Skip to main content
Log in

Some results for a class of generalized polynomials

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

A class of generalized polynomials is considered consisting of the null spaces of certain differential operators with constant coefficients. This class strictly contains ordinary polynomials and appropriately scaled trigonometric polynomials. An analog of the classical Bernstein operator is introduced and it is shown that generalized Bernstein polynomials of a continuous function converge to this function. A convergence result is also proved for degree elevation of the generalized polynomials. Moreover, the geometric nature of these functions is discussed and a connection with certain rational parametric curves is established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P. Alfeld, M. Neamtu and L.L. Schumaker, Circular Bernstein–Bézier polynomials, in: Mathematical Methods for Curves and Surfaces, eds. M. Dæhlen, T. Lyche and L.L. Schumaker (Vanderbilt University Press, Nashville, TN, 1995) pp. 11–20.

    Google Scholar 

  2. G. Casciola and S. Morigi, Spline curves in polar and Cartesian coordinates, in: Curves and Surfaces with Applications in CAGD, eds. A. LeMéhauté, C. Rabut and L. L. Schumaker (Vanderbilt University Press, Nashville, TN, 1997) pp. 61–68.

    Google Scholar 

  3. G. Casciola, S. Morigi and J. Sánchez-Reyes, Degree elevation for p-Bézier curves, Comput. Aided Geom. Design 15(1998) 313–322.

    Article  MATH  MathSciNet  Google Scholar 

  4. E. Cohen and L.L. Schumaker, Rates of convergence of control polygons, Comput. Aided Geom. Design 2(1985) 229–235.

    Article  MATH  MathSciNet  Google Scholar 

  5. P.J. Davis, Interpolation and Approximation(Dover, New York, 1975).

    MATH  Google Scholar 

  6. P. de Casteljau, Splines focales, in: Curves and Surfaces in Geometric Design, eds. P.-J. Laurent, A. Le Méhauté and L.L. Schumaker (A.K. Peters, Wellesley, MA, 1994) pp. 91–103.

    Google Scholar 

  7. G. Farin, Triangular Bernstein–Bézier patches, Comput. Aided Geom. Design 3(1986) 83–128.

    Article  MathSciNet  Google Scholar 

  8. G. Farin, Curves and Surfaces for Computer-Aided Geometric Design. A Practical Guide(Academic Press, San Diego, CA, 1997).

    MATH  Google Scholar 

  9. D.E. Gonsor and M. Neamtu, Non-polynomial polar forms, in: Curves and Surfaces II, eds. P.-J. Laurent, A. Le Méhauté and L.L. Schumaker (A.K. Peters, Wellesley, MA, 1994) pp. 193–200.

    Google Scholar 

  10. D.E. Gonsor and M. Neamtu, Null spaces of differential operators, polar forms, and splines, J. Approx. Theory 86(1996) 81–107.

    Article  MATH  MathSciNet  Google Scholar 

  11. T.N.T. Goodman and S.L. Lee, B-splines on the circle and trigonometric B-splines, in: Approximation Theory and Spline Functions, eds. S.P. Singh, J.H.W. Burry and B. Watson (Reidel, Dordrecht, 1984) pp. 297–325.

    Google Scholar 

  12. T.N.T. Goodman and A. Sharma, Trigonometric interpolation, Proc. Edinburgh Math. Soc. (2) 35(1992) 457–472.

    MathSciNet  Google Scholar 

  13. L. Hörmander, An Introduction to Complex Analysis in Several Variables(North-Holland, Amsterdam, 1990).

    MATH  Google Scholar 

  14. S. Karlin and W.J. Studden, Tchebycheff Systems: with Applications in Analysis and Statistics(Wiley, New York, 1966).

    MATH  Google Scholar 

  15. P.E. Koch, Jackson-type estimates for trigonometric splines, in: Industrial Mathematics Week, Trondheim, August 1992, Department of Mathematical Sciences, Norwegian Institute of Technology (NTH), Trondheim (1992) pp. 117–124.

    Google Scholar 

  16. P.E. Koch, T. Lyche, M. Neamtu and L.L. Schumaker, Control curves and knot insertion for trigonometric splines, Adv. Comput. Math. 3 (1995) 405–424.

    Article  MATH  MathSciNet  Google Scholar 

  17. P.P. Korovkin, Linear Operators and Approximation Theory(Hindustan Publ. Corp., Delhi, 1960).

    Google Scholar 

  18. G.G. Lorentz, Bernstein Polynomials(University of Toronto Press, Toronto, 1953).

    MATH  Google Scholar 

  19. S. Morigi, Modelling with p-spline curves and surfaces, Dissertation, University of Bologna, Italy (1997).

    Google Scholar 

  20. M. Neamtu, H. Pottmann and L.L. Schumaker, Dual focal splines and rational curves with rational offsets, Math. Engrg. Indust. 7 (1998) 139–154.

    MATH  MathSciNet  Google Scholar 

  21. M. Neamtu, H. Pottmann and L.L. Schumaker, Designing NURBS cam profiles using trigonometric splines, J. Mech. Design 120(1998) 175–180.

    Google Scholar 

  22. H. Prautzsch and L. Kobbelt, Convergence of subdivision and degree elevation, Adv. Comput. Math. 2(1994) 143–154.

    MATH  MathSciNet  Google Scholar 

  23. J. Sánchez-Reyes, Single-valued curves in polar coordinates, Comput. Aided Design 22(1990) 19–26.

    Article  MATH  Google Scholar 

  24. K. Yosida, Functional Analysis(Springer, Berlin, 1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morigi, S., Neamtu, M. Some results for a class of generalized polynomials. Advances in Computational Mathematics 12, 133–149 (2000). https://doi.org/10.1023/A:1018908917139

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018908917139

Keywords

Navigation