Skip to main content
Log in

Algorithms Transformation Techniques for Low-Power Wireless VLSI Systems Design

  • Published:
International Journal of Wireless Information Networks Aims and scope Submit manuscript

Abstract

This paper presents an overview of algorithmtransformation techniques and discusses their role inthe development of hardware-efficient and low-power VLSIalgorithms and architectures for communication systems. Algorithm transformation techniquessuch as retiming, look-ahead and relaxed pipelining,parallel processing, folding, unfolding, and strengthreduction are described. These techniques are applied statically (i.e., during the system designphase) and hence are referred to as static algorithmtransformations (SATs). SAT techniques alter thestructural and functional properties of a givenalgorithm so as to be able to jointly optimizeperformance measures in the algorithmic (signal-to-noiseratio [SNR] and bit error rate [BER]) and VLSI (powerdissipation, area and throughput) domains. Next, a new class of algorithm transformations referred toas dynamic algorithm transformations (DAT) is presented.These transformations exploit the nonstationarity in theinput signal environment to determine and assign minimum computational requirements foran algorithm in real time. Both SAT and DAT techniquesare poised to play a critical role in the development oflow-power wireless VLSI systems given the trend toward increasing digital signal processing inthese systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. T. S. Rappaport, B. D. Woerner, and J. H. Reed, Wireless Personal Communications: The Evolution of Personal Communications Systems, Kluwer, Boston, 1996.

    Google Scholar 

  2. ETSI /RES, HIPERLAN, Services and Facilities, Sophia-Antipol is, France, Dec. 1992.

  3. A. Abidi et al., The future of CMOS wireless transceivers, ISSCC’ 97, San Francisco, pp. 118–119.

  4. Special issue on software radios, IEEE Communications Magazine, May 1995.

  5. M. D. Hahm, E. G. Friedman, and E. L. Titlebaum, A comparison of analog and digital circuit implementations of low power matched filters for use in portable wireless communications, IEEE Transactions on Circuits and Systems— II: Analog and Digital Signal Processing, Vol. 44, No.6, pp. 498–506, June 1997.

    Google Scholar 

  6. D. K. Shaeffer and T. H. Lee, A 1.5V, 1.5 GHz CMOS low noise amplifier, IEEE Journal of Solid-State Circuits, Vol. 32, No.5, May 1997.

  7. A. Rofougaran et al., A 1 GHz CMOS RF front-end IC for a directconversion wireless receiver, IEEE Journal of Solid-State Circuits,Vol. 31, July 1996, pp. 880–889.

    Google Scholar 

  8. K. K. Parhi, Algorithm transformation techniques for concurrent processors, Proceedings of the IEEE, Vol. 77, Dec. 1989, pp. 1879–1895.

    Google Scholar 

  9. A. Chandrakasan et al., Minimizing power using transformations, IEEE Transactions on Computer-Aide d Design, Vol. 14, No.1, Jan. 1995, pp. 12–31.

    Google Scholar 

  10. C. Leiserson and J. Saxe, Optimizing synchronous systems, Journal of VLSI and Computer Systems, Vol. 1, 1983, pp. 41–67.

    Google Scholar 

  11. K. K. Parhi and D. G. Messerschmitt, Pipeline interleaving and parallelism in recursive digital filters— Parts I, II, IEEE Transactions on Acoustics, Speech and Signal Processing, Vol. 37, No.7, July 1989, pp. 1099–1134.

    Google Scholar 

  12. H. H. Loomis and B. Sinha, High speed recursive digital filter realization, Circuits, Systems, Signal Processing, Vol. 3, No.3, 1984, pp. 267–294.

    Google Scholar 

  13. N. R. Shanbhag and K. K. Parhi, Pipelined Adaptive Digital Filters, Kluwer Academic Publishers, Boston, 1994.

    Google Scholar 

  14. N. R. Shanbhag and M. Goel, Low-power adaptive filter architectures and their application to 51.84 Mb/s ATM-LAN,IEEE Transactions on Signal Processing, Vol. 45, No.5, May 1997, pp. 1276–1290.

    Google Scholar 

  15. W. Sung and S. K. Mitra, Efficient multiprocessor implementation of recursive digital filters, Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing, Tokyo, Apr. 1986, pp. 257–260.

  16. C. W. Wu and P. R. Cappello, Application specific CAD of VLSI second-order sections, IEEE Transactions on Acoustics, Speech and Signal Processing, Vol. 36, May 1988, pp. 813–825.

    Google Scholar 

  17. M. Potkonjak and J. Rabaey, Fast implementation of recursive programs using transformations, Proceedings of ICASSP, San Francisco, March 1992, pp. V-569–572.

  18. H. V. Jagdish et al., Array architectures for iterative algorithms, Proceedings of the IEEE, Vol. 75, No.9, Sept. 1987, pp. 1304–1321.

    Google Scholar 

  19. K. K. Parhi et al., Synthesis of control circuits in folded pipelined DSP architectures, IEEE Journal of Solid-State Circuits, Vol. 27, No.1, Jan. 1992, pp. 29–43.

    Google Scholar 

  20. R. Hartley and P. Corbett, Digit-serial processing techniques, IEEE Transactions on Circuits and Systems, Vol. 37, No.6, 1990, pp. 707–719.

    Google Scholar 

  21. K. K. Parhi, A systematic approach for the design of digit-serial signal processing architectures, IEEE Transactions on Circuits and Systems, Vol. 38, No.4, April 1991, pp. 358–375.

    Google Scholar 

  22. M. Goel and N. R. Shanbhag, Dynamic algorithm transformations (DAT) for low-power adaptive signal processing, Proceedings of the International Symposium on Low-Power Electronic Design, Monterey, California, Aug. 1997.

  23. N. Weste and K. Eshraghian, Principles of CMOS VLSI Design, Second Edition, Addison Wesley, 1994.

  24. A. Chandrakasan and R. W. Brodersen, Minimizing power consumption in digital CMOS circuits, Proceedings of the IEEE, Vol. 83, No.4, April 1995, pp. 498–523.

    Google Scholar 

  25. F. N. Najm, A survey of power estimation techniques in VLSI circuits, IEEE Transactions on VLSI Systems, Dec. 1994, pp. 446–455.

  26. T. Denk and K. K. Parhi, A unified framework for characterizing retiming and scheduling solutions, Proceedings of ISCAS’ 96, vol. 4, Atlanta, Georgia, May 1996, pp. 568–571.

    Google Scholar 

  27. S. S. Sapatnekar and R. B. Deokar, A fresh look at retiming via clock skew optimization, Proceedings of the ACM/ IEEE Design Automation Conference, 1995, pp. 310–315.

  28. S.-Y. Kung, On supercomputing with systolic/wavefront array processors, Proceedings of the IEEE, Vol. 72, July 1984, pp. 867–884.

    Google Scholar 

  29. S.-Y. Kung, VLSI Array Processors, Prentice-Hall, Englewood Cliffs, New Jersey, 1989.

    Google Scholar 

  30. M. Hatamian and K. K. Parhi, An 85 MHz 4th order programmable IIR digital filter chip, IEEE Journal of Solid-State Circuits, Feb. 1992, pp. 175–183.

  31. N. R. Shanbhag and K. K. Parhi, VLSI implementation of a 100 MHz pipelined ADPCM codec chip, VLSI Signal Processing VI, IEEE Press, Oct. 1993 (Proceedings of the Sixth IEEE VLSI Signal Processing Workshop, Veldhoven, The Netherlands), pp. 114–122.

  32. N. R. Shanbhag and G.-H. Im, VLSI systems design of 51.84 Mb/ s transceivers for ATM-LAN and broadband access, IEEE Transactions on Signal Processing, Vol. 46, May 1998, pp. 1403–1416.

    Google Scholar 

  33. N. R. Shanbhag and K. K. Parhi, Relaxed look-ahead pipelined LMS adaptive filters and their application to ADPCM coder, IEEE Transactions on Circuits and Systems, Vol. 40, Dec. 1993, pp. 753–766.

    Google Scholar 

  34. G. A. Clark, S. K. Mitra, and S. R. Parker, Block implementation of adaptive digital filters, IEEE Transactions on Acoustics, Speech and Signal Processing, Vol. 29, June 1981, pp. 744–752.

    Google Scholar 

  35. T. Meng and D. G. Messerschmitt, Arbitrarily high sampling rate adaptive filters, IEEE Transactions on Acoustics, Speech and Signal Processing, Vol. 35, April 1987, pp. 455–470.

    Google Scholar 

  36. A. Gatherer and T. H.-Y. Meng, High sampling rate adaptive decision feedback equalizer, IEEE Transactions on Signal Processing, Vol. 41, Feb. 1993, pp. 1000–1005.

    Google Scholar 

  37. D. Gajski et al., High-level Synthesis: Introduction to Chip and System Design, Kluwer Academic Publishers, 1992.

  38. H. T. Kung, Why systolic architectures? IEEE Computer, Vol. 15, No.1, Jan. 1982.

  39. D. I. Moldovan and J. A. B. Fortes, Partitioning and mapping of algorithms into fixed sized systolic arrays, IEEE Transactions on Computers, Vol. C-35, Jan. 1986, pp. 1–12.

    Google Scholar 

  40. P. Dewilde, E. Deprettere, and R. Nouta, Parallel and pipelined implementation of signal processing algorithms, in VLSI and Modern Signal Processing, Prentice-Hall, 1985.

  41. M. C. MacFarland, A. C. Parker, and R. Camposano, The highlevel synthesis of digital systems, Proceedings of the IEEE, Vol. 78, 1990, pp. 301–318.

    Google Scholar 

  42. A. Chandrakasan, Data driven signal processing: An approach for energy efficient computing, Proceedings of International Symposium on Low Power Electronics and Design, Monterey, California, August 1996.

  43. J. T. Ludwig et al., Low-power Digital Filtering Using Approximate Processing, Vol. 31, No.3, March 1996, pp. 395–400.

    Google Scholar 

  44. S. Haykin, Adaptive Filter Theory, Prentice Hall, Englewood Cliffs, New Jersey, 1991.

    Google Scholar 

  45. G. Long, F. Ling, and J. G. Proakis, The LMS algorithm with delayed coefficient adaptation, IEEE Transactions on Acoustics, Speech and Signal Processing, Vol. 37, No.9, Sept. 1989, pp. 1397–1405.

    Google Scholar 

  46. G. H. Im and J. J. Werner, Bandwidth-efficient digital transmission up to 155 Mb/ s over unshielded twisted-pair wiring, IEEE Journal of Selected Areas of Communication, Vol. 13, No.9, Dec. 1995, pp. 1643–1655.

    Google Scholar 

  47. G. H. Im et al., 51.84 Mb/ s 16-CAP ATM LAN Standard, IEEE Journal of Selected Areas of Communication, Vol. 13, No.4, May 1995, pp. 620–632.

    Google Scholar 

  48. K. Pahlavan, Channel measurements for wideband digital communication over fading channels, Ph. D. thesis, Worcester Polytechnic Institute, Worcester, Massachusetts, June 1979.

    Google Scholar 

  49. C. J. Nicol et al., A low power 128-tap digital adaptive equalizer for broadband modems, Proceedings of IEEE International Solid-State Circuits Conference, Feb. 1997, pp. 94–95.

  50. P. Landman and J. M. Rabaey, Architectural power analysis: the dual bit type method, IEEE Transactions on VLSI Systems, Vol. 3, June 1995, pp. 173–187.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shanbhag, N.R. Algorithms Transformation Techniques for Low-Power Wireless VLSI Systems Design. International Journal of Wireless Information Networks 5, 147–171 (1998). https://doi.org/10.1023/A:1018869519651

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018869519651

Navigation