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Abstract

Using the framework provided by Clifford algebras, we consider a non-
commutative quotient-difference algorithm for obtaining the elements of a
continued fraction corresponding to a given vector-valued power series. We
demonstrate that these elements are ratios of vectors, which may be calculated
with the aid of a cross rule using only vector operations. For vector-valued
meromorphic functions we derive the asymptotic behaviour of these vectors,
and hence of the continued fraction elements themselves. The behaviour of
these elements is similar to that in the scalar case, while the vectors are
linked with the residues of the given function. In the particular case of vector
power series arising from matrix iteration the new algorithm amounts to a
generalisation of the power method to sub-dominant eigenvalues, and their
eigenvectors.

Key words: Vector continued fraction, vector Padé approximant, quotient-
difference algorithm, Clifford algebra, cross rule, power method.

1 Introduction

The theory of vector Padé approximants is concerned with rational approximations
to vector-valued functions given in the form of power series. This theory may be
developed, with the aid of Clifford algebras [17], in a manner which follows that of the
well-established theory for rational approximants of real or complex-valued functions
[1,3]. In particular, if a corresponding continued fraction is known, then three-
term recurrence relations may be used to construct the numerator and denominator
polynomials involved. In this context, vector versions of the Viskovatov and Modified
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Euclidean algorithms have been established [6] which allow the determination of the
elements of certain types of continued fraction corresponding to a given vector-valued
function.

In this paper we establish a cross rule, based on the non-commutative quotient-
difference algorithm, for calculating the elements of an equivalent continued fraction
whose partial denominators are unity. These elements are shown to be ratios of
vectors, which we label by UJ

m . The cross rule gives rise to a new algorithm which
may be implemented using vectors only, thus avoiding general Clifford numbers. In
section 5 we discuss the construction of the full q-d and U-tables, thus furnishing
the elements involved in continued fraction representations of any vector Padé ap-
proximant. We are then able to construct the polynomials of a given approximant.
This complements the vector ε -algorithm, which is normally used to produce values
of vector Padé approximants.

For reasons of clarity, the initial presentation assumes that the power series
coefficients are real vectors. There is more than one possible extension to complex
vectors, each corresponding to a different definition of the inverse of a vector. This
topic is discussed briefly in section 6.

We then consider power series for vector-valued meromorphic functions and de-
rive results for the asymptotic behaviour of the columns of the U -table. As a
consequence of this, it is discovered that the columns of the q-d table behave in a
manner similar to those for the scalar case e.g.[10]. In the course of proving these
points we demonstrate the connection between the entries in the U -table and the
vector-valued residues of the given function. Furthermore, the above results deter-
mine the asymptotic behaviour of the vectors involved in the Viskovatov algorithm
mentioned earlier.

Finally, we indicate some aspects of the application of the cross rule to vector
sequences produced by matrix iteration. In particular we note that, for the U -table
associated with continued fractions corresponding to the vector-valued function gen-
erating the iterates, the column entries tend to eigenvectors of the iteration matrix.
In the case of the eigenvalues having distinct moduli, this amounts to a generali-
sation of the power method to compute all the eigenvalues and their eigenvectors,
given only the initial power iterates. A simple example illustrating these points is
given.

2 Some Notation

We let C`d denote the real Clifford algebra of IRd [12,15,16]. This is the associative
algebra over IR generated by the orthonormal basis of IRd , {e1, e2 · · · ed} , which
satisfies the anti-commutation relations

eiej + eiej = 2δi,j i, j = 1, 2 · · · , d (2.1)
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where the algebra identity is 1. We also require the universality property that
e1e2 · · · ed 6= ±1 . C`d is a linear space of dimension 2d spanned by the basis
elements

eI = ei1i2···ik = ei1ei2 · · · eik (2.2)

where I = {i1, i2, · · · , ik} and 1 ≤ i1 < i2 < · · · ik ≤ d for k = 1, 2 · · · , d . The
identity element corresponds to the empty set (k = 0). A general element of C`d

is given by
a =

∑

I

aIeI aI ∈ IR (2.3)

where the summation is over the 2d different ordered multi-indices I . The coefficient
a0 is called the real or scalar part of a , and is denoted by Re(a) . The spinor norm
or absolute value of an element is defined by

|a| =
√∑

I

|aI |2. (2.4)

From [12] we have
|ab| ≤ Kd|a||b| ∀ a, b ∈ C`d (2.5)

where Kd is a real positive constant whose value depends on the Clifford algebra
concerned.

We shall require three involutions of C`d . The first of which, called the main
involution, is the isomorphism : a 7→ â in which each ei is replaced by −ei ;
hence âb = âb̂ . The second one, called reversion, is the anti-isomorphism : a 7→ ã
obtained by reversing the order of factors in eI ; hence ãb = b̃ã . Finally, we combine
the first two operations to form the anti-isomorphism, conjugation : a 7→ ā where
ā := ˆ̃a ; hence ab = b̄ā .

Each vector (v1, v2, · · · , vd) ∈ IRd will be identified with an element,
∑d

i=1 viei ,
of C`d , using the common label v . We use the Euclidean norm in IRd which is
consistent with the spinor norm applied to vectors. The anti-commutation relations,
(2.1), imply

uv + vu = 2(u · v) (2.6)

where u · v indicates the usual scalar product,
∑d

i=1 uivi , and

uvu = 2(u · v)u− (u · u)v (2.7)

i.e. uvu ∈ IRd . Using (2.6) we obtain the identity

uv = u · v + u ∧ v (2.8)

where u ∧ v denotes the bivector
∑

i<j

(uivj − viuj)eij.
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The set of products of non-null vectors forms a group under multiplication —
the Lipschitz group, Γd [15]. If a ∈ Γd then aã = ãa = |a|2 . Hence,

a−1 =
ã

|a|2 . (2.9)

In particular, using (2.6),

v−1 =
v

v · v v ∈ IRd. (2.10)

This is identical to the Moore-Penrose generalised inverse of a real vector see e.g.
[5]. It may also be shown that, in contrast to (2.5), [15]

|ab| = |a||b| ∀ a, b ∈ Γd. (2.11)

From (2.7) and (2.10) we may deduce that the reflection of v in the hyperplane
orthogonal to u is given by uvû−1 . Since an isometry of IRd may be accomplished
by a sequence of reflections c.f. [15,16] a rotation of a vector v may be represented
by

avâ−1 for some a ∈ Γd. (2.12)

Finally, we note that, since C`d is not a division algebra for d > 0 , one of
our tasks will be to establish sufficient conditions for the existence of those inverses
required to implement the q-d algorithm.

3 Corresponding Continued Fractions

We consider a vector-valued function f(z) with a Maclaurin series expansion

f(z) = c0 + zc1 + z2c2 + . . . , z ∈ C, ci ∈ IRd, i = 0, 1, . . . (3.1)

valid in some neighbourhood of the origin. The right-handed [l/m] vector Padé
approximant to f(z), if it exists, is defined by

[l/m](z) := p[l/m](z)[q[l/m](z)]−1 (3.2)

for which
f(z)− [l/m](z) = O(zl+m+1) (3.3)

and
q[l/m](0) = 1 (3.4)

where p[l/m](z) and q[l/m](z) are polynomials in z ∈ C over C`d of maximum degrees
l and m respectively [17]. The left-handed vector Padé approximant is obtained
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using reversion. When these approximants exist they are identical, so guaranteeing
uniqueness. In addition, we have the duality property, which states that, if f(0) 6= 0
then, using an obvious notation, in which g(z) := [f(z)]−1 ,

[l/m]f (z) ≡ {[m/l]g(z)}−1

provided either approximant exists [20] .
As in the scalar case these constructs may be arrayed, as shown in Fig.1, in

a two-dimensional table, staircase sequences of which may be built using vector
continued fractions.

[0/0] [1/0] [2/0] . . .
[0/1] [1/1] [2/1] . . .
[0/2] [1/2] [2/2] . . .

...
...

...

Figure 1: Part of the vector Padé table

In [6] it is demonstrated how Viskovatov’s algorithm may be adapted to deter-
mine the elements of a continued fraction, which takes the form

π J
0 (z) + zJ [π J

1 + z[π J
2 + · · · z[π J

k · · ·]−1 · · ·]−1]−1 π J
i ∈ IRd, i = 1, 2 · · · (3.5a)

in non-degenerate cases where π J
i 6= 0, i = 1, 2 · · · , and

π J
0 (z) :=

J−1∑

i=0

ciz
i for J > 0, π J

0 (z) := 0 for J = 0. (3.5b)

This continued fraction corresponds to f(z) ; that is to say

CJ
n(z) = f(z) + O(zn+J) n = 0, 1, 2 · · · (3.6)

where CJ
n(z) is the nth convergent of (3.5)

CJ
n(z) = π J

0 (z) + zJ [π J
1 + z[π J

2 + · · ·+ z[π J
n]−1 · · ·]−1]−1 (3.7)

If n = 0, then CJ
0 (z) := π J

0 (z) . A description of how the constant vectors π J
i may

be calculated using an algorithm involving scalars and vectors only may be found in
[20].

As in [6] we may write

CJ
n(z) = pJ

n(z)[qJ
n(z)]−1 (3.8)

5



where pJ
n(z), qJ

n(z) are polynomials in C`d[z] , of degrees J + [n− 1/2] and [n/2] ,
respectively, for n ≥ 1 . These polynomials satisfy the three-term recurrence rela-
tions

pJ
n(z) = pJ

n−1(z)πJ
n + zpJ

n−2(z) pJ
−1(z) := zJ−1, pJ

0 (z) := πJ
0 (z)

qJ
n(z) = qJ

n−1(z)πJ
n + zqJ

n−2(z) qJ
−1(z) := 0, qJ

0 (z) := 1

}
(3.9)

for n = 1, 2 · · · . It then follows that qJ
n(0) = π J

1 π J
2 · · · π J

n ∈ Γd and is, therefore,
invertible — allowing the Baker condition (3.4) to be met. We have

CJ
2m(z) ≡ [J + m− 1/m](z) , CJ

2m+1(z) ≡ [J + m/m](z) (3.10)

It may be shown, using the methods of [17], that

qJ
n(z) ˜qJ

n(z) ∈ IR[z]. (3.11a)

Hence, noting that pJ
n(z) ˜qJ

n(z) is the polynomial given by the first n + 1 terms of

the Maclaurin expansion of [f(z)qJ
n(z) ˜qJ

n(z)] which, using (3.11a) , has vectors for
its coefficients, we obtain

pJ
n(z) ˜qJ

n(z) ∈ IRd[z]. (3.11b)

From (3.11a,b) we conclude that

pJ
n(z) ˜pJ

n(z) ∈ IR[z]. (3.11c)

We label the vector polynomial in (3.11b) by PJ
n(z) , which has maximum degree

J + n − 1 , and represent the scalar polynomial qJ
n(z) ˜qJ

n(z) by QJ
n(z) , of degree

2[n/2] (where [ξ] denotes the integer part of ξ ). It then follows that

CJ
n(z) =

PJ
n(z)

QJ
n(z)

(3.12)

which is in the form of a generalised inverse Padé approximant, first defined and
studied by Graves-Morris e.g. [5].

Furthermore, from [18],

pJ
n(x), qJ

n(x) ∈ Γd for each x ∈ IR. (3.13)

In order to recast the above continued fraction into a form appropriate for the
q-d algorithm, we consider equivalence transformations. The continued fraction

b0(z) + zJa1[b1 + za2[b2 + · · ·]−1]−1

is equivalent to one in which the elements have undergone the equivalence transfor-
mation :

b′0(z) = b0(z) , a′1 = a1α1 , b′1 = b1α1 , a′2 = a2α2

b′i = (αi−1)
−1biαi i ≥ 2 and a′i = (αi−2)

−1aiαi i ≥ 3

}
(3.14)
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where each αi , i = 1, 2, · · · is an invertible element of C`d . It then follows, using
an obvious notation, that

p′Jn (z) = pJ
n(z)αn and q′Jn (z) = qJ

n(z)αn (3.15)

thus ensuring that the nth convergent of the transformed fraction is identical to
CJ

n(z) of eqn.(3.8). If αnα̃n ∈ IR , then statements (3.11) hold for the transformed
polynomials.
More generally, suppose the equivalence transformation (3.14) is performed on a
continued fraction whose nth convergent has numerator and denominator polyno-
mials pn(z) and qn(z) , respectively. If αn ∈ Γd for n = 1, 2, · · · , then, denoting the
transformed polynomials by a prime, we may readily prove
Theorem 3.1 (i) For each x ∈ IR , p′n(x), q′n(x) ∈ Γd ⇐⇒ pn(x), qn(x) ∈ Γd .
(ii) The statements in 3.11 hold for p′n(z), q′n(z) if and only if they hold for pn(z), qn(z) .

We now set

b′0(z) :=
J−1∑

k=0

ckz
k , a′i := 1 , b′i := π J

i i = 1, 2, · · ·

and seek αi such that bi = 1 for i = 1, 2, · · · . Relabelling the αi to indicate
dependence on J , we obtain

αJ
i = π J

1 π J
2 · · · π J

i ∈ Γd i = 1, 2, · · · . (3.16)

Then
a1 = [πJ

1 ]−1 = cJ , a2 = [πJ
2 ]−1[πJ

1 ]−1

ai = u−1
i v−1

i i = 3, 4, · · ·
}

(3.17)

where we introduce the vectors

ui := Ri−2(π J
i ) and vi := Ri−2(π J

i−1)

in which Ri(w) denotes the rotation of w in IRd defined by

Ri(w) := αJ
i wα̂J

i

−1
i = 1, 2, · · · (3.18)

We note that
Ri(w

−1) = [Ri(w)]−1.

For even values of i , the rotation is proper, while for odd i , it is improper [15,16].
Hence, for i > 1 each ai is the product of two vectors, that is to say the sum of a
scalar and a bivector – see the identity (2.8). The scalar part is given by

Re(ai
−1) = π J

i · π J
i−1 or Re(ai) = [π J

i ]−1 · [π J
i−1]

−1 i = 2, 3, · · · (3.19)

While the above establishes the Clifford nature of the ai , the assumption of non-
degeneracy ensures that they are invertible.

In the next section, we present an alternative method of calculating the vectors
forming each ai , based on the non-commutative q-d algorithm.
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4 The q-d algorithm and a cross rule

Under the equivalence transformation defined by (3.14) and (3.16), the correspond-
ing continued fraction (3.5) takes the following form

J−1∑

i=0

ciz
i + zJa1[1 + za2[1 + za3[1 + · · ·]−1]−1]−1 (4.1)

of which the nth numerator AJ
n(z) , and denominator BJ

n(z) , satisfy the recurrence
relations

AJ
n(z) := AJ

n−1(z) + zAJ
n−2(z)an

BJ
n(z) := BJ

n−1(z) + zBJ
n−2(z)an

}
(4.2)

for n = 1, 2 · · · , with the initial conditions

AJ
−1(z) := zJ−1, AJ

0 (z) :=
∑J−1

i=0 ciz
i

BJ
−1(z) := 0, BJ

0 (z) := 1

}
(4.3)

Theorem 3.1 implies that the polynomials AJ
n(z) and BJ

n(z) satisfy similar state-
ments to (3.11) and (3.12), and that, for real values of z , they belong to the Lipschitz
group.

From (3.6) we may write

f(z)− AJ
n(z)[BJ

n(z)]−1 = sJ
nzJ+n + O(zJ+n+1) n = 0, 1, 2 · · · (4.4)

where sJ
n ∈ IRd , which follows from the vector nature of (3.12).

Theorem 4.1

an = −[sJ
n−2]

−1sJ
n−1 n = 2, 3, 4 · · · (4.5)

with
a1 = sJ

0 = cJ , sJ
1 = sJ+1

0 = cJ+1 (4.6)

Proof. We follow the method outlined in [11], which uses ideas similar to those in
the derivation of the Berlekamp-Massey algorithm [2,13] as presented, for example,
in [1]. Since BJ

n(0) = 1, ∀n ≥ 0 , (4.4) implies

f(z)BJ
n(z)− AJ

n(z) = sJ
nzJ+n + O(zJ+n+1) n = 0, 1, 2 · · · . (4.7)

If we apply (4.2) to this order condition, we obtain, by considering the coefficient of
zJ+n−1 ,

sJ
n−1 + sJ

n−2an = 0.

thus establishing (4.5) for n ≥ 2 . For n = 0 we use (4.3) to show that the coefficient
of zJ in (4.4) yields sJ

0 = cJ , while for n = 1, we obtain sJ
1 = cJ+1 = sJ+1

0 , since
AJ

1 (z) =
∑J

i=0 ciz
i and BJ

1 (z) = 1 . 2
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The continued fraction (4.1) may be represented in the more familiar form

J−1∑

i=0

ciz
i + zJcJ [1− zqJ

1 [1− zeJ
1 [1− zqJ

2 [1− zeJ
2 [1− · · ·]−1]−1]−1]−1]−1 (4.8)

with
qJ
m := −a2m and eJ

m := −a2m+1 m = 1, 2, · · · (4.9)

To derive the non-commutative q-d algorithm, we construct the even and odd parts
of (4.8). This may be accomplished using a method proposed by Wynn [23] , or by
adapting a scalar identity from [1] for the non-commuting case — viz

1 + zan[1 + zan+1D
−1] ≡ 1 + zan − z2anan+1[zan+1 + D]−1 (4.10)

Using this identity, we obtain for the odd part of (4.8)

J∑

i=0

ciz
i + zJ+1cJqJ

1 [1− z(qJ
1 + eJ

1 )− z2eJ
1 qJ

2 [1− z(qJ
2 + eJ

2 )− z2eJ
2 qJ

3 [· · ·]−1]−1]−1

and for the even part, with J → J + 1,

J∑

i=0

ciz
i+zJ+1cJ+1[1−zqJ+1

1 −z2qJ+1
1 eJ+1

1 [1−z(eJ+1
1 +qJ+1

2 )−z2qJ+1
2 eJ+1

2 [· · ·]−1]−1]−1

On identifying these expressions we establish the non-commutative quotient-
difference algorithm given by :
Theorem 4.2

eJ
m + qJ

m = qJ+1
m + eJ+1

m−1

eJ
mqJ

m+1 = qJ+1
m eJ+1

m

}
(4.11)

for m = 1, 2, · · · and J = 0, 1, 2 · · · , with

eJ
0 = 0 for J = 1, 2 · · ·

qJ
1 = [cJ ]−1cJ+1 for J = 0, 1, 2 · · ·

}
(4.12)

as initial conditions.
We now note that, since

AJ+1
2m (z)[BJ+1

2m (z)]−1 ≡ [J + m/m](z) ≡ AJ
2m+1(z)[BJ

2m+1(z)]−1

then
sJ+1
2m = sJ

2m+1.

Hence, on defining
UJ

m := sJ
2m (4.13)
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we may use (4.9) and (4.5) to express qJ
m and eJ

m as follows :

qJ
m = [UJ

m−1]
−1UJ+1

m−1 eJ
m = [UJ+1

m−1]
−1UJ

m (4.14)

for J = 0, 1, 2 · · · and m = 1, 2 · · · .
Conversely, we have (c.f. [11] p527)

UJ
m = cJqJ

1 eJ
1 · · · qJ

meJ
m. (4.15)

The following theorem constitutes the cross algorithm.
Theorem 4.3 The vectors UJ

m , satisfy the (five point) identity

UJ
m+1 = UJ+2

m + UJ+1
m [(UJ+2

m−1)
−1 − (UJ

m)−1]UJ+1
m (4.16)

with the initialisations

UJ
−1 := ∞ , J = 2, 3 · · · and UJ

0 := cJ , J = 0, 1, 2 · · · (4.17)

Proof. Using equations (4.14), we obtain

eJ
m+1 + qJ

m+1 = [UJ+1
m ]−1[UJ

m+1 + UJ+1
m (UJ

m)−1UJ+1
m ]

and
eJ+1

m + qJ+1
m+1 = [UJ+1

m ]−1[UJ+1
m (UJ+2

m−1)
−1UJ+1

m + UJ+2
m ].

On multiplying these two equations from the left by UJ+1
m , (4.16) follows. The other

part of (4.11) is a consequence of (4.14), while the condition for UJ
0 follows from

(4.6). Finally, if we set UJ
−1 := ∞ , J = 2, 3 · · · , then the initialisation for eJ

0 in
(4.12) is guaranteed. 2

We note that, with the aid of (2.7) and (2.10), the right-hand side of (4.16)
may be computed without recourse to the Clifford product, using only the vector
operations of multiplication by a scalar, addition and scalar product:

UJ
m+1 = UJ+2

m + 2(W ·UJ+1
m )UJ+1

m − (UJ+1
m ·UJ+1

m )W (4.18)

where
W := (UJ+2

m−1)
−1 − (UJ

m)−1.

The vectors UJ
m may be arrayed in a table, as in Figure 2, the first two columns

of which are initialised using (4.17). Other entries are calculated with the help of
(4.16) or (4.18), working from left to right. In this way, the rhombus rules for the
q-d algorithm [22] are replaced by a cross rule, as indicated in Fig.4. An instance of
the rule (4.16), for J = 0, is derived in [7] using ideas from the Berlekamp-Massey
algorithm [2,13].
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U0
0

U2−1
U1

0
U0

1

U3−1
U2

0
U1

1
U0

2

U4−1
U3

0
U2

1
U1

2
U0

3

. . . . . .

Figure 2: Part of the U -table

N

W C E

S

≡

UJ
m

UJ+2
m−1 UJ+1

m UJ
m+1

UJ+2
m

Figure 3: Detail of the U-table

The elements qJ
m, eJ

m,m = 1, 2 · · · , in the continued fraction expansion (4.8) may
be formed from those entries in the diagonals of the U -table labelled by J and
J + 1. This allows, in principle, the construction of the polynomials in C`d[z] of
any vector Padé approximant of order [l/m] with l ≥ m . It is readily seen that the
coefficients of these polynomials are sums of products of vectors or inverted vectors
from the U -table. As a simple example we may use (4.2) to demonstrate that the
denominator of the [J + 1/2] approximant is given by

BJ
4 (z) = 1− z(qJ

1 + eJ
1 + qJ

2 ) + z2qJ
1 qJ

2 (4.19)

which, employing (4.14), is equal to

1− z[(UJ
0 )−1UJ+1

0 + (UJ+1
0 )−1UJ

1 + (UJ
1 )−1UJ+1

0 ] + z2[(UJ
0 )−1UJ+1

0 (UJ
1 )−1UJ+1

1 ].
(4.20)

We note, in passing, that this form is convenient for the calculation of the denom-
inators of hybrid approximants [7,19]. Such denominators are scalar polynomials

E = S + C
[

W
−1 − N

−1
]

C

Figure 4: Cross rule relating elements of Fig.3
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retaining the nominal degree of the approximant (in this case 2), unlike the form of
eqn.(3.12), which would yield a quartic for this example. In order to construct this
denominator, we require the scalar part of (4.20), which may be obtained using the
result

Re(v1v2v3v4) = (v1 · v2)(v3 · v4)− (v1 · v3)(v2 · v4) + (v1 · v4)(v2 · v3) (4.21)

where vi ∈ IRd, for i = 1, 2, 3, 4 .

5 Full Tables

The algorithms presented in the previous section may be used to calculate approxi-
mants above the main diagonal in the vector Padé table (Fig.1) c.f. (3.10). Entries
in the lower half of this table may be computed using extensions of these algorithms.
To demonstrate this, we proceed as in the scalar case by considering the reciprocal
power series to f(z)

g(z) := [f(z)]−1 =
∞∑

i=0

diz
i (5.1)

which exists if c0 6= 0 . Using Theorem 4.3, assuming non-degeneracy for g(z) ,
we may construct the corresponding U -table for g(z) , whose elements are denoted
by U′J

m . We now prove that we may identify entries on the top three diagonals of
the U -table of figure 2, excluding boundary elements, with the entries in the same
positions of the [ĉ0U

′c0] -table reflected through the diagonal J = 1.
Lemma 5.1 If c0 6= 0 then

UJ
m = ĉ0U

′J ′
m′c0 (5.2)

for
J = 0 with m = 1, 2, · · · , and J = 1, 2 with m = 0, 1, · · · .

where J ′ := 2− J, and m′ := m + J − 1 .
Proof. Consider the continued fraction corresponding to g(z) c.f. eqn(4.8),

C′J ′(z) =
J ′−1∑

i=0

diz
i + dJ ′z

J ′ [1− zq′J
′

1 [1− ze′J
′

1 [· · ·]−1]−1]−1. (5.3)

the nth convergent of which satisfies

g(z)−C′J ′
n (z) = s′J

′
n zJ ′+n + O(zJ ′+n+1). (5.4)

Using the duality property for vector Padé approximants [section 3], we may infer,
from (3.10), that the convergents [C0

n+1(z)]−1 generate the same staircase sequence

of approximants — {[0/0], [1/0], [1/1], [2/1], · · ·} , as the convergents C′1
n(z) ; i.e.

C′1
n(z) ≡ [C0

n+1(z)]−1 n = 0, 1, 2 · · ·

12



On multiplying (5.4), with J ′ = 1, from the left by f(z) , and from the right by
C0

n+1(z) , we obtain

f(z)−C0
n+1(z) = ĉ0s

′1
nc0z

n+1 + O(zn+2)

assuming c0 6= 0 . Comparing this result with (4.4) for J = 0, we have

s0
n+1 = ĉ0s

′1
nc0 n = 0, 1, 2 · · · . (5.5)

For n = 2m + 1 we deduce

U0
m+1 = ĉ0U

′2
mc0 m = 0, 1, 2, · · · (5.6)

using (4.13), while for n = 2m

U1
m = ĉ0U

′1
mc0 m = 0, 1, 2, · · · . (5.7)

Similarly, the convergents C′0
n+1(z) generate the same sequence of approximants as

[C1
n(z)]−1 . Hence,

s1
n = ĉ0s

′0
n+1c0 n = 0, 1, 2 · · · . (5.8)

For even values of n this is identical to (5.7), whereas for n = 2m + 1 we obtain

U2
m = ĉ0U

′0
m+1c0 m = 0, 1, 2, · · · , (5.9)

which completes the proof. 2

The equations (5.6), (5.7) and (5.9) constitute the top three diagonals of the
U -table, excluding boundary entries, c.f. Fig.2. Equation (5.2) may be regarded as
defining elements, UJ

m , with negative superscripts which may be arrayed in the full
table as depicted in Fig.5.

Since the cross algorithm, eqn(4.16), is symmetric about the diagonal running
from the north-west to the south-east, we may apply it in its original form to con-
struct the reflected table. However, in order to obtain the correct value for U0

0 , using
the reflected U′ -table, we must set U′2

−1 := −d0 , which in turn implies U′0
0 := ∞ .

The progressive form of the cross rule now reads as follows :

UJ+2
m = UJ

m+1 + UJ+1
m [(UJ

m)−1 − (UJ+2
m−1)

−1]UJ+1
m (5.10)

with the initialisations :

U0
0 := c0 U−m

m := ∞ U2−m
m−1 := hm U1+m

−1 := ∞ (5.11)

in which hm := ĉ0dmc0 , for m = 1, 2, · · · . Thus, entries in the full U -table are
calculated row by row.
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The vectors hm may be computed recursively as follows. We first of all construct
the real numbers si where

∞∑

i=0

siz
i := f(z) · f(z) (5.12)

Then we may demonstrate that
h0 = −c0 (5.13)

and

hm = cm − 1

s0

[2c0(c0 · cm) +
m−1∑

i=0

sm−ihi] (5.14)

for m = 1, 2, · · · . Use of (5.10) then enables the full U -table to be calculated using
only vector operations after the fashion of (4.18).

U0
0

U−1
1

U−2
2

· ·

U2−1
U1

0
U0

1
U−1

2
· ·

U3−1
U2

0
U1

1
U0

2
· ·

U4−1
U3

0
U2

1
U1

2
· ·

. . . . . .

Figure 5: A section of the full U -table

In order to construct the full q-d table, we use (4.14) and Lemma 5.1 to write

q′J
′

m′ = c0e
J−1
m [c0]

−1 and e′J
′

m′ = c0q
J−1
m+1[c0]

−1 (5.15)

where J ′ = 2 − J and m′ = m + J − 1 , which define quantities with negative
superscripts. These relations yield the usual results for the scalar (i.e. commutative)
case e.g. [3,10]. The q-d algorithm then takes the progressive form of (4.11), with
the initialisations:

e0
m := 0 e1−m

m := [hm]−1hm+1

qm+1
−m := 0 q0

1 := −[h0]
−1h1

}
for m = 1, 2 · · · (5.16)

which also reduce to the usual expressions in the commutative case.
We complete this section by indicating how entries in the lower half of the vector

Padé table may be generated from the staircase sequence [0/k], [0/k + 1], [1/k +
1], [1/k + 2], [2/k + 2], · · · . They are given by the inverted convergents of (5.3)

[
k∑

i=0

diz
i + dk+1z

k+1c0Fk(z)−1c0
−1]−1 (5.17)
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where

Fk(z) := 1− ze−k
k+1[1− zq−k

k+2[1− ze−k
k+2[1− zq−k

k+3[· · ·]−1]−1]−1]−1. (5.18)

Again, this corresponds to the usual situation for commuting elements (d = 1)e.g.
[3].

6 Complex Maclaurin Coefficients

The presentation above is concerned with the application of real Clifford algebras to
the rational approximation of functions whose Maclaurin series involve real vector
coefficients (3.1). If these vectors are complex then there is more than one way to
proceed, depending on the definition of vector inverse employed, thus generating
different types of approximant.

One route is to use the real Clifford algebra, C`2d+1 , to incorporate the Moore-
Penrose generalised inverse

v−1 :=
v∗

v · v∗ v ∈ Cd (6.1)

where the superscript ∗ denotes complex conjugation. Thus, any non-null vector is
invertible. This leads to the construction of generalised inverse Padé approximants
(see e.g.[5]). Each complex vector v = x + iy for x,y ∈ IRd is associated with the
element of C`2d+1 defined by [6,14]

V :=
d∑

n=1

(xnen + ynjen+d) j := e2d+1 (6.2)

where x = (x1, x2, · · · , xd) and y = (y1, y2, · · · , yd) . In this fashion Cd is regarded
as a real vector space IR2d with basis vectors {en, jen+d}d

n=1 ; scalar multiplication
is by reals only [14]. Complex conjugation of vectors is represented by reversion in
the Clifford algebra, while in IR2d it is described by an involution composed of a
sequence of reflections.

The identities (2.6) and (2.7) are replaced by

UṼ + V Ũ = 2(u ∗ v) (6.3)

and
UṼ U = 2(u ∗ v)U − (u ∗ u)V (6.4)

respectively, where

u ∗ v :=
1

2
(u · v∗ + v · u∗) (6.5)
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It follows that (6.1) is represented in the algebra by

V −1 =
Ṽ

v ∗ v
. (6.6)

For equivalent forms to (3.11) and (3.12) the reader is referred to [6].
The derivation of the q-d and cross algorithms proceeds as for the case of real

vectors with (6.4) and (6.6) being used to compute the right-hand side of (4.16).
The Lipschitz group may be generalised to include products of non-null vectors

of the form displayed in (6.2). The corresponding generalisation of (2.12) represents
rotations in IR2d leaving invariant the form u∗v which is proportional to the usual
scalar product in IR2d .

An alternative approach is simply to use complex Clifford algebras, i.e. in (2.3)
allow aI ∈ C ∀I , with v−1 given by (2.10) for v ∈ Cd , provided v is non-isotropic
— i.e. v · v 6= 0. The identities (2.6), (2.7) hold for u,v ∈ Cd . We strengthen
the assumption of non-degenerate corresponding continued fractions ( π J

m 6= 0) to
one of non-isotropy of π J

m for all relevant J,m . This ensures that each αJ
n is

invertible, thus allowing the equivalence transformation (3.14) to be performed.
Lemma 6.1 Given n, J ≥ 0, then

sJ
0 , sJ

1 , · · · sJ
n are invertible ⇐⇒ π J

1 , π J
2 , · · · π J

n+1 are invertible. (6.7)

Proof From the last equation of section 3 of [20] we obtain

f(z)−CJ
n(z) = (−1)n[π J

1 · · · π J
n π J

n+1 π J
n · · · π J

1 ]−1zJ+n + O(zJ+n+1).

Hence, provided the required inverses exist,

sJ
n = [αJ

n π J
n+1α

J
n]−1 n = 0, 1, 2, · · · (6.8)

with αJ
0 := 1 . The result then follows. 2

Equation (6.8) is consistent with (3.17) and (4.5). We also note that the condition
for a Padé table to be normal in the scalar case, i.e. all sJ

n 6= 0, may be replaced in
the vector case by the requirement that each of the inverses [sJ

n]−1 exists. However,
if (6.1) is used instead of (2.10) then we may retain the less stringent constraint
sJ

n 6= 0 .
The derivations of the q-d and cross algorithms given in sections 4 and 5 are valid

in the complex case. Furthermore, since each UJ
m is invertible under our assumption

of non-isotropy, these algorithms may be implemented using (2.7) and (2.10).
The Lipschitz group is extended to include products of non-isotropic complex

vectors. The transformation (2.12) represents a complex rotation in Cd , leaving
invariant the bilinear quadratic form u·v , for u,v ∈ Cd . Given that the numerator
and denominator polynomials of the continued fraction (3.7), regarded as functions
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of z ∈ C, belong to the extended Lipschitz group — see [18], an argument similar
to that preceding Theorem 3.1 shows that the transformed polynomials are also
members of this group. Finally, (3.11) and (3.12) hold with IR replaced by C.

In the next section we consider vector-valued meromorphic funtions satisfying
certain conditions, and show that the problem of degeneracy using the vector inverse
(2.10) for complex vectors does not occur for large enough values of J. We take
advantage of convergence results [21] which are readily obtained using (2.10). A
corresponding study could be undertaken based on the inverse (6.1) using theorems
proved by Graves-Morris and Saff [8,9].

7 Vector-valued Meromorphic Functions

In section 5 we described the possible construction of the U -table for functions
whose Maclaurin series are known. Now we consider the behaviour of this table
(and of the related q-d table) for functions of a particular type — vector-valued
meromorphic functions. These are the objects of interest in the application of vector
Padé approximants to matrix iterative processes, see e.g. [4]. Attention is focussed
on the behaviour along rows of the vector Padé table i.e. in the large J behaviour
of CJ

n c.f.(3.10).
We adopt the definition of inverse given by (2.10) for complex vectors, and

consider those functions involved in the convergence results of [21], some of which
are quoted in Theorem 7.1 below.
We define

f(z) :=
g(z)

RM(z)
z ∈ C (7.1)

where

R0(z) := 1 Rm(z) :=
m∏

k=1

(z − zk) for zk ∈ C and m = 1, 2, · · · ,M (7.2)

such that
0 < |z1| ≤ |z2| ≤ · · · ≤ |zM | < ρ (7.3)

counting multiplicity. Each component of g(z) is an analytic function for z ∈ Dρ :=
{z ∈ C : |z| < ρ} , and we assume that

g(zk) · g(zk) 6= 0 for k = 1, 2, · · · ,M. (7.4)

Theorem 7.1 Given a vector-valued function satisfying 7.1-7.4, then, for sufficiently
large l, the vector Padé approximant to f(z)

[l/M ](z) = p[l/M ](z)[q[l/M ]]−1
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exists and
lim
l→∞

[l/M ](z) = f(z)

the convergence being uniform in compact subsets of D−
ρ := Dρ − ∪M

k=1zk .

Furthermore, if each q[l/M ](z) is monic, then

lim
l→∞

q[l/M ](z) = RM(z)

the convergence being uniform in any bounded subset E of the complex plane.
The reader is referred to [21] for a proof.
Theorem 7.2 Given a vector-valued function satisfying 7.1-7.4, then

lim
J→∞

{[zm+1]
JUJ

m} = −rm+1
[Dm(zm+1)]

2

[zm+1]2m+1
,m = 0, 1, · · · ,M − 1 (7.5)

if |zm| < |zm+1| < |zm+2| , where the principal part of f(z) at zm+1 is

rm+1

z − zm+1

and

D0(z) := 1 , Dm(z) :=
m∏

k=1

(1− z/zk) m > 0

with z0 := 0 and zM+1 := ρ .
Proof If |zm| < |zm+1| < |zm+2| , then from Theorem (7.1) it follows that, for suf-
ficiently large l , the [l/m] vector Padé approximant to f(z) ,as defined above, exists
and that the denominator polynomial q[l/m](z) tends to the scalar-valued function
Rm(z) uniformly, as l →∞ , in any bounded subset of the complex plane. From [21]
we may state the generalised Hermite error formula for vector Padé approximants
as follows :

f(z)− [l/m](z) =
zl+m+1

2πiRm(z)

∮

|v|=σ

gm(v)q[l/m](v)dv

vl+m+1(v − z)
[q[l/m](z)]−1 (7.6)

where gm(v) := Rm(v)f(v) and |zm| < σ < |zm+1| . From (3.10), (4.7) and (4.13)
we conclude that

UJ
m =

1

2πi

∮

|v|=σ

gm(v)q[l/m](v)dv

vJ+2m+1
· [q[l/m](0)]−1

Rm(0)
(7.7)

for J := l −m + 1. Expanding the contour in (7.7) to include the simple pole at
zm+1,U

J
m is given by

1

2πi

∮

|v|=σ′

gm(v)q[l/m](v)dv

vJ+2m+1

[q[l/m](0)]−1

Rm(0)
− rm+1Rm(zm+1)

[zm+1]J+2m+1Rm(0)
q[l/m](zm+1)[q

[l/m](0)]−1

(7.8)
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for |zm+1| < σ′ < |zm+2| . We note that [q[l/m](0)]−1 exists and is bounded for l
large enough [21]. The integrand in (7.8) is also bounded on the contour
Γ′ := {v ∈ C : |v| = σ′} . To see this, we use (2.5) to observe that :

|gm(v)q[l/m](v)| ≤ Kd|gm(v)||q[l/m](v)|.

Since q[l/m](v) → Rm(v) uniformly on bounded subsets of C , then the denominator
polynomial is bounded on Γ′ for sufficiently large l . Finally, the definition of gm(v)
ensures that each of its component functions is continuous and therefore bounded
on Γ′ , thus proving that the integral in (7.8) is O(σ′−J) . Hence,

[zm+1]
JUJ

m → − rm+1

[zm+1]2m+1

[
Rm(zm+1)

Rm(0)

]2

as J →∞ for m = 0, 1, · · · ,M − 1

where z0 := 0 and zM+1 := ρ . Result (7.5) then follows. 2

Corollary 7.3 Given a vector-valued meromorphic function of the type considered
above then :

lim
J→∞

qJ
m =

1

zm

(7.9)

for |zm−1| < |zm| < |zm+1| and m = 1, 2 · · · ,M — i.e. the bivector part of qJ
m

vanishes for large J ; and

lim
J→∞

[eJ
m(

zm+1

zm

)J ] = zm[rm]−1rm+1[
zm

zm+1

]2m+1
[
Dm(zm+1)

Dm−1(zm)

]2

(7.10)

for |zm−1| < |zm| < |zm+1| < |zm+2| and m = 1, 2 · · · ,M − 1 .
Hence,

eJ
m = O(| zm

zm+1

|J). (7.11)

The proof follows from Theorem 7.2. We note that (7.4) implies the existence of
[rm]−1 .

If each component of g(z) in (7.1) is a polynomial of maximum degree L , then
UJ

m = 0 for m ≥ M and J > L − m , since each approximant CJ
2m is exact for

these values of J and m .
In the context of matrix iterative methods the vector residue rm+1 is an eigen-

vector of the iteration matrix corresponding to the eigenvalue 1/zm+1 [4].
Theorem 7.4 If a vector-valued function satisfying (7.1)-(7.4) has poles of distinct
moduli then there exists a number JM such that, in principle, the U -table may be
constructed for J ≥ JM and 0 ≤ m < M .
Proof We begin by showing that for sufficiently large J (i) the denominator poly-
nomials of the even convergents of (3.7), qJ

2m(z) , are monic and are of exact degree
m , while (ii) the vectors π J

k , k = 1, 2, · · · , 2m are non-isotropic.
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By eliminating qJ
2m−1 and qJ

2m+1 from the recurrence relations (3.9) for
n = 2m, 2m + 1, 2m + 2, we obtain

qJ
2m+2(z) = qJ

2m(z){π J
2m+1 π J

2m+2+z[(π J
2m)−1 π J

2m+2+1]}−z2qJ
2m−2(z)(π J

2m)−1 π J
2m+2

(7.12)
for m = 1, 2, · · · . The initialisations are given by

qJ
0 (z) := 1 and qJ

2 (z) := z + π J
1 π J

2 . (7.13)

It is clear that (i) holds for m = 1. Since |z1| < |z2| Theorem 7.1 implies that
qJ
2 (z) → (z − z1) as J →∞ . Hence,

π J
1 π J

2 → −z1 as J →∞.

On applying reversion to each side and then multiplying the resulting expressions,
we observe that

(π J
1 )2(π J

2 )2 → (z1)
2 6= 0 as J →∞.

Therefore, there exists a non-zero integer J1 , such that each of the vectors π J
1 and

π J
2 is non-isotropic for J ≥ J1 , thus ensuring the validity of (ii) for m = 1.
We now assume that (i) and (ii) hold for m = 1, 2, · · · , k and J ≥ Jk . If

J ≥ Jk , then π J
2k is invertible, allowing the construction of qJ

2k+2(z) from (7.12).
It is readily seen that the highest power of this polynomial is k + 1 with coefficient
unity. Since |zk+1| < |zk+2| for k = 1, 2, · · ·M−1 (zM+1 := ρ) Theorem 7.1 implies
that

qJ
2k+2(z) → Rk+1(z) as J →∞.

However, as noted in section 3, qJ
2k+2(0) = π J

1 π J
2 · · · π J

2k+1 π J
2k+2 . Hence,

π J
1 π J

2 · · · π J
2k+1 π J

2k+2 →
k+1∏

i=1

(−zi) as J →∞. (7.14)

Therefore, there exists Jk+1 ≥ Jk , such that the product π J
2k+1 π J

2k+2 is invertible
for J ≥ Jk+1 . That is each of the vectors, π J

2k+1 and π J
2k+2 , is non-isotropic for

J ≥ Jk+1 .
Thus we have shown the existence of an integer JM such that, for J ≥ JM ,

each of the vectors π J
1 , π J

2 , · · · , π J
2M−1, π J

2M is non-isotropic and finite. It then
follows from Lemma 6.1 and (4.13) that UJ

0 ,UJ
1 , · · · ,UJ

M−1 are non-isotropic and
finite for J ≥ JM ; that is, the section of the U -table corresponding to J ≥ JM

and 0 ≤ m < M , may be constructed using Theorem 4.3 . 2
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We may now state
Theorem 7.5 Given a vector-valued meromorphic function of the type considered
above, for which the poles have distinct moduli, then the asymptotic behaviour of the
π J

n and the αJ
n are determined by

lim
J→∞

αJ
2m = (−1)mz1z2 · · · zm (7.15)

lim
J→∞

π J
2m−1 π J

2m = −zm (7.16)

lim
J→∞

{zm
J π J

2m} =





r1 m = 1

rm

[∏m−1
i=1 (1− zi

zm
)2

]
m > 1

(7.17)

for m = 1, 2, · · · , M .
Proof Statement (7.15) is equivalent to (7.14), while (7.16) follows from (7.15)

and the observation
π J

2m−1 π J
2m = [αJ

2m−2]
−1αJ

2m.

Note that (7.15) implies the existence of the inverse for large enough J . To prove
(7.17) we write [zm]J π J

2m as

[zm]J [π J
2m−1]

−1[π J
2m−1 π J

2m] = αJ
2m−2{[zm]JUJ

m−1}αJ
2m−2[π

J
2m−1 π J

2m]

using (6.8) and (4.13). Theorem 7.2 together with (7.15) and (7.16) imply that, as
J →∞ , the right-hand side tends to

rm

m−1∏

i=1

(1− zi

zm

)
2

for m > 1 , as required. For m = 1, the above argument yields

[z1]
J π J

2 = [z1]
JUJ

0αJ
2 .

Then, using Theorem 7.2 and (7.15) we may conclude that the right-hand side tends
to r1 as J →∞ . 2

Note that (7.15) is consistent with (3.19) and (7.9), although the derivation of the
latter does not depend on all the eigenvalues having distinct moduli. The limit
(7.15), for large J , implies that the (perhaps complex) rotations indicated by (3.18)
tend to the identity for even i , and to a reflection through the origin for odd i . We
also point out that

π J
2m = O(

1

|zm|J ) , π J
2m−1 = O(|zm|J)

i.e. π J
1 , π J

2 , π J
3 , · · · alternate between large and small values, for |zm| 6= 1, as

J →∞ .
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For an iteration matrix with eigenvalues of distinct moduli (7.5) holds for m =
0, 1, · · · ,M − 1 ; each column of the U -table tends to an eigenvector corresponding
to an eigenvalue (in decreasing order of modulus from left to right) of the iteration
matrix.

We now comment on a computational aspect of the implementation of the cross
algorithm. Theorem (7.2) implies that

UJ
m ' − rm+1

[zm+1]J+2m+1
[Dm(zm+1)]

2 as J →∞ (7.18)

i.e.

UJ
m = O(

1

|zm+1|J
).

Therefore, cancellation between quantities of similar order may occur in the com-
putation of the right-hand side of (4.16) thus leading to numerical instability in
finite arithmetic using the column by column implementation of the cross rule —
just as for the q-d algorithm in the scalar case [10]. However, the progressive form
does not suffer from this defect. Nevertheless, there is still the problem of com-
putational overflow/underflow made apparent in (7.18). We present an attempt to
overcome this, illustrating the approach using real vectors and the Euclidean norm.
The extension to complex vectors and other norms is fairly straightforward.

If we label the unit vector of UJ
m by uJ

m , then (4.16), after division by |UJ+1
m | ,

may be written as

βJ
m+1u

J
m+1 = αJ+1

m+1u
J+2
m + uJ+1

m {βJ+1
m uJ+2

m−1 − αJ
m+1u

J
m}uJ+1

m

where
αJ

m := |qJ
m| and βJ

m := |eJ
m|.

The cross algorithm now takes the form:

Initialisation:
for J = 0, 1, · · · Jmax

βJ+1
0 := 0 , αJ

1 :=
|cJ+1|
|cJ | , uJ

0 :=
cJ

|cJ | (7.19)

end for.
Iteration:

for m = 1, 2, · · ·M − 1
for J = 0, 1, · · · Jmax − 2m

W := βJ+1
m−1u

J+2
m−2 − αJ

muJ
m−1

βJ
muJ

m = αJ+1
m uJ+2

m−1 + 2(W · uJ+1
m−1)u

J+1
m−1 −W





(7.20a)
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end for

αJ
m+1 := αJ+1

m βJ+1
m /βJ

m (7.20b)

end for 2

In this formulation the vectors uJ
−1 are assumed to be arbitrary but finite.

The elements in the continued fraction (4.8) may be obtained from:

qJ
m = αJ

muJ
m−1u

J+1
m−1 eJ

m = βJ
muJ+1

m−1u
J
m (7.21)

If we denote a unit vector of ri by vi, i = 1, · · · ,M then, for the particular
conditions of Theorem (7.2) and its Corollary (7.3), we have as J →∞

uJ
m → ±vm+1

αJ
muJ

m−1 · uJ+1
m−1 → zm

βJ
m → 0





m = 0, 1, · · · ,M − 1 (7.22)

We note that the first of these limits implies that the scalar product in the second
tends to ±1 as J →∞ .
The progressive algorithm may be implemented in a similar fashion.

In the context of matrix iteration cJ is the J th power of a matrix (here denoted
by A ) acting on an initial vector c0 . It is in this sense that the cross algorithm
affords a generalisation of the power method for calculating eigenvalues and their
eigenvectors other than the dominant one. We emphasise that only the vector iterates
uJ

0 and the αJ
1 are required in (7.20). These values are obtained from the relations

u0
0 :=

c0

|c0| , αJ
1u

J+1
0 := AuJ

0 . (7.23)

Example 7.6 As a simple illustration we consider the following matrix and
initial vector

A := 1
6




22 −8 12
53 −25 42
22 −14 24


 , c0 := 1√

3




1
1
1


 (7.24)

The exact eigenvalues and associated unit eigenvectors are

λ1 = 2 λ2 = 1 λ3 = 0.5

v1 = 1√
21




2
4
1


 v2 = 1√

6




1
−1
−2


 v3 = 1√

13




0
−3
−2


 (7.25)

The row implementation of the cross algorithm was coded first and the numerical
instability discussed above was observed — e.g. it was found that the accuracy of
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αJ
2 is increasingly affected by round-off for values of J greater than about 15. The

computations were carried out on a SUN sparcstation using Fortran77 in double
precision. We next programmed the progressive form using equation (5.14) to cal-
culate the vectors hm from the iterates cm := Acm−1 : we ignored scaling in these
operations since our immediate aim is to demonstrate the use of the cross rule in
producing the behaviour of (7.22). These vectors allow us to initialise as follows:

βm
0 := 0, α0

1 :=
|h1|
|h0| , α−m

m+1; = 0, β1−m
m :=

|hm+1|
|hm|

and

u0
0 :=

c0

|c0| = − h0

|h0| , u2−m
m−1 :=

hm

|hm|
for m = 1, 2, · · · . The m and J iterations in (7.20) are interchanged so that
the cross rule may be used to compute elements row by row. Equation (7.20a)
enables αJ+1

m and uJ+2
m−1 to be calculated, while (7.20b) furnishes βJ+1

m during each
iteration. The results are shown in Tables 1-3 . For large values of J we see that
this implementation is numerically more stable than the one first attempted. Use
is made of the observations prior to the statement of Theorem 7.4 concerning the
third and later columns of the β -table — i.e. βJ

3 = 0 for J ≥ 0 . It was also noted
that the scalar product used to construct the entries in Table 1 had little effect on
αJ

m , regarded on its own, as an estimator for λm+1 for the larger values of J used.
Finally, it is clear from the tables that the results are consistent with the behaviour
described in (7.22) .

Remarks Given a vector-valued power series (3.1), the elements of its corre-
sponding continued fraction expansion (4.8) may be evaluated using the U -table
and the relations (4.14). Use of the row form of the cross algorithm to compute
UJ

m (4.16,4.18) is adequate for small J . However, if the power series is that of a
vector-valued meromorphic function satisfying (7.1-4), then, for large values of J ,
exact arithmetic is required for the implementation of (7.20) or, if finite arithmetic
is used, resort to the progressive form yields better numerical stability at the cost
of greater memory and more computation. In either case, the continued fraction
elements qJ

m, eJ
m , are then furnished by (7.21).

As with the scalar q-d algorithm, we note that the implementation of the pro-
gressive form of the cross rule in finite arithmetic would be greatly improved, and
less memory required, if the entries in the top diagonals, J = 0, 1 , of the U -table in
Fig.2 were known accurately. Other work would involve pursuing the parallel with
the scalar case: e.g. analysing the rates of convergence of the limits in (7.22), as
well as investigating vector-valued functions having poles with equal moduli.

The author thanks Professor P.R.Graves-Morris for his helpful advice on the pre-
sentation of this paper.
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k\m 0 1 2
1 7.11111 0.00000 0.00000
2 2.26909 0.08820 0.00095
3 2.01789 0.30530 1.17680
4 1.98652 0.84967 0.66382
5 1.98813 1.18338 0.32849
6 1.99284 1.10600 0.40116
7 1.99612 1.05260 0.45128
8 1.99799 1.02596 0.47605
9 1.99898 1.01287 0.48815

10 1.99948 1.00641 0.49411
11 1.99974 1.00320 0.49706
12 1.99987 1.00160 0.49853
13 1.99993 1.00080 0.49927
14 1.99997 1.00040 0.49963
15 1.99998 1.00020 0.49982
20 2.00000 1.00001 0.49999
25 2.00000 1.00000 0.50000

λm+1 2.00000 1.00000 0.50000

Table 1: Estimates of the eigenvalues of the matrix in Example 7.6 given by
αk−m

m uk−m+1
m−1 · uk−m

m−1
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k\m 1 2 3
1 0.581D+01 0.576D+01 0.576D+01
2 0.261D+00 0.215D+00 0.116D+01
3 0.557D-01 0.623D+00 0.000D+00
4 0.309D-01 0.576D+00 0.000D+00
5 0.189D-01 0.213D+00 0.000D+00
6 0.105D-01 0.796D-01 0.000D+00
7 0.554D-02 0.342D-01 0.000D+00
8 0.285D-02 0.159D-01 0.000D+00
9 0.144D-02 0.767D-02 0.000D+00

10 0.726D-03 0.376D-02 0.000D+00
11 0.364D-03 0.186D-02 0.000D+00
12 0.182D-03 0.928D-03 0.000D+00
13 0.913D-04 0.463D-03 0.000D+00
14 0.457D-04 0.231D-03 0.000D+00
15 0.228D-04 0.116D-03 0.000D+00
20 0.714D-06 0.361D-05 0.000D+00
25 0.223D-07 0.113D-06 0.000D+00

Table 2: Part of the β -table for Example 7.6 — βk−m
m
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k\m 0 1 2
0 0.57735 0.57735 0.57735 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
1 0.32004 0.86164 0.39389 0.13325 -0.98925 -0.06027 -0.55381 0.77791 -0.29690
2 0.35689 0.87600 0.32444 -0.38884 -0.91988 -0.05116 -0.45109 0.31652 0.83447
3 0.39060 0.87751 0.27823 -0.65264 -0.52442 0.54685 -0.59098 0.00740 0.80665
4 0.41185 0.87619 0.25034 -0.56050 0.08788 0.82348 -0.61622 -0.69918 0.36252
5 0.42370 0.87482 0.23487 -0.47199 0.29042 0.83240 -0.27945 -0.92843 -0.24479
6 0.42996 0.87393 0.22670 -0.43649 0.35787 0.82547 -0.11654 -0.89119 -0.43841
7 0.43317 0.87342 0.22250 -0.42147 0.38494 0.82109 -0.05298 -0.86208 -0.50400
8 0.43479 0.87315 0.22037 -0.41463 0.39704 0.81880 -0.02528 -0.84702 -0.53096
9 0.43561 0.87301 0.21930 -0.41139 0.40275 0.81765 -0.01235 -0.83951 -0.54320

10 0.43602 0.87294 0.21876 -0.40980 0.40553 0.81707 -0.00611 -0.83577 -0.54904
11 0.43623 0.87291 0.21849 -0.40902 0.40689 0.81679 -0.00304 -0.83391 -0.55189
12 0.43633 0.87289 0.21835 -0.40863 0.40757 0.81664 -0.00151 -0.83298 -0.55330
13 0.43638 0.87288 0.21829 -0.40844 0.40791 0.81657 -0.00076 -0.83251 -0.55400
14 0.43641 0.87288 0.21825 -0.40834 0.40808 0.81653 -0.00038 -0.83228 -0.55435
15 0.43642 0.87287 0.21823 -0.40830 0.40816 0.81651 -0.00019 -0.83217 -0.55453
20 0.43644 0.87287 0.21822 -0.40825 0.40825 0.81650 -0.00001 -0.83205 -0.55469
25 0.43644 0.87287 0.21822 -0.40825 0.40825 0.81650 0.00000 -0.83205 -0.55470

vm+1 0.43644 0.87287 0.21822 0.40825 -0.40825 -0.81650 0.00000 -0.83205 -0.55470

Table 3: Estimates of unit eigenvectors of the matrix in Example 7.6 given by uk−m
m
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