of exemplars, andk is the number
of attributes. In practice performance is much better, since the above analysis assumes a learning set that
results in a full binary tree partitioning of one leaf for each exemplar in the set. Truly incremental versions of
ID-3 such as ID-5 (Utgoff, 1988) could have been used, but the non-incremental algorithm executed rapidly
enough that it was not a hindrance to regenerate the full tree after each new observation.
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