Skip to main content
Log in

Fast fitting of radial basis functions: Methods based on preconditioned GMRES iteration

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

Solving large radial basis function (RBF) interpolation problems with non‐customised methods is computationally expensive and the matrices that occur are typically badly conditioned. For example, using the usual direct methods to fit an RBF with N centres requires O(N 2) storage and O(N 3) flops. Thus such an approach is not viable for large problems with N 10,000.

In this paper we present preconditioning strategies which, in combination with fast matrix–vector multiplication and GMRES iteration, make the solution of large RBF interpolation problems orders of magnitude less expensive in storage and operations. In numerical experiments with thin‐plate spline and multiquadric RBFs the preconditioning typically results in dramatic clustering of eigenvalues and improves the condition numbers of the interpolation problem by several orders of magnitude. As a result of the eigenvalue clustering the number of GMRES iterations required to solve the preconditioned problem is of the order of 10-20. Taken together, the combination of a suitable approximate cardinal function preconditioner, the GMRES iterative method, and existing fast matrix–vector algorithms for RBFs [4,5] reduce the computational cost of solving an RBF interpolation problem to O(N) storage, and O(N \log N) operations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Barrodale, D. Skea, M. Berkley, R. Kuwahara and R. Poeckert, Warping digital images using thin-plate splines, Pattern Recognition 26 (1993) 375-376.

    Article  Google Scholar 

  2. R.K. Beatson, J.B. Cherrie and G.N. Newsam, Fast evaluation of radial basis functions: Methods for generalised multiquadrics in R n, Manuscript (1998).

  3. R.K. Beatson, G. Goodsell and M.J.D. Powell, On multigrid techniques for thin plate spline interpolation in two dimensions, in: Lectures in Applied Mathematics, Vol. 32 (1996) 77-97.

    MATH  MathSciNet  Google Scholar 

  4. R.K. Beatson and W.A. Light, Fast evaluation of radial basis functions: Methods for 2-dimensional polyharmonic splines, IMA J. Numer. Anal. 17 (1997) 343-372.

    Article  MATH  MathSciNet  Google Scholar 

  5. R.K. Beatson and G.N. Newsam, Fast evaluation of radial basis functions: I, Comput. Math. Appl. 24(12) (1992) 7-19.

    Article  MATH  MathSciNet  Google Scholar 

  6. R.K. Beatson and M.J.D. Powell, An iterative method for thin-plate spline interpolation that employs approximations to the Lagrange functions, in: Numerical Analysis 1993, eds. D.F. Griffiths and G.A. Watson (Longmans, Harlow, 1994).

    Google Scholar 

  7. S.L. Campbell, I.C.F. Ipsen, C.T. Kelley and C.D. Meyer, GMRES and the minimal polynomial, BIT 36 (1996) 664-675.

    Article  MATH  MathSciNet  Google Scholar 

  8. J.C. Carr, W.R. Fright and R.K. Beatson, Surface interpolation with radial basis functions for medical imaging, IEEE Trans. Medical Imaging 16 (1997) 96-107.

    Article  Google Scholar 

  9. N. Dyn, D. Levin and S. Rippa, Numerical procedures for surface fitting of scattered data by radial functions, SIAM J. Sci. Statist. Comput. 7 (1986) 639-659.

    Article  MATH  MathSciNet  Google Scholar 

  10. N. Dyn, D. Levin and S. Rippa, Data dependent triangulations for piecewise linear interpolation, IMA J. Numer. Anal. 10 (1990) 137-154.

    MATH  MathSciNet  Google Scholar 

  11. J. Flusser, An adaptive method for image registration, Pattern Recognition 25 (1992) 45-54.

    Article  Google Scholar 

  12. R. Franke, Scattered data interpolation: Tests of some methods, Math. Comp. 38 (1982) 181-200.

    Article  MATH  MathSciNet  Google Scholar 

  13. R.L. Hardy, Theory and applications of the multiquadric-biharmonic method, Comput. Math. Appl. 19 (1990) 163-208.

    Article  MATH  MathSciNet  Google Scholar 

  14. C.T. Kelley, Iterative Methods for Linear and Non-Linear Equations (SIAM, Philadelphia, PA, 1995).

    Google Scholar 

  15. C.A. Micchelli, Interpolation of scattered data: Distance matrices and conditionally positive definite functions, Constr. Approx. 2 (1986) 11-22.

    Article  MATH  MathSciNet  Google Scholar 

  16. M.J.D. Powell, The theory of radial basis function approximation in 1990, in: Advances in Numerical Analysis II: Wavelets, Subdivision Algorithms and Radial Functions, ed. W. Light (Oxford University Press, Oxford, 1992) pp. 105-210.

    Google Scholar 

  17. M.J.D. Powell, Some algorithms for thin plate spline interpolation to functions of two variables, in: Advances in Computational Mathematics, New Delhi, India, eds. H.P. Dikshit and C.A. Micchelli (World Scientific, 1994).

  18. Y. Saad and M.H. Schultz, GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear equations, SIAM J. Sci. Statist. Comput. 7 (1986) 856-869.

    Article  MATH  MathSciNet  Google Scholar 

  19. R. Sibson and G. Stone, Computation of thin-plate splines, SIAM J. Sci. Statist. Comput. 12 (1991) 1304-1313.

    Article  MATH  MathSciNet  Google Scholar 

  20. H.F. Walker, Implementation of the GMRES method using Householder transformations, SIAM J. Sci. Statist. Comput. 9 (1988) 152-163.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beatson, R., Cherrie, J. & Mouat, C. Fast fitting of radial basis functions: Methods based on preconditioned GMRES iteration. Advances in Computational Mathematics 11, 253–270 (1999). https://doi.org/10.1023/A:1018932227617

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018932227617

Keywords

Navigation