Skip to main content
Log in

Regularity of multiwavelets

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

The motivation for this paper is an interesting observation made by Plonka concerning the factorization of the matrix symbol associated with the refinement equation for B-splines with equally spaced multiple knots at integers and subsequent developments which relate this factorization to regularity of refinable vector fields over the real line. Our intention is to contribute to this train of ideas which is partially driven by the importance of refinable vector fields in the construction of multiwavelets.

The use of subdivision methods will allow us to consider the problem almost entirely in the spatial domain and leads to exact characterizations of differentiability and Hölder regularity in arbitrary L p spaces. We first study the close relationship between vector subdivision schemes and a generalized notion of scalar subdivision schemes based on bi-infinite matrices with certain periodicity properties. For the latter type of subdivision scheme we will derive criteria for convergence and Hölder regularity of the limit function, which mainly depend on the spectral radius of a bi-infinite matrix induced by the subdivision operator, and we will show that differentiability of the limit functions can be characterized by factorization properties of the subdivision operator. By switching back to vector subdivision we will transfer these results to refinable vectors fields and obtain characterizations of regularity by factorization and spectral radius properties of the symbol associated to the refinable vector field. Finally, we point out how multiwavelets can be generated from orthonormal refinable bi-infinite vector fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Buhmann and C.A. Micchelli, Using two slanted matrices for subdivision, Proc. London Math. Soc. 69 (1994) 428–448.

    MATH  MathSciNet  Google Scholar 

  2. A.S. Cavaretta, W. Dahmen and C.A. Micchelli, Stationary Subdivision, Memoirs of the AMS 453 (1991).

  3. A.S. Cavaretta, W. Dahmen, C.A. Micchelli and P. Smith, A factorization theorem for banded matrices, Linear Algebra Appl. 39 (1981) 229–245.

    Article  MATH  MathSciNet  Google Scholar 

  4. C.K. Chui and J. Lian, A study of orthonormal multi-wavelets, Preprint (1995).

  5. A. Cohen, I. Daubechies and G. Plonka, Regularity of refinable function vectors, J. Fourier Anal. Appl., to appear.

  6. W. Dahmen and C.A. Micchelli, On stationary subdivision and the construction of compactly supported orthonormal wavelets, in: International Series of Numerical Mathematics 94, eds. W. Haussmann and K. Jetter (Birkhäuser, Basel, 1990) pp. 69–81.

    Google Scholar 

  7. W. Dahmen and C.A. Micchelli, Biorthogonal wavelet expansions, Constr. Approx., to appear.

  8. I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF 61 (SIAM, Philadelphia, PA, 1992).

    MATH  Google Scholar 

  9. G. Donovan, J.S. Geronimo and D.P. Hardin, Intertwining multiresolution analysis and the construction of piecewise polynomial wavelets, Preprint (1995).

  10. G. Donovan, J.S. Geronimo, D.P. Hardin and P.R. Massopust, Construction of orthogonal wavelets using fractal interpolation functions, SIAM J. Math. Anal., to appear.

  11. G.B. Follard, Real Analysis (Wiley, New York, 1984).

    Google Scholar 

  12. M. Gasca and C.A. Micchelli, eds., Total Positivity and its Applications (Kluwer, 1996).

  13. J.S. Geronimo, D.P. Hardin and P.R. Massopust, Fractal functions and wavelet expansions based on several scaling functions, J. Approx. Theory 78 (1995) 373–401.

    Article  MathSciNet  Google Scholar 

  14. T.N.T. Goodman, R.Q. Jia and C.A. Micchelli, The 2(ℤ) spectral radius of an N-periodic two slanted bi-infinite matrix is an eigenvalue, Preprint (1996).

  15. T.N.T. Goodman and S.L. Lee, Wavelets of multiplicity r, Trans. Amer. Math. Soc. 342 (1994) 307–324.

    Article  MATH  MathSciNet  Google Scholar 

  16. T.N.T. Goodman, S.L. Lee and W.S. Tang, Wavelets in wandering spaces, Trans. Amer. Math. Soc. (1993) 639–654.

  17. C. Heil and D. Colella, Matrix refinement equations: Existence and uniqueness, Preprint (1994).

  18. C. Heil, P.H. Heller, G. Strang, V. Strela and P. Topiwala, The application of multiwavelet filter banks to signal and image processing, Preprint (1995).

  19. C. Heil, G. Strang and V. Strela, Approximation by translates of refinable functions, Numer. Math. 73 (1996) 75–94.

    Article  MATH  MathSciNet  Google Scholar 

  20. L. Hervé, Multiresolution analysis of multiplicity d: applications to dyadic interpolation, Appl. Comput. Harmon. Anal. 1 (1994) 299–315.

    Article  MATH  MathSciNet  Google Scholar 

  21. R.Q. Jia, Total positivity of the discrete spline collocation matrix, J. Approx. Theory 39 (1983) 11–23.

    Article  MATH  MathSciNet  Google Scholar 

  22. R.Q. Jia, Subdivisions schemes in L p spaces, Adv. Comput. Math. 3 (1995) 309–341.

    Article  MATH  MathSciNet  Google Scholar 

  23. R.Q. Jia and C.A. Micchelli, Using the refinement equation for the construction of pre-wavelets II: powers of two, in: Curves and Surfaces, eds. P.J. Laurent, A. Le Méhauté and L.L. Schumaker (Academic Press, Boston, 1991) pp. 209–258.

    Google Scholar 

  24. R.Q. Jia and C.A. Micchelli, On the linear independence for integer translates of a finite number of functions, Proc. Edinburgh Math. Soc. 36 (1992) 69–85.

    Article  MathSciNet  Google Scholar 

  25. R.Q. Jia, S. Riemenschneider and D.X. Zhou, Smoothness of multiple refinable functions and multiple wavelets, Preprint (1997).

  26. T.Y. Lam, Serre's Conjecture, Lecture Notes in Mathematics 635 (Springer, New York, 1978).

    MATH  Google Scholar 

  27. W. Lawton, S.L. Lee and Z. Shen, Stability and orthonormality of multiwavelets, Preprint (1995).

  28. W. Lawton, S.L. Lee and Z. Shen, Algorithm for matrix extension and wavelet construction, Math. Comp. 65 (1996) 723–737.

    Article  MATH  MathSciNet  Google Scholar 

  29. W. Lawton, S.L. Lee and Z. Shen, Convergence of multidimensional cascade algorithm, Numer. Math., to appear.

  30. R. Long, W. Chen and S. Yuan, Wavelets generated by vector multiresolution analysis, Preprint (1995).

  31. J.L. Merrien, A family of Hermite interpolants by bisection algorithms, Numer. Algorithms 2 (1992) 187–200.

    Article  MATH  MathSciNet  Google Scholar 

  32. C.A. Micchelli, Using the refinement equation for the construction of pre-wavelets VI: Shift invariant subspaces, in: Approximation Theory, Spline Functions and Applications, ed. S.P. Singh (Kluwer Academic Publishers, 1992) pp. 213–222.

  33. C.A. Micchelli, Mathematical Aspects of Geometric Modeling, CBMS-NSF 65 (SIAM, Philadelphia, PA, 1995).

    MATH  Google Scholar 

  34. C.A. Micchelli, Interpolatory subdivision schemes and wavelets, J. Approx. Theory 86 (1996) 41–71.

    Article  MATH  MathSciNet  Google Scholar 

  35. C.A. Micchelli and H. Prautzsch, Uniform refinement of curves, Linear Algebra Appl. 114/115 (1989) 841–870.

    Article  MathSciNet  Google Scholar 

  36. C.A. Micchelli and T. Sauer, On vector subdivision, Preprint (1997).

  37. C.A. Micchelli and T. Sauer, Sobolev norm convergence of stationary subdivision schemes, in: Surface Fitting and Multiresolution Methods, eds. A. Le Méhauté, C. Rabut and L.L. Schumaker (Vanderbilt University Press, 1997) pp. 245–261.

  38. C.A. Micchelli and Y. Xu, Using the matrix refinement equation for the construction of wavelets on invariant sets, Appl. Comput. Harmon. Anal. 4 (1994) 391–401.

    Article  MATH  MathSciNet  Google Scholar 

  39. G. Plonka, Spline wavelets with higher defect, in: Curves and Surfaces II, eds. P.J. Laurent, A. Le Méhauté and L.L. Schumaker (A.K. Peters, Boston, 1994) pp. 387–398.

    Google Scholar 

  40. G. Plonka, Approximation properties of multi-scaling functions: A Fourier approach, Rostock. Math. Kolloq. 49 (1995) 115–126.

    MATH  MathSciNet  Google Scholar 

  41. G. Plonka, Two-scale symbol and autocorrelation symbol for B-splines with multiple knots, Adv. Comput. Math. 3 (1995) 297–306.

    Article  MathSciNet  Google Scholar 

  42. G. Plonka, Approximation order provided by refinable function vectors, Constr. Approx., to appear.

  43. G. Plonka and V. Strela, Construction of multi-scaling functions with approximation and symmetry, SIAM J. Math. Anal., to appear.

  44. W. Rudin, Functional Analysis (McGraw-Hill, New York, 1973).

    MATH  Google Scholar 

  45. L.L. Schumaker, Spline Functions: Basic Theory (Wiley, New York, 1981).

    MATH  Google Scholar 

  46. Z. Shen, Refinable function vectors, Preprint (1995).

  47. G. Strang and V. Strela, Finite element multiwavelets, Preprint (1995).

  48. G. Strang and V. Strela, Short wavelets and matrix dilation equations, IEEE Trans. Signal Processing 43 (1995).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Micchelli, C., Sauer, T. Regularity of multiwavelets. Advances in Computational Mathematics 7, 455–545 (1997). https://doi.org/10.1023/A:1018971524949

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018971524949

Navigation