Skip to main content
Log in

Orthogonality properties of linear combinations of orthogonal polynomials II

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

Let \((P_n)\) and \(({\mathcal{P}}_n)\) be polynomials orthogonal on the unit circle with respect to the measures dσ and dµ, respectively. In this paper we consider the question how the orthogonality measures dσ and dµ are related to each other if the orthogonal polynomials are connected by a relation of the form \(\sum\nolimits_{j = 0}^{k(n)} {\gamma _{j,n} {\mathcal{P}}_{n - j} (z)} = \sum\nolimits_{j = 0}^{l(n)} {\lambda _{j,n} P_{n - j} (z)}\), for \(n \in {\mathbb{N}}\), where \(\gamma _{j,n} ,\lambda _{j,n} \in {\mathbb{C}}\). It turns out that the two measures are related by \(d\sigma \left( \phi \right) = {\mathcal{A}}\left( \phi \right)/{\mathcal{E}}\left( \phi \right)d\mu \left( \phi \right) + \sum M _j \delta \left( {e^{i\phi } - e^{i\kappa j} } \right)\) if \(l\left( n \right) + k\left( n \right) \leqslant n/3\), where \({\mathcal{A}}\) and \({\mathcal{E}}\) are known trigonometric polynomials of fixed degree and where the \(\kappa _j\)'s are the zeros of \({\mathcal{E}}\) on \(\left[ {0,\left. {2\pi } \right)} \right.\). If the \(l\left( n \right)\)'s and \(k\left( n \right)\)'s are uniformly bounded then (under some additional conditions) much more can be said. Indeed, in this case the measures dσ and dµ have to be of the form \({\mathcal{A}}\left( \phi \right)/{\mathcal{S}}\left( \phi \right)d\phi\) and \({\mathcal{E}}\left( \phi \right)/{\mathcal{S}}\left( \phi \right)d\phi\), respectively, where \({\mathcal{A}},{\mathcal{E}},{\mathcal{S}}\) are nonnegative trigonometric polynomials. Finally, the question is considered to which weight functions polynomials of the form \(\Phi _n : = \sum\nolimits_{j = 0}^{l\left( n \right)} {\lambda _{j,n} P_{n - j} } + \sum\nolimits_{j = 0}^{l\left( n \right)} {\gamma _{j,n} } P_{_{n - j} }^* ,\) where \(P_{_{n - j} }^* \left( z \right) = z^{n - j} \overline P _n \left( {1/z} \right)\) denotes the reciprocal polynomial of \(P_{n - j}\), can be orthogonal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.N. Bernstein, Sur une classe de polynômes orthogonaux, Comm. Kharkov Math. Soc. 4 (1930) 79–93.

    MATH  Google Scholar 

  2. N.K. Bose, Digital Filters. Theory and Applications (North-Holland, 1985).

  3. G. Freud, Orthogonal Polynomials (Akademiai Kiadó and Pergamon Press, New York, 1971).

    Google Scholar 

  4. Ya.L. Geronimus, Polynomials orthogonal on a circle and their applications. Series and approximations, in: Amer. Math. Soc. Transl. Ser. 1, Vol. 3 (Amer. Math. Soc., Providence, RI, 1962) pp. 1–78.

    Google Scholar 

  5. U. Grenander and G. Szegö, Toeplitz Forms and their Applications (Chelsea, New York, 2nd ed., 1984).

    Google Scholar 

  6. E. Godoy and F. Marcellán, An analog of the Christoffel formula for polynomial modification of a measure on the unit circle, Boll. Un. Mat. Ital. A (7) 5 (1991) 1–12.

    MATH  MathSciNet  Google Scholar 

  7. C. Gueguen, An introduction to displacement ranks and related fast algorithms, in: Traitement du Signal and Signal Processing, eds. J.L. Lacoume et al. (Elsevier, Amsterdam, 1987) pp. 707–780.

    Google Scholar 

  8. M.E. Ismail and X. Li, On sieved orthogonal polynomials IX: Orthogonality on the unit circle, Pacific J. Math. 153 (1992) 289–297.

    MATH  MathSciNet  Google Scholar 

  9. P. Koosis, Introduction to H p Spaces, London Mathematical Society, Lecture Note Ser. 40 (Cambridge University Press, 1980).

  10. X. Li and F. Marcellán, Representations of orthogonal polynomials for modified measures, submitted.

  11. F. Marcellán, F. Peherstorfer and R. Steinbauer, Orthogonality properties of linear combinations of orthogonal polynomials, Adv. Comput. Math. 5 (1996) 281–295.

    Article  MATH  MathSciNet  Google Scholar 

  12. A. Máté, P. Nevai and V. Totik, Szegö's extremum problem on the unit circle, Ann. of Math. 134 (1991) 433–453.

    Article  MATH  MathSciNet  Google Scholar 

  13. F. Peherstorfer, A special class of polynomials orthogonal on the unit circle including the associated polynomials, Constr. Approx. 12(2) (1996) 161–186.

    Article  MATH  MathSciNet  Google Scholar 

  14. F. Peherstorfer and R. Steinbauer, Characterization of orthogonal polynomials with respect to a functional, J. Comput. Appl. Math. 65 (1995) 339–355.

    Article  MATH  MathSciNet  Google Scholar 

  15. F. Peherstorfer and R. Steinbauer, Orthogonal polynomials on ares of the unit circle II. Orthogonal polynomials with periodic reflection coefficients, J. Approx. Theory 87 (1996) 60–102.

    Article  MATH  MathSciNet  Google Scholar 

  16. F. Peherstorfer and R. Steinbauer, Asymptotic behaviour of orthogonal polynomials on the unit circle with asymptotically periodic reflection coefficients, J. Approx. Theory 88 (1997) 316–353.

    Article  MATH  MathSciNet  Google Scholar 

  17. F. Peherstorfer and R. Steinbauer, Note on mass-points of finite positive Borel measures, manuscript.

  18. G. Szegö, Orthogonal Polynomials, Amer. Math. Soc. Colloq. Publ. 23 (Amer. Math. Soc., Providence, RI, 4th ed., 1975).

    Google Scholar 

  19. W.F. Trench, Explicit weighting coefficients for predicting ARMA time series from the finite past, J. Comput. Appl. Math. 34 (1991) 251–262.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marcellán, F., Peherstorfer, F. & Steinbauer, R. Orthogonality properties of linear combinations of orthogonal polynomials II. Advances in Computational Mathematics 7, 401–428 (1997). https://doi.org/10.1023/A:1018963323132

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018963323132

Navigation