Skip to main content
Log in

Optimal discrete and continuous mono‐implicit Runge–Kutta schemes for BVODEs

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

Recent investigations of discretization schemes for the efficient numerical solution of boundary value ordinary differential equations (BVODEs) have focused on a subclass of the well‐known implicit Runge–Kutta (RK) schemes, called mono‐implicit RK (MIRK) schemes, which have been employed in two software packages for the numerical solution of BVODEs, called TWPBVP and MIRKDC. The latter package also employs continuous MIRK (CMIRK) schemes to provide C 1 continuous approximate solutions. The particular schemes implemented in these codes come, in general, from multi‐parameter families and, in some cases, do not represent optimal choices from these families. In this paper, several optimization criteria are identified and applied in the derivation of optimal MIRK and CMIRK schemes for orders 1–6. In some cases the schemes obtained result from the analysis of existent multi‐parameter families; in other cases new families are derived from which specific optimal schemes are then obtained. New MIRK and CMIRK schemes are presented which are superior to those currently available. Numerical examples are provided to demonstrate the practical improvements that can be obtained by employing the optimal schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. U.M. Ascher, R.M.M. Mattheij and R.D. Russell, Numerical Solution of Boundary Value Problems for Ordinary Differential Equations, Classics in Applied Mathematics Series (SIAM, Philadelphia, PA, 1995).

    Google Scholar 

  2. W.M.G. van Bokhoven, Efficient higher order implicit one-step methods for integration of stiff differential equations, BIT 20 (1980) 34-43.

    Article  MATH  MathSciNet  Google Scholar 

  3. D.L. Brown and J. Lorenz, A high-order method for stiff boundary value problems with turning points, SIAM J. Sci. Statist. Comput. 8 (1987) 790-808.

    Article  MATH  MathSciNet  Google Scholar 

  4. K. Burrage, F.H. Chipman and P.H. Muir, Order results for mono-implicit Runge-Kutta methods, SIAM J. Numer. Anal. 31 (1994) 876-891.

    Article  MATH  MathSciNet  Google Scholar 

  5. J.C. Butcher, The Numerical Analysis of Ordinary Differential Equations (Wiley, Chichester, 1987).

    Google Scholar 

  6. J.R. Cash, A class of implicit Runge-Kutta methods for the numerical integration of stiff differential systems, J. ACM 22 (1975) 504-511.

    Article  MATH  MathSciNet  Google Scholar 

  7. J.R. Cash, On the numerical integration of nonlinear two-point boundary value problems using iterated deferred corrections, Part 1: A survey and comparison of some one-step formulae, Comput. Math. Appl. 12a (1986) 1029-1048.

    Article  MathSciNet  Google Scholar 

  8. J.R. Cash and D.R. Moore, A high order method for the numerical solution of two-point boundary value problems, BIT 20 (1980) 44-52.

    Article  MATH  MathSciNet  Google Scholar 

  9. J.R. Cash and A. Singhal, High order methods for the numerical solution of two-point boundary value problems, BIT 22 (1982) 184-199.

    Article  MATH  MathSciNet  Google Scholar 

  10. J.R. Cash and A. Singhal, Mono-implicit Runge-Kutta formulae for the numerical integration of stiff differential systems, IMA J. Numer. Anal. 2 (1982) 211-227.

    MATH  MathSciNet  Google Scholar 

  11. J.R. Cash and M.H. Wright, A deferred correction method for nonlinear two-point boundary value problems: implementation and numerical evaluation, SIAM J. Sci. Statist. Comput. 12 (1991) 971-989.

    Article  MATH  MathSciNet  Google Scholar 

  12. W.H. Enright, The relative efficiency of alternative defect control schemes for high-order continuous Runge-Kutta formulas, SIAM J. Numer. Anal. 30 (1993) 1419-1445.

    Article  MATH  MathSciNet  Google Scholar 

  13. W.H. Enright and P.H. Muir, Efficient classes of Runge-Kutta methods for two-point boundary value problems, Computing 37 (1986) 315-334.

    Article  MATH  MathSciNet  Google Scholar 

  14. W.H. Enright and P.H. Muir, A Runge-Kutta type boundary value ODE solver with defect control, Technical Report 267/93, Department of Computer Science, University of Toronto (1993).

  15. W.H. Enright and P.H. Muir, Runge-Kutta software with defect control for boundary value ODEs, SIAM J. Sci. Comput. 17 (1996) 479-497.

    Article  MATH  MathSciNet  Google Scholar 

  16. W.H. Enright and P.H. Muir, Superconvergent continuous Runge-Kutta schemes for discrete collocation solutions, submitted to SIAM J. Sci. Comput. (1997).

  17. S. Gupta, An adaptive boundary value Runge-Kutta solver for first order boundary value problems, SIAM J. Numer. Anal. 22 (1985) 114-126.

    Article  MATH  MathSciNet  Google Scholar 

  18. R. Frank, J. Schneid and C.W. Ueberhuber, Order results for implicit Runge-Kutta methods applied to stiff systems, SIAM J. Numer. Anal. 22 (1985) 515-534.

    Article  MATH  MathSciNet  Google Scholar 

  19. H.-O. Kreiss, N.K. Nichols and D.L. Brown, Numerical methods for stiff two-point boundary value problems, SIAM J. Numer. Anal. 23 (1986) 325-368.

    Article  MATH  MathSciNet  Google Scholar 

  20. P.H. Muir, A note on continuous Runge-Kutta schemes with sub-optimal stage orders, Congr. Numer. 106 (1995) 105-118.

    MATH  MathSciNet  Google Scholar 

  21. P.H. Muir and W.H. Enright, Relationships among some classes of implicit Runge-Kutta methods and their stability functions, BIT 27 (1987) 403-423.

    Article  MATH  MathSciNet  Google Scholar 

  22. P.H. Muir and B. Owren, Order barriers and characterizations for continuous mono-implicit Runge-Kutta schemes, Math. Comp. 61 (1993) 675-699.

    Article  MATH  MathSciNet  Google Scholar 

  23. P.W. Sharp, Fortran software for computation of error coefficients of Runge-Kutta and Runge-Kutta-Nyström methods, private communication, University of Auckland, Auckland, New Zealand (1995).

    Google Scholar 

  24. P.W. Sharp and E. Smart, Explicit Runge-Kutta pairs with one more derivative evaluation than the minimum, SIAM J. Sci. Comput. 14 (1993) 338-348.

    Article  MATH  MathSciNet  Google Scholar 

  25. R. Scherer and H. Türke, Reflected and transposed methods, BIT 23 (1983) 262-266.

    Article  MATH  MathSciNet  Google Scholar 

  26. H. Stetter, The Analysis of Discretization Methods for Ordinary Differential Equations (Springer, Berlin, 1982).

    Google Scholar 

  27. J. Stoer and R. Bulirsch, Introduction to Numerical Analysis (Springer, New York, 1980).

    Google Scholar 

  28. J.H. Verner, Differentiable interpolants for high-order Runge-Kutta methods, SIAM J. Numer. Anal. 30 (1993) 1446-1466.

    Article  MATH  MathSciNet  Google Scholar 

  29. J.H. Verner and P.W. Sharp, Completely imbedded Runge-Kutta formula pairs, SIAM J. Numer. Anal. 31 (1994) 1169-1190.

    Article  MATH  MathSciNet  Google Scholar 

  30. Waterloo Maple Software, Waterloo, Ontario, Canada.

  31. R. Weiss, The application of implicit Runge-Kutta and collocation methods to boundary value problems, Math. Comp. 28 (1974) 449-464.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muir, P. Optimal discrete and continuous mono‐implicit Runge–Kutta schemes for BVODEs. Advances in Computational Mathematics 10, 135–167 (1999). https://doi.org/10.1023/A:1018926631734

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018926631734

Navigation