Skip to main content
Log in

Mapping Conjugate Gradient Algorithms for Neutron Diffusion Applications onto SIMD, MIMD, and Mixed-Mode Machines

  • Published:
International Journal of Parallel Programming Aims and scope Submit manuscript

Abstract

The performance of conjugate gradient (CG) algorithms for the solution of the system of linear equations that results from the finite-differencing of the neutron diffusion equation was analyzed on SIMD, MIMD, and mixed-mode parallel machines. A block preconditioner based on the incomplete Cholesky factorization was used to accelerate the conjugate gradient search. The issues involved in mapping both the unpreconditioned and preconditioned conjugate gradient algorithms onto the mixed-mode PASM prototype, the SIMD MasPar MP-1, and the MIMD Intel Paragon XP/S are discussed. On PASM , the mixed-mode implementation outperformed either SIMD or MIMD alone. Theoretical performance predictions were analyzed and compared with the experimental results on the MasPar MP-1 and the Paragon XP/S. Other issues addressed include the impact on execution time of the number of processors used, the effect of the interprocessor communication network on performance, and the relationship of the number of processors to the quality of the preconditioning. Applications studies such as this are necessary in the development of software tools for mapping algorithms onto either a single parallel machine or a heterogeneous suite of parallel machines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. M. Wildberger, Review of the exploratory research program in parallel and adaptive computing at the Electric Power Research Institute, High Performance Computing Conf., pp. 3–12 (April 1994).

  2. P. Concus, G. H. Golub, and G. Meurant, Block preconditioning for the conjugate gradient method, SIAM J. Sci. Stat. Comp. 6(1):220–252 (January 1985).

    Google Scholar 

  3. M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems, J. Res. Nat. Bur. Stand 49:409–436 (1952).

    Google Scholar 

  4. EPRI, Advanced Recycle Methodology Program, System Documentation, EPRI-NP-4574-CCM, Palo Alto, California (1987).

  5. H. J. Siegel, M. Maheswaran, D. W. Watson, J. K. Antonio, and M. J. Atallah, Mixed-mode system heterogeneous computing. In Heterogeneous Computing, M. M. Eshaghian, (ed.), Artech House, Norwood, Massachusetts, pp. 19–65 (1996).

    Google Scholar 

  6. J. R. Nickolls, The design of the MasPar MP-1: A cost effective massively parallel computer, IEEE Computer Society Int'l. Conf. (Compcon), pp. 25–28 (February 1990).

  7. G. S. Almasi and A. Gottlieb, Highly Parallel Computing, Second Edition, Benjamin Cummings, Redwood City, California (1994).

    Google Scholar 

  8. H. J. Siegel, H. G. Dietz, and J. K. Antonio, Software support for heterogeneous computing. In The Computer Science and Engineering Handbook, A. B. Tucker, Jr., (ed.), CRC Press, Boca Raton, Florida, pp. 1886–1909 (1997).

    Google Scholar 

  9. U. R. Hanebutte and E. Lewis, A massively parallel discrete ordinates response matrix method for neutron transport, Nucl. Sci. Eng. 111(2):46–56 (May 1992).

    Google Scholar 

  10. B. L. Kirk and Y. Y. Azmy, An iterative algorithm for solving the multidimensional neutron diffusion nodal method equations on parallel computer, Nucl. Sci. Eng. 111(2):57–65 (May 1992).

    Google Scholar 

  11. R. Muller, R. Boer, and H. Finnemann, Software development for reactor simulation on multiprocessor systems, Amer. Nucl. Soc. Top. Mtg. on Adv. in Math. and Computations 25:1–12 (April 1992).

    Google Scholar 

  12. S. Hammond and R. Schreiber, Efficient ICCG on a shared memory multiprocessor, Int'l. J. High Speed Computing 4:1–22 (March 1992).

    Google Scholar 

  13. H. A. Van Der Vorst, Large tridiagonal and block tridiagonal linear systems on vector and parallel computers, Parallel Computing 5:45–54 (1987).

    Google Scholar 

  14. A. Gupta, V. Kumar, and A. Sameh, Performance and scalability of conjugate gradient methods on parallel computers, IEEE Trans. Parallel and Distributed Systems 6(5): 455–469 (May 1995).

    Google Scholar 

  15. J. J. Duderstadt and L. J. Hamilton, Nuclear Reactor Analysis, John Wiley and Sons, Inc., New York (1976).

    Google Scholar 

  16. H. Joo and T. Downar, Incomplete domain decomposition preconditioning for the coarse mesh neutron diffusion equation, Amer. Nucl. Soc. Int'l. Mathematics and Computation Topical Meeting, pp. 1854–1864 (May 1995).

  17. O. Axelsson and V. A. Barber, Finite Element Solution of Boundary Value Problems, Academic Press, Orlando, Florida (1984).

    Google Scholar 

  18. O. Axelsson, Iterative Solution Methods, Cambridge University Press, New York (1994).

    Google Scholar 

  19. G. Meurant, Iterative methods for multiprocessor vector computers, Computer Physics Report 11:51–80 (November 1989).

    Google Scholar 

  20. H. Joo, T. Downar, and D. Barber, Methods and performance of a parallel reactor kinetics code PARCS, Proc. Int'l. Reactor Physics Conf., pp. 42–51 (September 1996).

  21. V. Kumar, A. Grama, A. Gupta, and G. Karypis, Introduction to Parallel Computing: Design and Analysis of Algorithms, Benjamin Cummings, Redwood City, California (1994).

    Google Scholar 

  22. H. J. Siegel, L. Wang, J. E. So, and M. Maheswaran, Data parallel algorithms. In Handbook of Parallel and Distributed Computing, A. Y. Zomaya, (ed.), McGraw-Hill, New York, pp. 466–499 (1996).

    Google Scholar 

  23. W. Gropp and D. Keyes, Complexity of parallel implementation of domain decomposition techniques for elliptic partial differential equations, SIAM J. Sci. Stat. Comp. 9:312–326 (January 1988).

    Google Scholar 

  24. P. Sonneveld, CGS, a fast Lanczos-type solver for nonsymmetric linear systems, SIAM J. Sci. Stat. Comp. 10:36–52 (1989).

    Google Scholar 

  25. H. J. Siegel, T. Schwederski, W. G. Nation, J. B. Armstrong, L. Wang, J. T. Kuehn, R. Gupta, M. D. Allemang, D. G. Meyer, and D. W. Watson, The design and prototyping of the PASM reconfigurable parallel processing system. In Parallel Computing: Paradigms and Applications, A. Y. Zomaya, (ed.), International Thomson Computer Press, London, United Kingdom, pp. 78–114 (1996).

    Google Scholar 

  26. S. D. Kim, M. A. Nichols, and H. J. Siegel, Modeling overlapped operation between the control unit and processing elements in an SIMD machines, J. Parallel and Distributed Computing 12(4):329–342 (August 1991).

    Google Scholar 

  27. M. A. Nichols, H. J. Siegel, and H. G. Dietz, Data management and control-flow aspects of an SIMD/SPMD parallel language/compiler, IEEE Trans. Parallel and Distributed Systems 4(2):222–234 (February 1993).

    Google Scholar 

  28. H. J. Siegel, J. B. Armstrong, and D. W. Watson, Mapping computer vision related tasks onto reconfigurable parallel processing systems, IEEE Computer 25(2):54–63 (February 1992).

    Google Scholar 

  29. Y. Saad and M. Schultz, GMRES: A generalized minimum residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comp. 7:856–869 (1986).

    Google Scholar 

  30. L. J. Jamieson, Characterizing parallel algorithms. In The Characteristics of Parallel Algorithms, L. H. Jamieson, D. G. Gannon, and R. G. Douglass, (eds.), The MIT Press, Cambridge, Massachusetts, pp. 65–100 (1987).

    Google Scholar 

  31. R. Freund, T. Kidd, D. Hensgen, and L. Moore, SmartNet: A scheduling framework for heterogeneous computing, Second Int'l. Symp. Parallel Architectures, Algorithms, and Networks, pp. 514–521 (April 1996).

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

So, J.J.E., Downar, T.J., Janardhan, R. et al. Mapping Conjugate Gradient Algorithms for Neutron Diffusion Applications onto SIMD, MIMD, and Mixed-Mode Machines. International Journal of Parallel Programming 26, 183–207 (1998). https://doi.org/10.1023/A:1018796903553

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018796903553

Navigation