Skip to main content
Log in

Solving ODEs arising from non‐selfadjoint Hamiltonian eigenproblems

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

We consider three numerical methods – one based on power series, one on the Magnus series and matrix exponentials, and one a library initial value code – for solving a linear system arising in non‐selfadjoint ODE eigenproblems. We show that in general, none of these methods has a cost or an accuracy which is uniform in the eigenparameter, but that for certain special types of problem, the Magnus method does yield eigenparameter‐uniform accuracy. This property of the Magnus method is explained by a trajectory‐shadowing result which, unfortunately, does not generalize to higher order Magnus type methods such as those in [11,12].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. W.J. Beyn, On the numerical approximation of phase portraits near stationary points, SIAM J. Numer. Anal. 24 (1987) 1095–1113.

    Article  MATH  MathSciNet  Google Scholar 

  2. S. Blanes, F. Casas, J.A. Oteo and J. Ros, Magnus and Fer expansions for matrix differential equations: the covergence problem, J. Phys. A: Math. Gen. 31 (1998) 259–268.

    Article  MATH  MathSciNet  Google Scholar 

  3. E. Celledoni and A. Iserles, Approximating the exponential from a Lie algebra to a Lie group, Technical report 1998/06, Department of Applied Mathematics and Theoretical Physics, Cambridge University (1998).

  4. F. Gilbert and G.E. Backus, Propagator matrices in elastic wave and vibration problems, Geophys. 31 (1966) 326–332.

    Article  Google Scholar 

  5. L. Greenberg and M. Marletta, Algorithm 775: the code SLEUTH for solving fourth-order Sturm-Liouville problems, ACM Trans. Math. Software 23 (1997) 453–493.

    Article  MATH  MathSciNet  Google Scholar 

  6. L. Greenberg and M. Marletta, Oscillation theory and numerical solution of sixth order Sturm-Liouville problems, SIAM J. Numer. Anal. 35 (1998) 2070–2098.

    Article  MATH  MathSciNet  Google Scholar 

  7. A. Iserles and S.P. Nørsett, On the numerical solution of linear differential equations in Lie groups, Phil. Trans. Roy. Soc. London Ser. A 357 (1999) 983–1019.

    Article  MATH  Google Scholar 

  8. L. J´odar and J.C. Cortes, Rational matrix approximation with a priori error bounds for nonsymmetric matrix Riccati equations with analytic coefficients, IMA J. Numer. Anal. 18 (1998) 545–561.

    Article  MathSciNet  Google Scholar 

  9. S. Larsson and J.M. Sanz-Serna, The behaviour of finite element solutions of semilinear parabolic problems near stationary points, SIAM J. Numer. Anal. 31 (1994) 1000–1018.

    Article  MATH  MathSciNet  Google Scholar 

  10. W. Magnus, On the exponential solution of differential equations for a linear operator, Comm. Pure Appl. Math. 7 (1954) 649–673.

    MATH  MathSciNet  Google Scholar 

  11. M. Marletta, Numerical solution of eigenvalue problems for Hamiltonian systems, Adv. Comput. Math. 2 (1994) 155–184.

    MATH  MathSciNet  Google Scholar 

  12. P.C. Moan, Efficient approximation of Sturm?Liouville problems using Lie-group methods, DAMTP 1998/NA11, Department of Applied Mathematics and Theoretical Physics, Cambridge University (1998).

    Google Scholar 

  13. C.B. Moler and C.F. Van Loan, Nineteen dubious ways to compute the exponential of a matrix, SIAM Rev. 20 (1978) 801–836.

    Article  MATH  MathSciNet  Google Scholar 

  14. M.A. Naimark, Linear Differential Operators, Part I (Ungar, New York, 1968).

    Google Scholar 

  15. B.S. Ng and W.H. Reid, An initial value method for eigenvalue problems using compound matrices, J. Comput. Phys. 30 (1979) 125–136.

    Article  MATH  MathSciNet  Google Scholar 

  16. S.P. Nørsett, A. Iserles and A. Flo-Rasmussen, Time-symmetry and high-order Magnus methods, DAMTP 1998/NA06, Department of Applied Mathematics and Theoretical Physics, Cambridge University (1998).

  17. R.B. Sidje, EXPOKIT: a software package for computing matrix exponentials, ACM Trans. Math. Software 24 (1998) 130–156.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jódar, L., Marletta, M. Solving ODEs arising from non‐selfadjoint Hamiltonian eigenproblems. Advances in Computational Mathematics 13, 231–256 (2000). https://doi.org/10.1023/A:1018954227133

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018954227133

Navigation