Skip to main content
Log in

Hermite interpolation with radial basis functions on spheres

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

We show how conditionally negative definite functions on spheres coupled with strictly completely monotone functions (or functions whose derivative is strictly completely monotone) can be used for Hermite interpolation. The classes of functions thus obtained have the advantage over the strictly positive definite functions studied in [17] that closed form representations (as opposed to series expansions) are readily available. Furthermore, our functions include the historically significant spherical multiquadrics. Numerical results are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P. Alfeld, Scattered data interpolation in three or more variables, in: Mathematical Methods in Computer Aided Geometric Design, eds. T. Lyche and L. Schumaker (Academic Press, New York, 1989) pp. 1-33.

    Google Scholar 

  2. P. Alfeld, M. Neamtu and L.L. Schumaker, Fitting scattered data on sphere-like surfaces using spherical splines, J. Comput. Appl. Math. 73 (1996) 5-43.

    Article  MATH  MathSciNet  Google Scholar 

  3. W.F. Donoghue, Monotone Matrix Functions and Analytic Continuation (Springer, New York, 1974).

    MATH  Google Scholar 

  4. N. Dunford and J.T. Schwartz, Linear Operators, Part I: General Theory (Interscience Publishers, New York, 1966).

    Google Scholar 

  5. N. Dyn, T. Goodman and C.A. Micchelli, Positive powers of certain conditionally negative definite matrices, Indaga. Math. Proc. Ser. A 89 (1986) 163-178.

    MathSciNet  Google Scholar 

  6. G.E. Fasshauer, Radial basis functions on spheres, dissertation, Vanderbilt University (1995).

  7. G.E. Fasshauer, Adaptive least squares fitting with radial basis functions on the sphere, in: Mathematical Methods for Curves and Surfaces, eds. M. Dæhlen, T. Lyche and L. Schumaker (Vanderbilt University Press, Nashville and London, 1995) pp. 141-150.

    Google Scholar 

  8. W. Freeden, Spline methods in geodetic approximation problems, Math. Methods Appl. Sci. 4 (1982) 382-396.

    MATH  MathSciNet  Google Scholar 

  9. W. Freeden, A spline interpolation method for solving boundary value problems of potential theory from discretely given data, Numer. Methods Partial Differential Equations 3 (1987) 375-398.

    Article  MATH  MathSciNet  Google Scholar 

  10. R.L. Hardy, Research results in the application of multiquadric equations to surveying and mapping problems, Survg. Mapp. 35 (1975) 321-332.

    Google Scholar 

  11. R.L. Hardy, Theory and applications of the multiquadric-biharmonic method, Comput. Math. Appl. 19 (1990) 163-208.

    Article  MATH  MathSciNet  Google Scholar 

  12. R.A. Horn and C.R. Johnson, Matrix Analysis (Cambridge University Press, Cambridge, 1985).

    MATH  Google Scholar 

  13. V.A. Menegatto, Interpolation on spherical domains, dissertation, University of Texas, Austin, TX (1992).

    Google Scholar 

  14. V.A. Menegatto, Strictly positive definite kernels on the Hilbert sphere, Appl. Anal. 55 (1994) 91-101.

    MATH  MathSciNet  Google Scholar 

  15. C.A. Micchelli, Interpolation of scattered data: distance matrices and conditionally positive definite functions, Constr. Approx. 2 (1986) 11-22.

    Article  MATH  MathSciNet  Google Scholar 

  16. C. Müller, Spherical Harmonics, Lecture Notes in Mathematics, Vol. 17 (Springer, Berlin, 1966).

    MATH  Google Scholar 

  17. F.J. Narcowich, Generalized Hermite interpolation and positive definite kernels on a Riemannian manifold, J. Math. Anal. Appl. 190 (1995) 165-193.

    Article  MATH  MathSciNet  Google Scholar 

  18. F.J. Narcowich and J.D. Ward, Generalized Hermite interpolation via matrix-valued conditionally positive definite functions, Math. Comp. 63 (1994) 661-687.

    Article  MATH  MathSciNet  Google Scholar 

  19. M.J.D. Powell, The theory of radial basis functions in 1990, in: Advances in Numerical Analysis II: Wavelets, Subdivision, and Radial Basis Functions, ed. W. Light (Oxford University Press, Oxford, 1992) pp. 105-210.

    Google Scholar 

  20. I.J. Schoenberg, On certain metric spaces arising from Euclidean spaces by a change of metric and their imbedding in Hilbert space, Ann. of Math. 38 (1937) 787-793.

    Article  MATH  MathSciNet  Google Scholar 

  21. I.J. Schoenberg, Metric spaces and positive definite functions, Trans. Amer. Math. Soc. 44 (1938) 522-536.

    Article  MATH  MathSciNet  Google Scholar 

  22. I.J. Schoenberg, Metric spaces and completely monotone functions, Ann. of Math. 39 (1938) 811-841.

    Article  MATH  MathSciNet  Google Scholar 

  23. I.J. Schoenberg, Positive definite functions on spheres, Duke Math. J. 9 (1942) 96-108.

    Article  MATH  MathSciNet  Google Scholar 

  24. J. Stewart, Positive definite functions and generalizations, an historical survey, Rocky Mountain J. Math. 6 (1976) 409-434.

    Article  MATH  MathSciNet  Google Scholar 

  25. X. Sun, Scattered Hermite interpolation using radial basis functions, Linear Algebra Appl. 207 (1994) 135-146.

    Article  MATH  MathSciNet  Google Scholar 

  26. G. Szegő, Orthogonal Polynomials, Amer. Math. Soc. Colloq. Publ., Vol. 23 (Amer. Math. Soc., Providence, RI, 1959).

    Google Scholar 

  27. J.H. Wells and R.L. Williams, Embeddings and Extensions in Analysis (Springer, New York, 1975).

    MATH  Google Scholar 

  28. D.V. Widder, The Laplace Transform (Princeton University Press, Princeton, 1941).

    MATH  Google Scholar 

  29. Z. Wu, Hermite-Birkhoff interpolation of scattered data by radial basis functions, Approx. Theory Appl. 8 (1992) 1-10.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fasshauer, G.E. Hermite interpolation with radial basis functions on spheres. Advances in Computational Mathematics 10, 81–96 (1999). https://doi.org/10.1023/A:1018914229009

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018914229009

Navigation